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Model Based Statistics in Biology.    
Part II.  Quantifying Uncertainty and Evidence. 
Chapter 7.2    Hypothesis Testing with an Empirical Distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops, which combined  
models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap (Ch5) 
Data equations summarize pattern in data. 
ReCap (Ch 6) 
Frequency distributions are another key concept in statistics. 
They are used to quantify uncertainty. 
Empirical distributions are constructed from data 
Theoretical distributions are models of data. 
ReCap (Ch 7) 
Inferential statistics are a logical procedure for making decisions when there is 
uncertainty due to variable outcomes.  Frequentist decision making is based on the logic 
of eliminating chance as an explanation for an outcome. 
 
 
Wrap-up 
We used a generic recipe for statistical decision making based on the logic of the null 
hypothesis.   
To calculate a p-value, we used a distribution of outcomes generated by randomizing the 
data. 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6) 
7.0 Inferential statistics 
7.1 Three modes of inference 
7.2 Hypothesis testing with an empirical 
 Distribution 
 Generic recipe 
 Jackal bones, Fly heterozygosity,  
 Oat yields, Scutum width variances 
7.3 Hypothesis testing with cumulative 
 distribution functions 
7.4 Parameter Estimates 
7.5 Confidence Limits 
7.6  Goodness of fit tests 

Use Oat yields as first example ?

For each example, 
  
draw graph of cumulative 
histogram. 
 
Show one arrow up and across for 
one-tailed test 
 
Show two arrows up and across for 
two-tailed test 

Today: Generic recipe for hypothesis testing. 
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Table 7.1 Generic recipe for frequentist hypothesis testing 
 

1. State background and research question. 
2. Define population, sample, and relation of sample to population. 
3. State the test statistic..……………….……………………………ST 
4. State null (state of science) hypothesis about the population.…… Ho 

State research hypothesis about population……………………… HA  
5. Type I error fixed or categorical? 
6. State frequency distribution that gives probability of outcomes when 

the null hypothesis is true. Choices: 
a) All possible outcomes (permutation test) 
b) Empirical distribution obtained by random sampling of all possible 

outcomes when Ho is true (randomization test). 
c) Cumulative distribution function (cdf) that applies when Ho is true 

State assumptions when using a cdf such as Normal, F, t or χ2 
7. Calculate the statistic from the sample.  

This is the observed outcome for a randomization test 
8. Calculate the p-value for the observed outcome relative to the distribution of 

outcomes when Ho is true. 
9. Reject Ho if p less than α, declare decision about Ho  

OR Evaluate Ho from ranking of p.  
10.  Report test statistic, p-value, sample size.  Report parameter estimates as 

appropriate. Report measure of evidence (LR) if appropriate. 
Draw science conclusions. 

 
 
Equivalent method (less informative) based on just a statistical table, no computer 
 
8. Calculate outcome corresponding to α 
9. If observed outcome > outcome @  then reject Ho.  
 If observed outcome < outcome @  then cannot reject Ho. 
10. Report statistic, p-value catgories, and sample size.  Declare decision. 
 
This latter method is less informative, because the observed p-value does not get 
reported.  This method was made necessary by the cumbersome tables for frequency 
distribution.  With modern computers it is possible to calculate an exact p-value for 
any statistic.  The method of reporting an exact p-value is preferred to the method 
based on tables. 
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Example of Hypothesis Testing, Using the Generic Recipe - Jackal Bones 

Example is length of bones from 10 male and 10 female jackals. 
L = length of mandible (L= mm) of Golden Jackals 
Canis aureus from the British Museum.    
 Data from Manly (1991). 

 
Generic recipe.  Set-up = steps 1-6.  Execution = steps 7-10. 
 

1. State background and research question.  
No information provided by Manly (1991).  

2. Define population, sample, and relation of sample to population. 
It could be taken as all possible measurements on these 20 bones. 

 The values would vary because of measurement error. 
 It would be very safe to infer to this population. 

It could be all jackals of this species in the world.  
The values would vary because of individual variation, on top of error. 

