Model Based Statistics in Biology.

Part II. Quantifying Uncertainty and Evidence.
Chapter 7.2 Hypothesis Testing with an Empirical Distribution

ReCap. Part I (Chapters 1,2,3,4)	
ReCap Part II (Ch 5, 6)	
7.0 Inferential statistics	
7.1	Three modes of inference
7.2	Hypothesis testing with an empirical
	Distribution
	Generic recipe
	Jackal bones, Fly heterozygosity,
Oat yields, Scutum width variances	
7.3	Hypothesis testing with cumulative
distribution functions	
7.4	Parameter Estimates
7.5	Confidence Limits
7.6	Goodness of fit tests

```
Use Oat yields as first example ?
```

```
For each example,
draw graph of cumulative
histogram.
Show one arrow up and across for
one-tailed test
Show two arrows up and across for
two-tailed test
```

ReCap Part I (Chapters 1,2,3,4)
Quantitative reasoning: Example of scallops, which combined
models (what is the relation of scallop density to substrate?)
with statistics (how certain can we be?)
ReCap (Ch5)
Data equations summarize pattern in data.
ReCap (Ch 6)
Frequency distributions are another key concept in statistics.
They are used to quantify uncertainty.
Empirical distributions are constructed from data
Theoretical distributions are models of data.
ReCap (Ch 7)
Inferential statistics are a logical procedure for making decisions when there is uncertainty due to variable outcomes. Frequentist decision making is based on the logic of eliminating chance as an explanation for an outcome.

Today: Generic recipe for hypothesis testing.

Wrap-up

We used a generic recipe for statistical decision making based on the logic of the null hypothesis.
To calculate a p-value, we used a distribution of outcomes generated by randomizing the data.

1. State background and research question.
2. Define population, sample, and relation of sample to population.
3. State the test statistic... ST
4. State null (state of science) hypothesis about the population....... H_{o} State research hypothesis about population........................... H_{A}
5. Type I error fixed or categorical?
6. State frequency distribution that gives probability of outcomes when the null hypothesis is true. Choices:
a) All possible outcomes (permutation test)
b) Empirical distribution obtained by random sampling of all possible outcomes when H_{o} is true (randomization test).
c) Cumulative distribution function (cdf) that applies when H_{o} is true State assumptions when using a cdf such as Normal, F, t or χ^{2}
7. Calculate the statistic from the sample.

This is the observed outcome for a randomization test
8. Calculate the p -value for the observed outcome relative to the distribution of outcomes when H_{o} is true.
9. Reject H_{o} if p less than α, declare decision about H_{o} OR Evaluate H_{o} from ranking of p.
10. Report test statistic, p-value, sample size. Report parameter estimates as appropriate. Report measure of evidence $(L R)$ if appropriate. Draw science conclusions.

Equivalent method (less informative) based on just a statistical table, no computer
8. Calculate outcome corresponding to α
9. If observed outcome $>$ outcome @ α then reject H_{o}. If observed outcome \leq outcome @ α then cannot reject H_{o}.
10.Report statistic, p-value catgories, and sample size. Declare decision.

This latter method is less informative, because the observed p-value does not get reported. This method was made necessary by the cumbersome tables for frequency distribution. With modern computers it is possible to calculate an exact p-value for any statistic. The method of reporting an exact p-value is preferred to the method based on tables.

The simplest way of understanding quite rigorously, yet without mathematics, what the calculations of the test of significance amount to, is to consider what would happen if our two hundred actual measurements [of stature of Englishmen and Frenchmen] were written on cards, shuffled without regard to nationality, and divided at random into two new groups of a hundred each. Actually, the statistician does not carry out this very simple and very tedious process, but his conclusions have no justification beyond the fact that they agree with those which could have been arrived at by this elementary method."

Fisher R.A. 1936. Journal of the Royal Anthropological Institute of Great Britain and Ireland 66: 57-63.

