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Model Based Statistics in Biology.    

Part II.  Quantifying Uncertainty. 

Chapter 7.4    Parameter Estimates 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 on chalk board 

ReCap Part I (Chapters 1,2,3,4) 

Quantitative reasoning: Example of scallops, which combined  

models (what is the relation of scallop density to substrate?)  

with statistics (how certain can we be?) 

ReCap (Ch5) 

Data equations summarize pattern in data as a series of parameters (means, slopes) 

ReCap (Ch 6) 

Frequency distributions are a key concept in statistics. 

They are used to quantify uncertainty. 

ReCap (Ch 7) 

Inferential statistics are a logical procedure for making decisions when there is 

uncertainty due to variable outcomes.  

Hypothesis testing is concerned with making a decision about an unknown population 

parameter. 

Estimation is concerned with the specific value of an unknown population parameter. 

 

Wrap-up 
We use well established formulas to make the "best" estimate of a parameter. 

The most common parameters in biology are  

 means 

 slopes 

 proportions, odds, and odds ratios 

Today: Parameter Estimates 

ReCap.  Part I (Chapters 1,2,3,4) 

ReCap Part II (Ch 5, 6) 

7.0 Inferential Statistics 

7.1 The Logic of Hypothesis Testing 

 Rejecting the ‘Just Luck’ Hypothesis 

 Three Styles of Inference 

 The Logic of the Null Hypothesis 

 Choice of Alternative Hypotheses 

 Type I and Type II Error 

7.2 Hypothesis Testing with an Empirical 

  Distribution 

7.3 Hypothesis Testing with Cumulative  

 Distribution Functions 

7.4 Parameter Estimates 

7.5 Confidence Limits 

Quotes p2 to transparency 
 
or find 4 students to take the 
parts of each source, in class 
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Parameters. 
 

Formal models (equations) consist of variable quantities and parameters 

Parameters have a fixed value in a particular situation. 

Parameters are found in 

 Functional expressions of causal relations. 

 Statistical or empirical functions (causal relation unknown). 

 Theoretical frequency distributions (normal, poisson, etc). 

We have used several kinds of models so far. 

 All of these consist of variables and parameters. 

  Variables take on any value. 

  Parameters have a fixed value (in any one situation) 

 These parameters are obtained from data by estimation 

 

 

 

 

 

Hypothesis testing or estimation ? 

 

Introductory courses in statistics present hypothesis testing based on the HA / 

Ho logic developed in the first half of the 20
th

 century by Fisher and Neyman.   

A series of quotes will serve to illustrate the history of thinking concerning 

experiments and hypothesis testing in the 20
th
 century. 

 

If your experiment needs statistics, you ought to have done a better 

experiment.    --Ernest Rutherford (1871-1937) 

 

Every experiment may be said to exist only in order to give the facts a chance 

of disproving the null hypothesis      --R.A. Fisher 1935 

 

Everyone will have his own pet assortment of flotsam; mine include most of the 

theory of significance testing, including multiple comparison tests, and non 

parametric statistics. 

    --John Nelder, 1971 

 

Elementary statistics courses for biologists tend to lead to the use of a 

stereotyped set of tests with too much emphasis on hypothesis testing and too 

little emphasis on parameter estimation. 

 --M.J. Crawley 1993 
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Parameters. 
Parameters are used in variety of ways.  They are used describing the functional relation 

of one quantity to another.  They are used in describing pattern, such as an empirically 

derived relation between quantities.  Parameters are used in describing frequency 

distributions, such as the normal or binomial distribution. 

 

I. Functional relationships.  A direct  causal relation is implied.    

 Examples: 

  Scallop density as a function of substrate roughness (Lec2) 

  Estrogen levels in tamarin mothers (Lab 2) 

  Infection rate of snails by parasites (Lab 2) 

 

             2.       Statistical or empirical relationships. Y is function of X, Y can be calculated 

from X, but X does not necessarily cause Y 

 Examples: 

  Leg lengths of water bugs Notonecta as function of body size (Lab 2) 

  Fish catch from lakes as function of the morphoedaphic index  MEI 

 

3. Theoretical frequency distributions.   

 Any theoretical distribution (probability density function pdf) will have one or 

more parameters. 
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All of these models consist of variables and parameters 

 

1. Functional relationship.  Scallops density: Mscal = k1  if R = 5 or 6 

        Mscal = k2  if R not equal 5 or 6 

  Variables are  

   Mscal (kg caught per unit area of seafloor) 

   R = sediment roughness from 1 (sand) to 10 (cobble) 

  Parameter is k, which has two values (two means)  k1  and  k2 

 

2. Statistical relationship.  Morphoedaphic equation:  Mfish   =  1.38 MEI
0.4461

 

  Variables are  

   Mfish  = kg ha
−1

 yr
−1

 (fish caught per year from lakes) 

   MEI  =  ppm  m
−1

 (dissolved organics / lake depth) 

  Parameters are 

   0.4461 is slope relating pM to MEI on a log-log plot 

   1.38 kg ha
−1

 yr
−1

 ppm
−0.4461

 m
0.4461

 

 

    

3.     Frequency distribution: Normal distribution 

 

 Parameters are: 

 Examples: Normal distribution      
 

  where the variable is Y =  σX + µ = outcomes with measured units,  

   X is a random variable with no units 

   parameters are  µ (mean) and  σ (standard deviation). 