 Inference to this population is risky.  We need to know whether 
 this sample was representative of the population (all jackals) 

3. State the measure of pattern (test statistic) 
ST  =  Do  = mean(Lmale) −  mean(Lfemale)  

4. State null (state of science) hypothesis about the population. 
Sexual size dimorphism, with males being larger than females, is well 
documented in canids: coyotes  red foxes, and wolves. Socially monogamous 
species are only weakly dimorphic in skeletal  shape and  body mass.    
 C. aureus is socially monogamous. We expect weakly dimorphic bone sizes. 
Ho:  Do < 0    i.e., Lmale -  Lfemale < 0  for the population.   
HA: Do  > 0    i.e.  Lmale)  - Lfemale > 0 for the population 

5. Type I error fixed or categorical?  We have no reason to control Type I error, such 
as risk to subjects (patients) or some preference for fewer false positives (Type I 
error) than false negatives (Type II error).  Instead we will use 3 categories 
p > 10%   High Type I error 
10% >p>5%  Moderate Type I error 
p < 5%    Low Type I error 

The simplest way of  understanding quite rigorously, yet without mathematics, what the calculations 
of the  test of significance amount to, is to consider what would happen if our two hundred actual 
measurements [of stature of Englishmen and Frenchmen] were written on cards, shuffled without 
regard to nationality, and divided at random into two new groups of a hundred each.  Actually, the 
statistician does not carry out this very simple and very tedious process, but his conclusions have no 
justification beyond the fact that they agree with those which could have been arrived at by this 
elementary method." 
 
Fisher R.A. 1936.  Journal of the Royal Anthropological Institute of Great Britain and Ireland 66: 
57-63. 

Male Female  
120 110  
107 111  
110 107  
116 108  
114 110  
111 105  
113 107  
117 106  
114 111  
112 111  
   
113.4 108.6 mean 
 13.82   5.16 var 
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Hypothesis Testing Using the Generic Recipe - Jackal Bones 

5. Type I error fixed or categorical? 
When would we need to consider a fixed Type I error rate? 
We look at consequences for the subjects (jackals), experimenter, 
 and the published literature. 
In this example the subjects are bones from a museum, there are no 

consequences for live jackals.  If we were using live animals, and there was 
harm or risk, we would need to develop a protocol that uses a fixed α. 

For the experimenter there is no need to control Type I error, if the 
experimenter reports the Type I error in each study.   

For the literature, the word “significant” becomes detached from the 
conventional rate, 5% in most of the natural and social sciences.  Reporting 
the error rate addresses this. 

In an exploratory analysis the threshold is often raised to reduce the chance of 
Type II error, that something will be missed. This is remedied by calling the 
threshold a screening criterion, and not declaring significance, with the 
conventional meaning of 5%. 

6. State frequency distribution that gives probability of outcomes when 
the null hypothesis is true.  We will use an empirical distribution.  It makes no 
assumptions about the distribution of our statistics. The frequency distribution of 
the statistic Do when the null hypothesis Ho is true will be calculated by 
randomization.  
 To obtain the distribution we assign the 20 bones randomly to two groups.  To 
be rigorous, we would use a random number generator to assign bones to two equal 
sized groups.  With a computer we can assign values to groups either with 
replacement or without.  
 Next, we compute the mean for each group. Then we calculate  Do the random 
difference in means.  This is the difference when the null hypothesis is true.  We 
made the null hypothesis true by assigning bones randomly to two groups.   

Next, we repeat this many times to obtain many random differences-- the 
more the better. 
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Hypothesis Testing, Using the Generic Recipe - Jackal Bones 

6. We assemble these random 
differences into an empirical 
frequency distribution. 

 
 
 
 
 
Figure 

7. Calculate the statistic Do 
from the sample. The observed difference is Do  = 113.4  - 108.6 = 4.8 mm 
 

8. Use the observed difference to estimate Type I error.  
5000 values of   Do    Of these 9 values exceed 4.8        p  =  9/5000   =  0.18%   

 
9. Evaluate Ho in categories of p. 

We will use Fisher sorting, instead of using a fixed criterion.   
Type I error rate is low according to our categories:   p <  5%   

 
10. Report result of test. Do  =  4.8 mm,   

 n  =  20,   
 p  =  0.0018 
 Parameter estimates are Lmale = 113.4 mm,   Lfemale =  108.6 mm 
 
 
Compare general procedure (A,B,C,D) with recipe. 
A. Define the population (step 1) and the signal (step 2, step 4, step 7) 
B. Describe the noise (step 3, step 6) 
C. Evaluate signal relative to noise (step 8) 
D. Declare a decision (step 9, step 10) 

Not used in 1997 onward 
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Hypothesis testing–Direct versus indirect  method. 
Direct method–compare p-value to criterion. 
 compute the p-value and compare it with the 5% criterion. 
 show arrow from statistic, upward to cdf, across to p-value  
 (Figure L10a on previous page). 
 
Indirect method–compare observed statistic to critical value of statistic. 
 use criterion (e.g. 5%) to compute critical value corresponding to 5% 
 show arrow from 1p across to cdf, downward to critical value. 
 compare observed value of statistic to this critical value.  Figure L10b 
 
 
 
 
 
 
The indirect method is less 
informative.       
It is used when there is no 
computer available to compute 
exact p-value. 
 