Example of Hypothesis Testing, Using the Generic Recipe - Jackal Bones

Example is length of bones from 10 male and 10 female jackals. $L=$ length of mandible ($L=\mathrm{mm}$) of Golden Jackals
Canis aureus from the British Museum.
Data from Manly (1991).
Generic recipe. Set-up $=$ steps 1-6. Execution $=$ steps 7-10.

1. State background and research question.

No information provided by Manly (1991).
2. Define population, sample, and relation of sample to population.

It could be taken as all possible measurements on these 20 bones.
The values would vary because of measurement error.
It would be very safe to infer to this population.
It could be all jackals of this species in the world.
The values would vary because of individual variation, on top of error.
Inference to this population is risky. We need to know whether
this sample was representative of the population (all jackals)
3. State the measure of pattern (test statistic)

$$
S T=D_{o}=\operatorname{mean}\left(L_{\text {male }}\right)-\operatorname{mean}\left(L f e_{\text {male }}\right)
$$

4. State null (state of science) hypothesis about the population.

Sexual size dimorphism, with males being larger than females, is well documented in canids: coyotes red foxes, and wolves. Socially monogamous species are only weakly dimorphic in skeletal shape and body mass.
C. aureus is socially monogamous. We expect weakly dimorphic bone sizes.
$H_{o}: D_{o}<0$ i.e., $L_{\text {male }}-L_{\text {female }}<0$ for the population.
$H_{A}: D_{o} \geq 0$ i.e. $\left.L_{\text {male }}\right)-L_{\text {female }} \geq 0$ for the population
5. Type I error fixed or categorical? We have no reason to control Type I error, such as risk to subjects (patients) or some preference for fewer false positives (Type I error) than false negatives (Type II error). Instead we will use 3 categories
p > 10\% High Type I error
$10 \%>p>5 \% \quad$ Moderate Type I error
$p \leq 5 \% \quad$ Low Type I error

Hypothesis Testing Using the Generic Recipe - Jackal Bones

5. Type I error fixed or categorical?

When would we need to consider a fixed Type I error rate?
We look at consequences for the subjects (jackals), experimenter, and the published literature.
In this example the subjects are bones from a museum, there are no consequences for live jackals. If we were using live animals, and there was harm or risk, we would need to develop a protocol that uses a fixed α.
For the experimenter there is no need to control Type I error, if the experimenter reports the Type I error in each study.
For the literature, the word "significant" becomes detached from the conventional rate, 5% in most of the natural and social sciences. Reporting the error rate addresses this.
In an exploratory analysis the threshold is often raised to reduce the chance of Type II error, that something will be missed. This is remedied by calling the threshold a screening criterion, and not declaring significance, with the conventional meaning of 5%.
6. State frequency distribution that gives probability of outcomes when the null hypothesis is true. We will use an empirical distribution. It makes no assumptions about the distribution of our statistics. The frequency distribution of the statistic D_{o} when the null hypothesis H_{o} is true will be calculated by randomization.

To obtain the distribution we assign the 20 bones randomly to two groups. To be rigorous, we would use a random number generator to assign bones to two equal sized groups. With a computer we can assign values to groups either with replacement or without.

Next, we compute the mean for each group. Then we calculate D_{o} the random difference in means. This is the difference when the null hypothesis is true. We made the null hypothesis true by assigning bones randomly to two groups.

Next, we repeat this many times to obtain many random differences-- the more the better.

Hypothesis Testing, Using the Generic Recipe - Jackal Bones

6. We assemble these random differences into an empirical frequency distribution.

Figure

7. Calculate the statistic D_{o} from the sample. The observed difference is $D_{o}=113.4-108.6=4.8 \mathrm{~mm}$
8. Use the observed difference to estimate Type I error. 5000 values of D_{o} Of these 9 values exceed $4.8 \quad p=9 / 5000=0.18 \%$
9. Evaluate H_{o} in categories of p.

