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Model Based Statistics in Biology.    
Part II.  Quantifying Uncertainty and Evidence. 
Chapter 7.1    Three Modes of Inference. Many Varieties. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantities and quantitative reasoning 
ReCap (Ch5) 
Data equations partition the observed value into the model component and the residual. 
The sum of the squared residuals allows us to compare one model to another. 
It allows us to quantify the improvement in fit. 
ReCap (Ch 6) 
Empirical frequency distributions express all of the information our data. 
We use probability models to characterize our data with a few parameters 
Empirical distributions and probability models have many uses. 

 
Wrap-up 
There are three modes of statistical inference, two based on measurement of 

uncertainty (frequentist and priorist) and one based on measurement of evidence. 
Evidentialist inference addresses the question: What is the weight of evidence? 
Priorist inferience addresses the question: What do I believe? 
Frequentist inference address the question: What is my decision? 
Hypothesis testing addresses two varieties of frequentist inference:  

Yes/No rejection of the null hypothesis at a fixed error rate 
Ranked rejection of the null hypothesis. 

 
  

Today: Three modes of inference. 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6) 
7.0 Inferential statistics 
7.1 Three modes of inference, many varieties 
 Evidentialist 
 Priorist 
 Frequentist 
7.2 Hypothesis testing with an empirical 
 distribution 
7.3 Hypothesis testing with cumulative 
 distribution functions 
7.4 Parameter Estimates 
7.5 Confidence Limits 
7.6  Goodness of fit tests 
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Three modes of inferential statistics  
Royall (1997) used the following example to illustrate the differences among  frequentist, 
priorist, and evidentialist inference . 
 
A physician prescribes a diagnostic test for a 
patient. The diagnostic test is known to give false 
positives 2% of the time.  This is called Type I 
error.  The test is also known to give false 
negatives 5% of the time.  This is called a Type II 
error. 
 
For the physician and the patient we have two hypotheses. 
 Hypothesis A.  The patient does not have the disease 
 Hypothesis B.  The patient does have the disease 
 
A patient tests positive. 
The physician asks: 

1. What does the result tell me about Hypothesis A vs B? 
2. What do I believe, now that I have the test result? 
3. What do I do, now that I have the result? 

 
The evidence in favor of disease presence B is less then convincing. The odds ratio for 
the disease, as against the disease is OR = (0.95/0.5) / (0.02/0.98) = 9.3 to 1. 
However, the disease may be rapidly lethal if not treated and so the physician may decide 
to recommend treatment anyhow, in light of a false negative rate of 5% compared to a 
false positive rate of 2%.  That is, the physician may make a decision against criteria for 
for false positives and false negatives, instead of going with just the evidence. 
 
Statistical inference, as it has developed in the 20th and 21st century, addresses each of 
the three questions.   
Likelihood inference addresses question 1. 
Priorist inference addresses question 2. 
Frequentist inference addresses question 3. 
 
All three modes are based on the principle of likelihood.  Statisticians as well as scientists  
differ on which mode is best. Statisticians do agree on the use of likelihood (in the 
technical sense) for statistical inference.  
 
What is likelihood? 
 
Definition: A model that makes the data more probable (best predicts the observed data) 
is said to be more likely to have generated the data. 
  

Positive Negative
Present 0.95 0.05

Disease D
Absent 0.02 0.98

Test result
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Three modes of statistical inference 
 
Evidentialist inference. An example. 
 
The first published clinical trial was carried out by James Lind, who administered 5 
different antiscorbutics to 12 sailors with scurvy on the British vessel Salisbury in May of 
1747 (Lind 1753). 
 
 Lind allocated two sailors to each of six different daily treatments for a period of 
fourteen days. The six treatments were:  
1.1 litres of cider;  
twenty-five millilitres of elixir vitriol (dilute sulphuric acid);  
18 millilitres of vinegar three times throughout the day before meals; 
half a pint of sea water; 
two oranges and one lemon continued for six days only (when the supply was exhausted); 
and a medicinal paste made up of garlic, mustard seed, dried radish root and gum myrrh.  
 