This course will emphasize the 
direct method–calculating the  p-
value. 
The direct method provides more 
information to the reader of a 
report. 
It is consistent with modern practice. 
It demonstrates the machinery of hypothesis testing,  
which is based on making a decision from a p-value relative to a fixed criterion.  
Critical values do this indirectly, rather than directly.  
 
 
 
 



 7

 
Hypothesis Testing. 2nd example. Heterozygosity data. 

TBA.  Revision needed to 2019 recipe using Fisher sorting. 
 

 
 
    H = heterozygosity, E = elevation 

 
  Data  =   Model + residual 
 0.1171 = 0.0966 + 0.0204  LR = (0.0204 / 0.1171)-7/2 = 37 
   SStot = SSmodel + SSerror 
 
The altitudinal gradient model is more likely than not, LR > 20 
The explained variance is R2 = 0.096644 / 0.11709 = 83% 
Is the improvement in fit (SS = 0.0966)  better than chance ? 
 
Set up the analysis 
1.  Sample = 7 measurements. 
 Population = all possible measurements taken with a stated procedure. 
2.  Test statistic = SSmodel  =  0.0966, the improvement in fit going from 

 H =o   to H =o + E E   (E = elevation) 
3.  Ho:  SSmodel = 0  (in population)  Improvement is ‘just chance’ 
4.  HA:  SSmodel   > 0  (in population)   Improvement is more then ‘just chance’ 
5.    =  5%  (Type I error held to 5%) 
6.  go to key.  SSmodel not listed,  hence use empirical. 
7.  Execute the analysis.     SSmodel = 0.096644    This is the observed improvement. 
 
 Calculate frequency distribution of improvements when Ho is true. 
 Do this by randomizing the heterozygosity data relative to explanatory variable Elev 
 The estimate parameters and  improvement in fit. 
Here is R code for to calculate random improvement in fit. 
 
 
 
Here is Minitab code to calculate random improvement in fit. 
 MTB > sample 7 c2 c6 
 MTB > regress c6 1 c1; 
 SUBC> residuals c7. 
  

Recall material on 
data equations. 
Showing improvement 
(reduction in sum of 
square deviations) 
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Hypothesis Testing. 2nd Example.  Improvement in fit, heterozygosity data 
TBA.  Revision needed to 2019 recipe using Fisher sorting. 

 
Here are the parameter estimates and  ANOVA table for a single randomization. 
 
 The regression equation is 
 C6 = 0.263 +0.000015 Elev 
  
 Predictor       Coef       Stdev    t-ratio        p 
 Constant      0.2627      0.1184       2.22    0.077 
 Elev      0.00001506  0.00001787       0.84    0.438 
  
 s = 0.1432      R-sq = 12.4%     R-sq(adj) = 0.0% 
  
 Analysis of Variance 
  
 SOURCE       DF          SS          MS         F        p 
 Regression    1     0.01455     0.01455      0.71    0.438 
 Error         5     0.10253     0.02051 
 Total         6     0.11709 
  
 Random improvement is 0.01455       LR = (0.10253/0.1171)-7/2 = 1.59 
 
Run this repeatedly with a computer (2000 runs in BrusRN2.out) 
[Handout unique randomization to each student] 
Then tabulate on chalkboard, to construct frequency distribution. 
k = Outcomes(SSmodel)                                                                F(SSmodel=k) 
 
 MTB > hist c10 
 Midpoint   Count 
     0.00     692  *********************************************** 
     0.01     422  ***************************** 
     0.02     283  ******************* 
     0.03     219  *************** 
     0.04     118  ******** 
     0.05      88  ****** 
     0.06      69  ***** 
     0.07      39  *** 
     0.08      36  *** 
     0.09      16  ** 

0.10 16  **      
0.11  2  *   
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Hypothesis Testing. 2nd Example.  Improvement in fit, Fly heterozygosity data. 
TBA.  Revision needed to 2019 recipe using Fisher sorting. 

 
Now compute the number of random improvements that were larger than the observed 
improvement of 0.096644 
 
 MTB > hist c10; 
 SUBC> start 0.096644. 
 