We will use Fisher sorting, instead of using a fixed criterion.
Type I error rate is low according to our categories: $p<5 \%$
10. Report result of test. $D_{o}=4.8 \mathrm{~mm}$,
$n=20$,
$p=0.0018$
Parameter estimates are $L_{\text {male }}=113.4 \mathrm{~mm}, L_{\text {female }}=108.6 \mathrm{~mm}$

Compare general procedure ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$) with recipe.
A. Define the population (step 1) and the signal (step 2, step 4, step 7)
B. Describe the noise (step 3, step 6)
C. Evaluate signal relative to noise (step 8)
D. Declare a decision (step 9, step 10)

Hypothesis testing-Direct versus indirect method.

Direct method-compare p-value to criterion.
compute the p-value and compare it with the 5% criterion. show arrow from statistic, upward to cdf, across to p-value (Figure L10a on previous page).

Indirect method-compare observed statistic to critical value of statistic. use criterion (e.g. 5\%) to compute critical value corresponding to 5% show arrow from 1-p across to cdf, downward to critical value. compare observed value of statistic to this critical value.

Figure L10b

The indirect method is less informative.
It is used when there is no computer available to compute exact p-value.

This course will emphasize the direct method-calculating the p value.
The direct method provides more information to the reader of a
 report.
It is consistent with modern practice.
It demonstrates the machinery of hypothesis testing, which is based on making a decision from a p-value relative to a fixed criterion. Critical values do this indirectly, rather than directly.

Hypothesis Testing. 2nd example. Heterozygosity data.
TBA. Revision needed to 2019 recipe using Fisher sorting.
$\mathrm{H}_{\mathrm{o}}: \quad H=\hat{\beta}_{o}+\epsilon$
$\mathrm{H}_{\mathrm{A}}: \quad H=\hat{\beta}_{E} \cdot E+$ Offset $+\epsilon$
The reduction in squared deviation is:

$$
\begin{aligned}
& H=\text { heterozygosity, } E=\text { elevation } \\
& H=-0.1273 \cdot E+0.58+\text { res } \\
& \text { Data }= \\
& \text { Model } \\
& 0.1171= \\
& 0.0966 \\
& \mathrm{SS}_{\text {tot }}= \\
& \mathrm{SS}_{\text {model }}
\end{aligned}
$$

The altitudinal gradient model is more likely than not, LR >20
The explained variance is $R^{2}=0.096644 / 0.11709=83 \%$
Is the improvement in fit $(\mathrm{SS}=0.0966)$ better than chance ?
Set up the analysis

1. Sample $=7$ measurements.

Population $=$ all possible measurements taken with a stated procedure.
2. Test statistic $=\mathrm{SS}_{\text {model }}=0.0966$, the improvement in fit going from

$$
H=\beta_{o} \text { to } H=\beta_{o}+\beta_{E} E \quad(E=\text { elevation })
$$

3. $\mathrm{H}_{0}: \mathrm{SS}_{\mathrm{model}}=0$ (in population) Improvement is 'just chance'
4. $\mathrm{H}_{\mathrm{A}}: \mathrm{SS}_{\text {model }}>0$ (in population) Improvement is more then 'just chance'
5. $\alpha=5 \%$ (Type I error held to 5%)
6. go to key. $\mathrm{SS}_{\text {model }}$ not listed, hence use empirical.
7. Execute the analysis. $\quad \mathrm{SS}_{\text {model }}=0.096644$ This is the observed improvement.

Calculate frequency distribution of improvements when H_{o} is true.
Do this by randomizing the heterozygosity data relative to explanatory variable Elev
The estimate parameters and improvement in fit.
Here is R code for to calculate random improvement in fit.

Here is Minitab code to calculate random improvement in fit.
MTB $>$ sample 7 c2 c6
MTB > regress c6 1 c1;
SUBC> residuals c7.