Lind reported the result as follows. 
 

The most sudden and visible good effects were perceived from the use of oranges and 
lemons; one of those who had taken them being at the end of six days fit for duty… 
The other was the best recovered of any in his condition; and being now deemed 
pretty well, was appointed nurse to the rest of the sick. 

 
Lind started with the idea that scurvy was a form of rot that could be halted by treatment 
with an acid.  The expected result was 10 cures in 12 trials = 0.833 
The observed result was 2 cures in 12 trials = 0.167 
 
Here is a table of the observed result.  Odds = p/(1-p) 
 

Proportion Odds OR 

Observed cure = 2/12 0.167 0.2 0.04   0.4 to 1 for theory 

Acid theory,cure = 10/12 0.833 5 25    25 to 1 against theory 
 
The evidence is against the acid cure theory.  
Frequentist and priorist inference were unknown at the time and in any case not 
applicable.  Inference to an infinite number of repeats (frequentist inference) is not 
warranted.   We have too little information on how the subjects were selected to repeat 
the study.  Further, we no longer have men developing scurvy after being pressed into 
service by the British Navy. 
Was inference from a prior probability (priorist inference) warranted at the time?  No, for 
lack of sufficient evidence for a sound prior probability.   In 1601, James Lancaster 
served three teaspoons of lemon juice to men on one of four vessels sailing from England 
to India. Despite low rates of scurvy on the ship that received the lemon juice, and high 
rates of mortality (over 100 died) on the other three ships, little further research was 
conducted until James Lind’s experiment in 1747.  Lancaster’s result (3:1 odds)  is hardly 
a defensible prior for a trial on a single ship.   
Bartholomew, M. (2002). James Lind and scurvy: A revaluation. Journal for Maritime 
Research 4: 1–14. 



 4

 
Three modes of statistical inference. 
 
Priorist (Bayesian) inference 
 
The term Bayesian refers to Thomas Bayes (1702–1761), who used a deductive argument 
to prove that probabilistic limits could be placed on an unknown event (Bayes 1763). 
However it was Pierre-Simon Laplace (1749–1827) who introduced (as principle VI) 
what is now called Bayes' theorem, and applied it to celestial mechanics, population 
statistics, reliability, and jurisprudence (Laplace 1774).  Laplace subsequently dropped 
the principle of indifference (uniform prior) in favor of the law of large numbers 
(Stigler).  Priorist inference was rejected on logical grounds in the 19th century (Venn, 
Boule). Priorist inference re-emerged on stronger logical grounds in the 20th century 
(Feinberg 1971), based on an expanded version of Laplace’s theorem.  20th century 
priorist inference called itself Bayesian, even though it was founded on Laplace’s 
theorem and did not use the rule that Bayes proved.   
20th century priorist inference starts with a prior probability, to which evidence (a 
generalized likelihood ratio due to Harold Jeffreys) is applied, to produce a posterior 
probability.  Except in simple cases, this requires massive computation.  Alan Turing 
used priorist inference, together with massive calculation, to break the code used by the 
German armed forces in World War II.   
 
Fine (1973) listed 5 varieties of priorist inference: 
Empirical.  Uses facts and physical properties of the world.  It is based solely on 
experiment and observation. 
Logical.  Based on logic, either inductive or deductive. 
Interpersonal.  Beliefs held in common, not based on personal belief 
Pragmatic.  Based on practical and useful beliefs, rather than logically true beliefs. 
Personalistic.  Based on individual opinions, judgements, and experience.  
 

In everyday life we tend to be priorists.  We 
update personal belief with evidence.  
Unfortunately we also tend to be selective 
about observations, tending to favor those that 
confirm rather than conflict with belief.  In the 
lab, hunches and intuition are an important part 
of the priors we use.  When science is 
presented in a public context, or used to 
develop standards (as in engineering) we need 
substantiated prior probabilities.   
 