 Histogram of C10   N = 2000 
 1983 Obs. below the first class 
  
 Midpoint   Count 
    0.097       2  ** 
    0.098       6  ****** 
    0.099       0 
    0.100       4  **** 
    0.101       0 
    0.102       3  *** 
    0.103       0 
    0.104       0 
    0.105       0 
    0.106       1  * 
    0.107       0 
    0.108       1  * 
    
 MTB > let k1 = 20001783 
 MTB > print k1 
 K1       17 
 
 MTB > let k2 = 17/2000 
 MTB > print k2 
 K2       0.00850000 
 
8.  p = ___/______  (class result, show of hands to obtain distribution) 
 

 
9.  p = 0.0085 < 0.05 =   so reject Ho 
The improvement is better than random. 
 
10.  SSmodel = 0.096644   n = 7   p = 0.0085 so reject Ho  we reject chance, 
 that is, we reject the JUST LUCK hypothesis. 
 
 
 
 
 

Figure 10a, one line coming across cdf frequency distribution, 
one tailed test. 
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Hypothesis Testing.  3rd Example.  Improvement in fit, Oat Yield data. 

TBA.  Revision needed to 2019 recipe using 
Fisher sorting. 

 
Ho:      Q  =  o   res2 = 493.14  = SStotal 
HA:   Q =  o +  x X    res2 = 301.06   
The reduction in squared deviation:  res2 = 192.08  = SSmodel 
 
Is this improvement better than random ? 
 
Set up the analysis 
1.  Sample = 8 measurements. 
 Population = all possible measurements taken with a stated procedure. 
2.  ST = SSmodel  the improvement in SS going from H =  o    

to H =  o +  E X   (X = group) 
3.  Ho:  E(SSmodel) = 0   The expected value in the population is zero. 
4.  HA:  (SSmodel) > 0  The expected value in the population is not zero. 
     Note that sums of squares (SS) cannot be less than zero. 
5.    =  5% 
6.  go to key.  SSmodel not listed,  hence use empirical (randomization test) 
 
Execute the analysis. 
7.  SSmodel = 192.08    This is the observed improvement.   
    LR = (301.06 / 493.14) -8/2 = 7.2 
 

Data Equations for null and alternative models 
 

 data null 
model 

res res2 alt.
model

res res2 observed
improvement

0 42.90 40.95 1.95 3.80 36.05 6.85 46.92
0 41.60 40.95 0.65 0.42 36.05 5.55 30.80
0 28.90 40.95 -12.05 145.20 36.05 -7.15 51.12
0 30.80 40.95 -10.15 103.02 36.05 -5.25 27.56
1 49.50 40.95 8.55 73.10 45.85 3.65 13.32
1 53.80 40.95 12.85 165.12 45.85 7.95 63.20
1 40.70 40.95 -0.25 0.06 45.85 -5.15 26.52
1 39.40 40.95 -1.55 2.40 45.85 -6.45 41.60

 40.95  0.00 493.14 301.06 192.08
 
 
 
 

Recall material on data equations. 
Showing improvement (reduction in 
sum of square deviations) 
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Hypothesis Testing.  3rd Example.  Improvement in fit, Oat Yield data. 
 TBA.  Revision needed to 2019 recipe using Fisher sorting 
8. Calculate frequency distribution of improvements when Ho is true. 
Do this by randomizing the data with respect to explanatory variable X 

 
Data Equations for null and alternative models random

 data null model res res2 alt.mod
el

res res2 improvement

    
0 30.80 42.23 -11.43 130.53 43.70 -

12.90
166.41

0 53.80 42.23 11.58 133.98 43.70 10.10 102.01
0 49.50 42.23 7.28 52.93 43.70 5.80 33.64
0 40.70 42.23 -1.53 2.33 43.70 -3.00 9.00
1 30.80 42.23 -11.43 130.53 40.75 -9.95 99.00
1 28.90 42.23 -13.33 177.56 40.75 -

11.85
140.42

1 49.50 42.23 7.28 52.93 40.75 8.75 76.56
1 53.80 42.23 11.58 133.98 40.75 13.05 170.30

sum   0.00 814.76 0.00 797.35 17.41
 

Taken from file labeled ST237.xls 
Random improvement is 814.76  797.35 =  17.41     LR = (797.35/814.76)-8/2 = 1.08 
  [note:  SStotal now 814 instead of  493 because sampling was with replacement]   
 [Some values occur twice, some not at all.  Mean now 42.23, not 40.95] 
 
8.  Calculate p-value  
Assemble 500 random improvements, compute % that exceed observed improvement of 
192.08 
  

count  n p-value
58  500 0.116

 

 
9.  p = 0.116 > 0.05 =    so accept Ho 
 The improvement is no better than random. 
 
10.  SSmodel = 192.08   n = 8   p = 0.116 so we Ho not rejected.  
 that is, the JUST LUCK hypothesis is not rejected.   
 The sample size is small, which may have been responsible for the decision. 

