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Model Based Statistics in Biology.    
Part II.  Quantifying Uncertainty and Evidence. 
Chapter 7.3    Hypothesis Testing with Distribution Functions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ReCap (Ch 6) 
Frequency distributions are a key concept in statistics. 
They are used to quantify uncertainty. 
Empirical distributions are constructed from data 
Theoretical distributions are models of data. 
ReCap (Ch 7) 
Frequentist hypothesis testing is based on the logic of rejecting the null (“Just Luck”) 
hypothesis.  p-values are calculated from the distribution of outcomes when the null 
hypothesis is true.  p-values can be calculated from empirical distributions obtained by 
randomizing the data. 
 
Wrap-up 

Hypothesis testing 
 Ho:  Data = Noise  (no signal) 
 HA: Data = Signal + Noise    
 Type I error:  rejecting Ho when Ho is true.   This is the p-value.   
 Type II error:  not rejecting Ho when  Ho is false 
 p-value was computed from cumulative distribution function. 

Today: More examples, using a generic recipe for hypothesis testing. 
This time with a cumulative distribution function to compute a p-value 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6) 
7.0 Inferential statistics 
7.1 Three modes of inference, many varieties 
 Evidentialist 
 Priorist 
 Frequentist 
7.2 Hypothesis testing with an empirical 
 distribution 
7.3 Hypothesis testing with cumulative 
 distribution functions 
7.4 Parameter Estimates 
7.5 Confidence Limits 
7.6  Goodness of fit tests 
 

For each example,  
draw graph of cdf 
Show one arrow up and across for 
one-tailed test 
Show two arrows up and across for 
two-tailed test 
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Table 7.1 Generic recipe for frequentist hypothesis testing 
 

1. State background and research question. 
2. Define population, sample, and relation of sample to population. 
3. State the test statistic..……………….……………………………ST 
4. State null hypothesis about the population.……………………… Ho 

State research hypothesis about population……………………… HA  
5. Type I error fixed or categorical? 
6. State frequency distribution that gives probability of outcomes when 

the null hypothesis is true. Choices: 
a) All possible outcomes (permutation test) 
b) Empirical distribution obtained by random sampling of all possible 

outcomes when Ho is true (randomization test). 
c) Cumulative distribution function (cdf) that applies when Ho is true 

State assumptions when using a cdf such as Normal, F, t or χ2 
7. Calculate the statistic from the sample.  

This is the observed outcome for a randomization test 
8. Calculate the p-value for the observed outcome relative to the distribution of 

outcomes when Ho is true. 
9. Reject Ho if p less than α, declare decision about Ho  

OR Evaluate Ho from ranking of p.  
10.  Report test statistic, p-value, sample size.  Report parameter estimates as 

appropriate. Report measure of evidence (LR) if appropriate. 
Draw science conclusions. 

 

 
 
 
 
 
 
 
 

Fisher's famous paper of 1922, which quantified information almost 
half a century ago, may be taken as the fountainhead from which 
developed a flow of statistical papers, soon to become a flood.  This 
flood, as most floods, contains flotsam much of which, unfortunately, 
has come to rest in many text books.  Everyone will have his own pet 
assortment of flotsam; mine include most of the theory of significance 
testing, including multiple comparison tests, and non parametric 
statistics. 
 
John Nelder, Rothamsted Experimental Station. (Fisher's successor as 
Director of the Statistics Department, and pioneer of generalised 
linear models). From: Mathematical Models in Ecology, British 
Ecological Society Symposium 1971. 
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Table 7.2. Key for choosing the frequency distribution of a statistic. 
 
 

 
 
Empirical distributions are generated by taking all permutations, by sampling permutations, or 
by subsampling (bootstrap methods). 
 
 
 
 
 
 
 
 
 
 
 



 4

 
Hypothesis testing with a probability model 
Jackal bones again  
Data from Manly (1991) analyzed again with same generic recipe, but this time with a 
proability distribution (t-distribution) instead of an empirical distribution. 
 
1. Background and research question.   

No information on research questions provided in Manly (1991) 
2. Population:  all possible measurements on these bones.  