 
Proposed captions for a cartoon in the New 
Yorker magazine.  
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Bayes 1763 
Boule 
Feinberg 1971 
Fine, T.L. 1973.Theories of Probability. Academic Press. 
Jeffreys 
Laplace 1774, 1812  
Stigler 
Venn 
 
Priorist statistics address Royal’s second question: what do I believe, after applying 
evidence to a prior belief?  
Formal Bayesian inference starts with a prior probability.  This is multiplied by a 
generalized likelihood (a measure of the weight of evidence) to obtain a posterior (after 
the fact) probability. 
If the physician starts with a ‘neutral’  (50:50) chance that the patient has the disease , 
then we have (0.5/0.5)(0.95/0.05) = 9.5 :1 posterior odds 
But is 50% really the right prior probability?  The physician might have ordered the test 
because of other information leading to a belief that the patient had a better than even 
chance of having the disease.  At 2:1 odds for presence of disease we have 
(2/1)(0.95/0.05) = 19:1 odds of having the disease.   
But maybe the patient insisted on the test, even though the physician doubted that the 
patient had the disease.  At a prior probability of 2:1 against the disease, we have  
(1/2)(0.95/0.05) = 38 to 1 chance of having the disease.   
This illustrates the principle characteristic of 20th century priorist inference: It begins with 
a prior probability, not with evidence.  
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Three modes of statistical inference 
 
Frequentist inference  relies on the law of large numbers.  Jacob Bernoulli published a 
rigorous mathematical proof of the law of large numbers in his Ars Conjectandi (The Art 
of Conjecturing) in 1713. Laplace used the law of large numbers to support classical (pre 
20th century) priorist statistics.  However, frequentist inference as it developed in the 20th 
century begins with a measure of evidence, then appeals to the law of large numbers to 
calculate a probability from the evidence.   
Two varieties developed, the first by Fisher (1922), and the second by Neyman and 
Pearson (1933).  Fisher defined likelihood, used it to make parameter estimates, then used 
the likelihood ratio to obtain a probability, to sort evidence into categories.   Neyman and 
Pearson adopted Fisher’s concept of likelihood, testing the null hypothesis and 
calculating at probability.  They used the probability to declare a decision against the  
null hypotheses at an error rate fixed in advance.  Fisher was the first to criticize this 
approach. These critiques have continued ever since but have failed to dislodge the 
Neyman Pearson variety of frequentist inference from standard practice.  
 
Fisher, R. A. (1922). On the mathematical foundations of  theoretical statistics. Philos. 
Trans. Roy. Soc. London Ser. A 222 309–368; 
Neyman, J.; Pearson, E. S. (1933). "IX. On the problem of the most efficient tests of 
statistical hypotheses". Phil. Trans. R. Soc. Lond. A. 231 (694–706): 289–337. 
 
 Strictly speaking frequentist inference applies to indefinitely repeatable experiments.  It 
also applies to repeatable protocols that produce consistent numbers.  
An example is the age of mothers in B4605/B7220. The data were drawn each year from 
a new class of students. Since 1997, the mean value has converged to a predictable value 
of around 29 years of age.   
 
Null hypothesis testing addresses Royal’s third question – Does the physician act based 
on A (disease) or on B (no disease).  It addresses this question by using the long-run error 
rate on choosing A.  The error on rejecting A, on a positive test result, is 2% so we reject 
A in favor of  B. 
 
We’ll call Hypothesis A the “just luck” hypothesis, that the positive test was due to 
chance factors (the diagnostic test is not perfect).  Here is another example.  
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Three modes of statistical inference 
 
Frequentist rejection of the ‘JUST LUCK’ hypothesis.    
   