Hypothesis Testing. 2nd Example. Improvement in fit, heterozygosity data
TBA. Revision needed to 2019 recipe using Fisher sorting.
Here are the parameter estimates and ANOVA table for a single randomization.
The regression equation is
C6 $=0.263$ +0.000015 Elev

Predictor	Coef	Stdev	t-ratio	p
Constant	0.2627	0.1184	2.22	0.077
Elev	0.00001506	0.00001787	0.84	0.438
$s=0.1432$	$R-s q$	$=12.4 \%$	$R-s q($ adj $)=0.0 \%$	

Analysis of Variance

SOURCE	DF	SS	MS	F	p
Regression	1	0.01455	0.01455	0.71	0.438
Error	5	0.10253	0.02051		
Total	6	0.11709			

Random improvement is $0.01455 \quad \mathrm{LR}=(0.10253 / 0.1171)^{-7 / 2}=1.59$
Run this repeatedly with a computer (2000 runs in BrusRN2.out)
[Handout unique randomization to each student]
Then tabulate on chalkboard, to construct frequency distribution.

Hypothesis Testing. 2nd Example. Improvement in fit, Fly heterozygosity data.
TBA. Revision needed to 2019 recipe using Fisher sorting.
Now compute the number of random improvements that were larger than the observed improvement of 0.096644

```
MTB > hist c10;
SUBC> start 0.096644.
Histogram of C10 N = 2000
1983 Obs. below the first class
\begin{tabular}{|c|c|c|}
\hline Midpoint & Count & \\
\hline 0.097 & 2 & ** \\
\hline 0.098 & 6 & ****** \\
\hline 0.099 & 0 & \\
\hline 0.100 & 4 & **** \\
\hline 0.101 & 0 & \\
\hline 0.102 & 3 & *** \\
\hline 0.103 & 0 & \\
\hline 0.104 & 0 & \\
\hline 0.105 & 0 & \\
\hline 0.106 & 1 & * \\
\hline 0.107 & 0 & \\
\hline 0.108 & 1 & * \\
\hline \multicolumn{3}{|l|}{MTB > let k1 = 2000-1783} \\
\hline \multicolumn{3}{|l|}{MTB > print k1} \\
\hline \multicolumn{3}{|l|}{K1 17} \\
\hline \multicolumn{3}{|l|}{MTB > let k2 = 17/2000} \\
\hline \multicolumn{3}{|l|}{MTB > print k2} \\
\hline K2 & 008500 & \\
\hline
\end{tabular}
```

8. $p=$ \qquad (class result, show of hands to obtain distribution)
```
Figure 10a, one line coming across cdf frequency distribution,
```

one tailed test.
9. $p=0.0085<0.05=\alpha$ so reject H_{o} The improvement is better than random.
10. $\mathrm{SS}_{\text {model }}=0.096644 n=7 \quad p=0.0085$ so reject H_{o} we reject chance, that is, we reject the JUST LUCK hypothesis.

Hypothesis Testing. 3rd Example. Improvement in fit, Oat Yield data.

TBA. Revision needed to 2019 recipe using
Fisher sorting.
H_{0} :

$$
Q=\beta_{o}
$$

$\mathrm{H}_{\mathrm{A}}: \quad Q=\beta_{o}+\beta_{x} X$
The reduction in squared deviation:

Recall material on data equations. Showing improvement (reduction in sum of square deviations)

Is this improvement better than random?
Set up the analysis

1. Sample $=8$ measurements.

Population $=$ all possible measurements taken with a stated procedure.
2. $\mathrm{ST}=\mathrm{SS}_{\text {model }}$ the improvement in SS going from $H=\beta_{o}$
to $H=\beta_{o}+\beta_{E} X$ ($X=$ group)
3. $\mathrm{H}_{0}: \mathrm{E}\left(\mathrm{SS}_{\mathrm{model}}\right)=0$ The expected value in the population is zero.
4. $\mathrm{H}_{\mathrm{A}}:\left(\mathrm{SS}_{\text {model }}\right)>0$ The expected value in the population is not zero.