Thus we are looking at measurement error, not process error (due to biological 
processes).  Sample: 20 bones.  Representative?  Unknown 

3. Test statistic. 
 The statistic used in the previous analysis was the difference in mean lengths.   
 Do  =  Lfemale    Lmale   4.8 mm 
 In this example, the statistic will be a standardized difference called the t-statistic. 
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n = 10 bones, in each of two samples 

   This formula is for equal sample sizes in two groups. 
 
 Var(Lfemale)= variance of 10 measurements of Lfemale 

 Var(L)= variance of 10 measurements of Lmale 

      Do is difference in mean lengths, the same statistic that was used in the  
  analysis of this data using empirical distribution.   
 
The t-statistic is a difference, standardized by the square root of a variance.   
The t-statistic is a ratio of two quantities with the same units  
In the jackal bone example the units of t are mm/mm.   
The t-statistic has no dimensions or units, it is just as useful for mice as for microbes or 
mammoths. 
The t-statistic puts the data on a new scale with units of standard deviations.  The 
difference measured in mm is transformed to distance measure in standard deviations.   
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Hypothesis Testing with a probability model. Jackal bones again  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here is the general formula for the t-statistic 
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X X1 2

are mean values of X in samples from populations 1 and 2 

  µ1    µ2 are the true means in populations 1 and 2 
  n1     n2 are sample sizes from populations 1 and 2  
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2  are the variances in samples 1 and 2 

When the null hypothesis is true, (µ1  µ2) = 0 
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When sample sizes are equal, the formula becomes 
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Hypothesis testing -- Jackal bones (continued) 
 
4. Ho:  t =  0 I.e., males and females the same.  This is a two-tailed test 

HA:  t  ≠  0   I.e., males and females not the same 
 OR 
HA:  t <  0  I.e., males larger.  This is a one-tailed test 
Ho:  t  >  0  I.e., males not larger 
 

5. Type I error fixed or categorical?  We have no reason to control Type I error.   
Instead we will use 3 categories 
p > 10% :  High Type I error 
10% >p>5%:  Moderate Type I error 
p < 5%:   Low Type I error 

  
6. In the previous example we constructed a distribution by randomization.  This makes 

no assumptions about the distribution of our statistic.  But it requires time and care to 
set up the test.   

 
The distribution looked normal.   
This suggests that we use a normal distribution 
instead of generating our own.  
It turns out the normal distribution is for an infinite 
number of samples.  So instead we will use the t-
distribution, which is the normal distribution for a  
limited number of samples.   
 
 

This has several advantages It saves time and effort 
  It allows us to infer beyond our sample. 
It assumes that the normal (or t) distribution  is appropriate for our sample. 

We can check this by comparing our distribution to a normal distribution. 
We can also justify the assumption by using the law of large numbers, that repeating 
the measurements an infinite number of times will produce an estimate of the true 
value of the difference in means. 

How good is the assumption? 
In this case the fit looks good, by eye.   
And we expect an infinite number of repeats with these bones will produce the true 
value.  We might also expect that our measurement protocol, if repeated an infinite 
number of times, would produce the true difference for all jackals of this species.  

We will assume that the data are normally distributed around the two means, with the 
same variance.  With this assumption, we will use the t-distribution.  
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7. Calculate the t-statistic 

 
     

t = 3.484 for Lmale   Lfemale    t = − 3.484 for Lfemale   Lmale     
 
8.  Calculate Type I error (p-value) from t distribution 
 p can be calculated for the observed t = −3.484 with 18 df  in any package 

18 degrees of freedom = 20  2 
We lose 1 df for each parameter estimated 

 Two parameters (means) were estimated 

 
 
Because t is negative, the functions report the lower tail.   
For a one-tail test, we use the lower tail only 

The distribution is symmetrical.  The upper tail has the same value.  
 
 Figure L11a.   