Five people go fishing and catch 8 fish.   Izaak Walton catches 7 of the 8 fish. 
Izaak Walton says this is skill.  The others say it is just luck.  How to decide ? 
The formal machinery for statistical decision making is to compare the observed 

outcome (7 of 8 fish caught by 1 in 5 fishers) to all possible outcomes, if success 
was just luck.   

 
List outcomes on board.  
How many arrangements of 8 fish, such that Izaak Walton has 7 ? 
    IW = 7 IW = 7 IW = 7 IW = 7 
     A = 1   B = 1   C = 1   D = 1 
 
And we usually want to consider even more extreme outcomes (IW = 8) 
 IW = 8  IW = 7 IW = 7 IW = 7 IW = 7 
    A = 1   B = 1   C = 1   D = 1 
 
Next assign probability to each outcome, based on chance alone. 
(which we will call the JUST LUCK hypothesis or Ho).    
For each fish there is a 1 in 5 chance that Izaak Walton will catch it, under the JUST 
LUCK hypothesis. 
 
 
 
 
 
 
 
Five different outcomes.  Four ways for IW to catch 7 fish, one way to catch 8 fish. 
We assign a probability to each outcome, assuming the JUST LUCK hypothesis. 
Then calculate the probability of this aggregate outcome (7 or more to IW) by chance 

alone.  p = 0.00005376 
 
IW catching  7 of 8 fish could be ‘just luck,’  but this would only happen 5 times in 
10,000 if it were just luck. 
 
An onlooker, with no stake in the matter, would have no reason to disagree with a 
decision that 7 of 8 fish was  “just luck.”. 
  

IW = 8 IW = 7  IW = 7  IW = 7  IW = 7 
  A = 1  B = 1   C = 1   D = 1 
 
(1/5)8 (1/5)7  (1/5)7   (1/5)7   (1/5)7 
 
0.00000256 0.0000128  0.0000128  0.0000128  0.0000128 
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Three modes of statistical inference 
 
Frequentist rejection of the ‘JUST LUCK’ hypothesis. 
 
Type I and II error  - Definition 
 
Neyman and Pearson defined Type I and II error 
according to the following table. 
 
 
Type I "reject a true null"  puts us at risk of  a false positive finding or conclusion. 
Type II "false null not rejected"  puts us at risk of  a false negative finding or conclusion. 
 
The decision is about the null hypothesis, not about the alternative.  With hypothesis 
testing all we can say is “We reject the null in favor of the alternative.”  We do not 
‘accept the alternative” when we reject the null.  We do not accept the null just because 
we cannot reject it.  We merely retain it.  
Type I error is error on the side of credulity.  
The risk is trusting a useless drug or believing that a trend based on 3 straight increases is 
‘more than just chance.’    
 
Type II error is error on the side of skepticism.  The risk is discarding a drug that is 
effective, or believing that the higher rate of cancer among smokers is ‘just chance.”   
 
Type I and II errors are central to the way statistics are currently practiced, with their 
emphasis on hypothesis testing and confidence limits.  Remembering which is which is 
not easy when it comes to applying the concept.  If in doubt, pull up the table.  Type I 
error is about a false positive conclusion not about a “false positive.”  Keep in mind that 
when you reject the null, or take it as weakly supported, you are putting yourself at a 
known error rate of being wrong.  That error rate is called Type I.  The same thought 
sequence applies to Type II error.  If you can’t reject the null, or you take it as weakly 
supported, you are at risk of being wrong.  That error is Type II.   
 
Type I and II error is all about making a decision.  But surely there is more to the practice 
of science than declaring decisions. Here is a quote from long ago.  
 

I have been concerned for a number of years with the tendency of decision 
theory to attempt the conquest of all statistics. This concern has been founded, 
in large part, upon my belief that science does not live by decisions alone--that 
its main support is a different sort of inference.   
John W. Tukey 1960.  Conclusions vs Decisions. Technometrics 2: 423-433. 