Note that sums of squares (SS) cannot be less than zero.
5. $\alpha=5 \%$
6. go to key. $\mathrm{SS}_{\text {model }}$ not listed, hence use empirical (randomization test)

Execute the analysis.
7. $\mathrm{SS}_{\text {model }}=192.08 \quad$ This is the observed improvement.

$$
L R=(301.06 / 493.14)^{-8 / 2}=7.2
$$

Data Equations for null and alternative models

	data	null model	res	res 2	alt. model	res	res 2observed improvement	
0	42.90	40.95	1.95	3.80	36.05	6.85	46.92	
0	41.60	40.95	0.65	0.42	36.05	5.55	30.80	
0	28.90	40.95	-12.05	145.20	36.05	-7.15	51.12	
0	30.80	40.95	-10.15	103.02	36.05	-5.25	27.56	
1	49.50	40.95	8.55	73.10	45.85	3.65	13.32	
1	53.80	40.95	12.85	165.12	45.85	7.95	63.20	
1	40.70	40.95	-0.25	0.06	45.85	-5.15	26.52	
1	39.40	40.95	-1.55	2.40	45.85	-6.45	41.60	
	40.95		0.00	493.14			301.06	192.08

Hypothesis Testing. 3rd Example. Improvement in fit, Oat Yield data.

TBA. Revision needed to 2019 recipe using Fisher sorting
8. Calculate frequency distribution of improvements when H_{0} is true.

Do this by randomizing the data with respect to explanatory variable X

0	30.80	42.23	-11.43	130.53	43.70	-	166.41	
0	53.80	42.23	11.58	133.98	43.70	12.90	10	102.01
0	49.50	42.23	7.28	52.93	43.70	5.80	33.64	
0	40.70	42.23	-1.53	2.33	43.70	-3.00	9.00	
1	30.80	42.23	-11.43	130.53	40.75	-9.95	99.00	
1	28.90	42.23	-13.33	177.56	40.75	-	140.42	
1						11.85		
1	49.50	42.23	7.28	52.93	40.75	8.75	76.56	
sum				11.58	133.98	40.75	13.05	170.30

Taken from file labeled ST237.xls
Random improvement is $814.76-797.35=17.41 \quad \mathrm{LR}=(797.35 / 814.76)^{-8 / 2}=1.08$
[note: SStotal now 814 instead of 493 because sampling was with replacement]
[Some values occur twice, some not at all. Mean now 42.23, not 40.95]
8. Calculate p-value

Assemble 500 random improvements, compute \% that exceed observed improvement of 192.08

count 58	n	p -value
	500	0.116
Figure 10a, one line coming across cdf frequency distribution, one tailed test.		

9. $p=0.116>0.05=\alpha$ so accept H_{o}

The improvement is no better than random.
10. $\mathrm{SS}_{\text {model }}=192.08 \quad n=8 \quad p=0.116$ so we H_{o} not rejected. that is, the JUST LUCK hypothesis is not rejected.
The sample size is small, which may have been responsible for the decision.

Hypothesis testing. Comparing Variances

TBA. Revision needed to 2019 recipe using Fisher sorting
In some parts of biology, notably population biology the variance is a biologically interpretable statistic. Population biologists (including those who do molecular genetics) think in terms of variances, as much or more than they think in terms of central tendencies measured by means.
For example, balancing selection tends to reduce the variance in a trait, while mutation tends to increase genetic variance and hence increase variance in traits in a population.

```
Picture here (Fig L13b) of frequency distribution of body size in lizards
at time=1 (normal with wide variance), axis labelled }\mp@subsup{L}{t=1}{}\mathrm{ and y-axis
labelled F(L}\mp@subsup{L}{t=1}{}). Then draw another distribution on another axis labelled
L
```

Example: Does selection by hawks on young lizards result in balancing selection on body size of lizards? Size as measured by length L.