Show both lines coming across, 
one for each tail. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

MTB > cdf   -3.484; 
SUBC> t 18. 
          -3.484    0.0013 

> pt(-3.484,18) 
[1] 0.001324587 
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Hypothesis testing -- Jackal bones (continued) 
 
8.    Compare this to the result from a randomization with more runs.  
 pcdf     = 0.0013   cumulative distribution function 
 prandom =     9/5000 = 0.0018   previous randomization 
 prandom = 47/20000 = 0.00235 another randomization with greater precision 

 
In this case it turns out that the distribution function gives a smaller p-value.   
 

pcdf  : Quicker to calculate.  
 Assumes that differences are normally distributed.  
 Inference to an infinite number of repeats.  
prandom  Takes longer to calculate. 
 Does not assume normal errors. 
 Does not assume data are representative  
 Inference only to all rearrangements of the data.   

 
9. Evaluate Ho from ranking of p. 

p <    so we discard the Ho (males not larger) at a low (5%) error rate. 
 
10. Report statistics: t = -3.484,  n  =  20,  p = 0.0013  (t-distribution) 

We report effect size.  Lfemale = 108.6 mm,    Lmale = 113.4 mm 
 
We have eliminated measurement error as an explanation for the observed difference in 
average length.  We have not eliminated process error due to natural variation in 
mandible lengths among populations, process error due to biased sampling, etc.  To do 
this we would need an unbiased sample from several natural populations.   
 

Equivalent procedure for steps 8, 9, 10  (less informative) 
 
8. t-statistic corresponding to   = 5%  is 1.734 for one-tail 
      It is  2.10 for two tail test. 
 
9. t=5%  =  1.734 <   tobs = 3.484  so discard Ho  at low (5%) error rate 
 
10. t  =  3.484     p  <0.05    n  =  20 
 
This procedure is less informative, and no longer necessary, now that we have computers 
with easily used and accurate software.   This procedure is a carry-over from the days 
before hand held calculators and personal computers, when p-values had to be tabled 
rather than calculated exactly.  Hand held calculators with programs that calculate p-
values for t, F, and Chisquare distributions appeared in the late 1970s.  These days, Type 
I error can be calculated in spreadsheet, in any statistical package, and from programs on 
the World Wide Web.  Using Tables is like using a rotary dial phone on your desk, 
instead of a cellphone. 
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Hypothesis testing – Checking assumptions. 
The t-distribution is a theoretical distribution calculated from a mathematical expression. 

  This distribution applies to the t-statistic we have calculated, provided the 
deviations from the two means L and L have a normal distribution.   If 
both have the same distribution, then we can assume that the difference 
of the means is normally distribution.  Note that the assumption is that the 
differences are normal.  We cannot check the assumption until we 
compute the differences. 

 
 Data = Model + Residual.  Here, the model is that of two means. 
 
It is a logical contradiction to check this assumption before undertaking the test: after all, 
we are expecting bone lengths to differ between females  and males, and hence we expect 
that the data itself (all 20 observations) will be somewhat bimodal (not normal).   
 
Even now, well into the 21st century, you may well encounter someone who insists that 
you check whether your "data are be normal" before doing the t-test.  This is not correct.  
It is a waste of time because the assumption is about the differences.  
Later, when we use the general linear model to carry out a t-test we will examine the 
histogram of residuals after the parameters (two means in this case) are estimated. 
 
 
 
 

Show histogram for females, 
males, and both combined. 
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Hypothesis testing -- Roach Survival 
  
Here is another analysis, using the generic recipe for hypothesis testing. 
The example is roach survival, from Box 8.1 in Sokal and Rohlf 2012, p187. 
 
1. Research context and question . Willis and Lewis (1957 Journal of Economic 
Entomology 50: 438-440) investigated the survival time of cockroaches, which disperse 
in shipping containers in the absence of food and water.  The survival of the roach 
Blatella vaga was significantly greater in females than in males, when kept without food 
or water (t = 5.52, n = 20, p < 0.001).  The management context is that quarantines to 
prevent spread of roaches be set to the survival of females.  Setting quarantines depend 
on the variance in survival – what percent survive at any given quarantine period? The t-
test assumes no difference in variance in survival.    Sokal and Rohlf tested whether the 
variance in survival differed between male and female B. vaga. 
Survival (Ts) in days of the roach Blatella vaga when kept without food or water. 
Females n = 10 mean(Ts) = 8.5 days sterr(Ts) = 0.6 days var(Ts) = 3.6 
Males  n = 10 mean(Ts) = 4.8 days sterr(Ts) = 0.3 days var(Ts) = 0.9 
 