 

 Forms of each are n·P(X = x)]  f(x) = P(X = x)]  =  pdf 

    n·P(X < x)]  F(x) = P(X < x)]  =  cdf 

 X is a random variable.  x is the counter (x-axis). 

 

 Other examples. Binomial    

 

 

  where x is a random variable (number of successes) 

   parameters are n = number of trials, p = success per trial. 

 

  Poisson (1 parameter, success rate p). 
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Parameter Estimates 
 

1. Scallop density.   The model of scallop density Mscal   (kg/tow) was 

 Mscal   =  µ1  if  sediment roughness R = 5 or 6 

 Mscal   =  µ2  if  sediment roughness R not equal 5 or 6 

 

We have no theoretical model from which to calculate µ1 or µ2 

Hence the estimates of these two parameters are taken as the sample means based on 

n = 28 tows 

 

 Mscal   =  mean(MR=5,6) n = 13 

 Mscal   =  mean(MR ne 5,6) n = 15 

 

These sample means are calculated as shown above. 

 

 

2. Ryders's morphoedaphic equation. 

 

Ryder's model:   pM  =  α MEI
β
 

 

The parameter β  is a slope on a log-log plot of catch  pM  versus  MEI 

The parameter α is the intercept in this plot. 

 

 

 

 

The sample slope $β MEI  is an estimate of the population parameter βMEI   

The sample intercept  is an estimate of the population parameter ln(α) 

The method of least squares is used to obtain the "best" estimate of these parameters. 
 

 
 

Data in leg1a.dat,  

analysis in ctchclr3.out 
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Picture showing that  

is the line that 

minimizes the squared 

vertical deviations 

from the line 
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Parameter Estimates (continued) 

 

3.  The normal distribution  

First, an estimate of the population mean µ  

 

The estimate is Y  , which is calculated as   

  

This is an estimate of the mean value of the entire population, also called the expected 

value µ  =  E(Y) 

 

The mean value of a sample drawn from the population is called the sample mean Y  

 

The sample mean  is the "best" estimate (in the statistical sense) of the population mean 

µ.  "best" means "minimum deviation."   It is not necessarily the most accurate. 

 

 

 

Next, an estimate of the population variance σ2
.  This parameter describes the degree of 

spread of the normal distribution. 

 

The estimate of the parameter  σ2
 is s

2
, calculated as  

 

The variance of the population is the mean squared deviation from µ  

 

 

The variance of the sample is s
2
, an estimate of σ2

.  The sample variance s
2
 is the "best" 

estimate of the variance of the population σ2
. 

 

If the sample is not representative of the population, will this estimate s
2
 be an accurate 

estimate of the true value σ2
 ? 

 

Finally, an estimate of   P(Y=µ).   

This parameter describes the maximum frequency, which will occur at Y = µ. An 

estimate of P(Y=µ) is  

 

 

 where s is the standard deviation, an estimate of the parameter σ 

 

The expected value of the relative frequency of Y takes on values less than P(Y=µ) if 

Y is greater or less than the population mean µ 
 

 

 

If the sample is not a representative sample of the population from which 

it is drawn, will this estimate  be an accurate estimate of the true value µ ? 

s n Y Y2 1 2= −− Σ ( )  

E Y Y( ) var( )− = =µ σ2 2

 

Y n Y= −1 Σ

P Y( ) ( )= = −µ σ π2 1

P Y s( ) ( )= = −µ π2 1
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Statistical Inference: Estimation 
 

There are two categories of statistical inference: 

 

Hypothesis testing is concerned with making a decision about an unknown population 

parameter. 

 

Estimation is concerned with the specific value of an unknown population parameter. 

 

Estimates of population parameters are made from samples. 

 

An analytic formula is often used to make an estimate 

 An example is the formula for the mean 

  (this minimizes the squared deviations of the data from the mean) 

 An example is the formula for the slope of a regression line 

  (this minimizes the squared deviations of the data from the line) 

 

These are the two most common formulae for making estimates, but they are by no 

means the only formulae.  For example, the formula for the maximum frequency 

for normal data is     

 

 

Estimates can also be made with an iterative procedure, rather than applying an analytic 

formula.  Iteration continues until some criterion is reached.   

The most widely accepted criterion is maximum likelihood.   The criterion is that the 

likelihood of the parameter, given the data, be as large as possible.  Commonly, this 

estimate is obtained iteratively by minimizing a deviance.  The most common deviance is 

the sum of the squared deviations of the data from the model.  Another common deviance 

is the G-statistic, for counts that arise from Poisson or binomial processes. 

 

To evaluate our estimate, we need some measure of uncertainty.  Usually this takes the 

form of a confidence limit for the parameter. 

 

A Confidence limit consists of two values between which we have a specified level of on 

confidence (say, 95%) that the population parameter lies. 

 

 

This course will demonstrate parameter estimation and confidence limits as an alternative 

to the machinery of hypothesis testing. 

 
 

P Y( ) ( )= = −µ σ π2 1