Figure 10a, one line coming across cdf frequency distribution, one tailed test. 
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Hypothesis testing.  Comparing Variances 
TBA.  Revision needed to 2019 recipe using Fisher sorting 

In some parts of biology, notably population biology the variance is a biologically 
interpretable statistic.  Population biologists  (including those who do molecular genetics) 
think in terms of variances, as much or more than they think in terms of central 
tendencies measured by means.   
For example, balancing selection tends to reduce the variance in a trait, while mutation 
tends to increase genetic variance and hence increase variance in traits in a population.   

 
Example: Does selection by hawks on young lizards result in balancing selection on body 
size of lizards ?  Size as measured by length L. 
 
Another example:  what is the spatial variance in number of species? 
 What factors tend to reduce species diversity ? 
Another example:  what is the current level of genetic variability in a population?  

What factors tend to increase or reduce genetic variability? 
 
 
Hypothesis testing.  4th Example.  Comparing Variances.  Scutum widths 

TBA.  Revision needed to 2019 recipe using Fisher sorting 
Here is another analysis, using the generic recipe for hypothesis testing. 
The example is the analysis of scutum widths 
Data from Sokal and Rohlf 1995, p808 (2012, p 188) 
Hypothesis:  Length reflects general genetic variability 
Hypothesis:  Only ticks from a restricted portion of the genetic 
spectrum would survive (balancing selection). 25 larval ticks, 16 killed 
by cold shock, 9 survived.  Measurements in mm. 
 
1. Population: Measurement many times?  This would address 

measurement error, but not the biological hypotheses.  As with 
other experiments, the population can be taken as all possible 
repeats of the cold shock experiment on this species of tick, given 
the procedural statement. 

 
2.  Test statistic  =  F  =  Var(Wdead)/Var(Wlive) 
 
The biology here is that we expect greater variance in dead than live 
under most conditions, expect lower survival by individuals with extreme traits than by 
individuals closer to the mean.  That is, expect stabilizing selection under most 
conditions.  Exception is episode of directional selection. 

Picture here (Fig L13b) of frequency distribution of body size in lizards 
at time=1 (normal with wide variance), axis labelled Lt=1  and y-axis 
labelled F(Lt=1).  Then draw another distribution on another axis labelled 
Lt=2  (normal with narrower variance).  y-axis labelled F(Lt=2) 

Surviving Killed 
211.3 219.2
211.9 205.1
209.5 213.4
218.5 206.7
204.9 211.1
211.2 222.8
211.4 210.2
205.1 212.7
211.9 210.4

210.1
213.1
224.4
219.5
218.4
204.6
229.2

210.63 214.43
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Hypothesis testing.  4th Example.  Comparing Variances.  Scutum widths 
TBA.  Revision needed to 2019 recipe using Fisher sorting 

3. Ho:  F  <  1  i.e.  Var(Wdead)  <  Var(Wlive) 
      i.e.  no stabilizing selection 
4. HA:  F  >  1  i.e.,  Var(Wdead)  >  Var(Wlive) 
      i.e., stabilizing selection 
5.   =  5% 
 

             6. If we wish to avoid making assumptions about the distribution of the 
statistic when the null is true, we can generate an empirical distribution to 
calculate the Type I error (p-value). 

 This distribution is generated by randomizing the observations, then 
repeatedly calculating of the statistic F, to generate a distribution based 
on many such calculations 

 
7. Calculate F as ratio of two mean squares.  That is,  stdev2 / stdev2  

In this example we take the numerator as the unreduced variance (killed), 
 taking the denominator as the reduce variance (survived). 
F  =  3.1095        LR =  

If F < 1 then accept Ho at this point) 
  observed  F > 1,   
  but could this have happened by chance ? 
  in other words, what is Type I error ?  (if we say F really is > 1) 
 
8. To find out we randomize the data to make the 

Ho true.  Choose 9 ticks randomly, measure, 
and compare to the remaining.  Do this 500 
times. The result (S&R2012) was 40 that exceeded F = 3.11 
p = 40/500  =  8%  

 
9. Compare to test criterion.  p  =  8%  >   5%  =      

Ho:  F < 1 is not rejected 
 
10. Report the result.  F15,8  =  3.1095 p  =  8%    

Figure 8.4 in Sokal and Rohlf (2012) 
 Note the use of subscripts to show sample size 
 The convention is Fnumerator df, denominator df 
 So first subscript is df for Wdead 
 
This was a lot of work.   
There is an easier way, if we are prepared to make some assumptions.   
(Next lecture) 

Figure from Lab 3, showing 
calculation from distribution 
where Ho is true.  