2. Define population, sample, and relation of sample to population.   Sample is set of 20 
measurements.  Population is an infinite number of repeats of the experimental protocol 
in Willis and Lewis.  These authors implicitly assumed the results could be inferred to all 
roaches of this species. Willis and Lewis concluded that mean survival of female B vaga  
exceeds mean survival of male B. vaga, a result that could be applied in a pest 
management context.  
 
3. The test statistic is F, the ratio of   var(Ts_Female)/var(Ts_Male) 
 The F-distribution, like the t-distribution, depends on the sample size.  
 It depends on the sample size of denominator variance  
    (as with the t-statistic) and on the sample size of the numerator variance. 
 The notation will be Fdf numerator, df denomator   
 Thus  F9,9  for n = 10 in numerator and n = 10 in denominator. 
 Type I error fixed (decision-theoretic) or categories ? 
 The variance in survival can be used to set isolation times in quarantine 
    to control spread of roach infested cargo. If variance is greater in females, 
             a longer quarantine time is needed than using the variance for males and females. 
 We can identify a risk of not controlling Type I error, so we set it at a  
    predetermined rate of  α = 5%. 
 
Can we conclude that male and female roaches differ in variance in survival? 
 
4. The state of science knowledge is Ho:  F  =  1   i.e.  var(Ts_Female) =  var(Ts_Male) 

HA:  F     1  i.e.,  var(Ts_Female)    var(Ts_Male) 
This is a two-tailed  test.  Despite the obvious difference in the standard deviations, 
we have no reason to expect male and female cockroaches to differ in variance in 
survival.  
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Hypothesis testing -- Roach Survival (continued) 
5. We have reason to fix Type I error.  We set it at 5% 
 

             6. We use the F-distribution for the F-statistic.  This assumes normal 
distribution around the fitted values, the two means.   To check the 
assumption we could do a histogram of each of the 20 values, as deviations 
from their mean. 

 
7. F9,9  = var(Ts_Female)/var(Ts_Male) =   4.0      
 F9,9  = var(Ts_Male)/var(Ts_Female) =   0.9/3.6 = 0.25 
 
8. In order to compute the p-value from the F-distribution we need to state  
 degrees of freedom for the numerator and denominator variances.  
 F9,9 = 4.0     p = 0.0254 upper tail of F-distribution with df = 9,9 
 F9,9 = 0.25   p = 0.0255  lower tail of F-distribution with df = 9,9 
  Sum   p = 0.0509 
 
9. 10% >  5.09%  >   5%    The test has moderate Type I error.  
 However, we set the error rate at 5% so to be consistent we cannot reject  
    the null hypothesis.  This example illustrates one of the limitations of using 
    a fixed (Neyman-Pearson decision-theoretic) error rate. 
 
10.  F9,9,  = 4.0 p  = 0.0509  n = 20. 
 Statistical conclusion.  Even though we found some evidence of a difference in 

variance in survival of female and male roaches at moderate Type I error of 
  5-10%  we cannot reject the null hypothesis. 

Sokal and Rohlf (2012) used a fixed Type I error of 5%. They concluded that the 
hypothesis of no difference in variance in survival could not be rejected.  However, 
the sample size was small, and the null hypothesis could potentially be rejected with a 
larger sample size. 
Science conclusion. Based on an implicit assumption (population is all cockroaches 
of this species) Willis and Lewis concluded that male and female cockroaches differ 
in average survival.  They further concluded that cockroaches can disperse by 
shipping almost anywhere in the world.   

 
Extensions. 
 
1.  Confirm the calculation of t = 5.52 for the t-test of means. 
2.  Was the observed difference in variances great enough to reach the 5% criterion with 

a larger sample? Given the reported standard deviations, would the conclusion of no 
difference in variance hold for a sample size of 20 males and 20 females? 

 
   