Another example: what is the spatial variance in number of species?
What factors tend to reduce species diversity ?
Another example: what is the current level of genetic variability in a population?
What factors tend to increase or reduce genetic variability?

Hypothesis testing. 4th Example. Comparing Variances. Scutum widths
 TBA. Revision needed to 2019 recipe using Fisher sorting

Here is another analysis, using the generic recipe for hypothesis testing. Surviving Killed
$\begin{array}{lll}\text { The example is the analysis of scutum widths } & 211.3 & 219.2\end{array}$
Data from Sokal and Rohlf 1995, p808 (2012, p 188) — 211.9205 .1
209.5213 .4

Hypothesis: Length reflects general genetic variability $218.5 \quad 206.7$
Hypothesis: Only ticks from a restricted portion of the genetic $204.9 \quad 211.1$
spectrum would survive (balancing selection). 25 larval ticks, 16 killed $\begin{array}{lll}211.2 & 222.8\end{array}$
$\begin{array}{llll}\text { by cold shock, } 9 \text { survived. Measurements in mm. } & 205.1 & 212.7\end{array}$

1. Population: Measurement many times? This would address 211.9210 .4
measurement error, but not the biological hypotheses. As with 213.1
other experiments, the population can be taken as all possible 224.4
repeats of the cold shock experiment on this species of tick, given 219.5
the procedural statement.
2. Test statistic $=F=\operatorname{Var}\left(W_{\text {dead }}\right) / \operatorname{Var}\left(W_{\text {live }}\right)$ $210.63 \quad 214.43$

The biology here is that we expect greater variance in dead than live under most conditions, expect lower survival by individuals with extreme traits than by individuals closer to the mean. That is, expect stabilizing selection under most conditions. Exception is episode of directional selection.

Hypothesis testing. 4th Example. Comparing Variances. Scutum widths
TBA. Revision needed to 2019 recipe using Fisher sorting
3. $\mathrm{H}_{0}: \mathrm{F} \leq 1$
i.e. $\operatorname{Var}\left(W_{\text {dead }}\right) \leq \operatorname{Var}\left(W_{\text {live }}\right)$
i.e. no stabilizing selection
4. $\quad \mathrm{H}_{\mathrm{A}}: \mathrm{F}>1$
i.e., $\operatorname{Var}\left(W_{\text {dead }}\right)>\operatorname{Var}\left(W_{\text {live }}\right)$
i.e., stabilizing selection
5. $\alpha=5 \%$
6. If we wish to avoid making assumptions about the distribution of the statistic when the null is true, we can generate an empirical distribution to calculate the Type I error (p-value).
This distribution is generated by randomizing the observations, then repeatedly calculating of the statistic F , to generate a distribution based on many such calculations
7. Calculate F as ratio of two mean squares. That is, $\operatorname{stdev}^{2} / \operatorname{stdev}^{2}$

In this example we take the numerator as the unreduced variance (killed), taking the denominator as the reduce variance (survived). $F=3.1095 \quad L R=$

If $F<1$ then accept H_{o} at this point)
observed $F>1$,
but could this have happened by chance?
in other words, what is Type I error? (if we say F really is >1)
8. To find out we randomize the data to make the H_{o} true. Choose 9 ticks randomly, measure,

Figure from Lab 3, showing calculation from distribution where H_{0} is true. and compare to the remaining. Do this 500 times. The result (S\&R2012) was 40 that exceeded $\mathrm{F}=3.11$
$p=40 / 500=8 \%$
9. Compare to test criterion. $p=8 \%>5 \%=\alpha$
$H_{0}: \mathrm{F} \leq 1$ is not rejected
10. Report the result. $F_{15,8}=3.1095 \quad p=8 \%$

Figure 8.4 in Sokal and Rohlf (2012)
Note the use of subscripts to show sample size
The convention is $F_{\text {numerator df, denominator df }}$
So first subscript is df for $W_{\text {dead }}$
This was a lot of work.
There is an easier way, if we are prepared to make some assumptions.
(Next lecture)