 
. 
   
  

  HoTrue Ho False 
Reject Ho   I ok 
Cannot reject Ho ok II 
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The Null Hypothesis Ho  
In science, the null is the current state of knowledge.  In the absence of theory, such as a 

Mendelian ratio of purple to white flowers, the null is what we expect by "chance"  -- 
the “Just Luck” hypothesis.  The alternative hypotheis HA is what we hope to see 
emerge from experiment or observational study.  

 
We are really interested in HA not Ho so why do we use the null model?   
 We use the Ho because it is easier to disprove than prove a proposition.  It is 

easier to put evidence against chance than to establish the research hypothesis 
HA. It is easier to work out probabilities for Ho than it is with the research 
hypothesis HA.  To work out probabilities for the research hypothesis we have 
to say something about effect size.   

 
This focus on the null, the JUST LUCK hypothesis, is not at all intuitive.  It is a recent 
invention, as these things go.  It was devised by RA Fisher in 1922.  Compare this to the 
history of probability, which began in the late 17th century with the writing of Blaise 
Pascal and Pierre de Fermat on betting in games of chance.   
 
The logic of the Ho is unfamiliar, not at all intuitive. It seems backwards, because it 
focuses on rejecting chance, rather than ‘proving’ anything. 
 
Because it is unfamiliar and not at all intuitive, it often fails to work in a public setting.  
Picture a scientist carefully rejecting the null hypothesis (rejecting chance), when the jury 
is thinking about the effects on people:  did the drug cause harm? 
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Graphical interpretation of Type I / Type II trade-off. 
 
The upper curve shows distribution of 
outcomes in a population where there is an 
effect:  

HA  true and Ho  false 
The lower curve shows the distribution of 
outcomes in a population where there is no 
effect: 

HA  false and Ho  true 
 
The arrow on the left side shows the value of a 
statistical outcome of an experiment where 
Type I error is substantial, and so we cannot 
reject the null hypothesis.  If, however, the null 
is false there is some Type II error (left of 
arrow on the upper curve).  We are at risk of Type II error when we cannot reject the null 
hypothesis. 
 
The arrow on the right shows the statistical value of the outcome of an experiment where 
Type I error is small, and so we reject the null.   If we extend this arrow to the upper 
curve, we see that Type II error (to the left of the arrow) is now larger than in the first 
experiment. 
 
This illustrates the trade-off between Type I and Type II error.  
 
 
[showing HA  in the picture is consistent with evidentialist inference, 
but not with frequentist rejection of the null.  Remove accept  HA  and accept Ho from the 
picture] 
  

Accept Ho
Reject Ha

Reject Ho
Accept Ha

Decision

Ho true
Ha false

Ho false
Ha true

Type II

Type I
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Choice of the Alternative (discovery) Hypothesis HA 
Contrary to Fisher, Neyman and Pearson argued for a decision theoretic approach.  With 
this approach we state a pair of mutually exclusive hypotheses, the null Ho and the 
alternative HA.  We use a fixed Type I error to either reject or not reject the null.  
 
We state the HA/Ho pair with respect to the population, not the sample. 
For example:  Ha:  E(Gcontrol)  E(Gtreatment)     
 Where G is growth rate of control plants and plants treated with fertilizer. 
 E(G) is the expected (population) value of growth rate. 
 
The HA/Ho pair can be chosen in several ways 
 
 Often the research hypothesis is simply a matter of HA = effect, Ho = no effect.  But more 
sophisticated choice of pairs are possible, based on the current state of the science.  These 
are more informative than simple yes/no decisions about evidence for an effect. 
 
Here are three ways of stating the HA/Ho pair, going from least informative to most 
informative. 
 
1.  Ha:  E(Gcontrol)  E(Gtreatment)    (stated on nominal scale) "two tail test" 
 Ho:  E(Gcontrol) = E(Gtreatment)  
2.  Ha:  E(Gcontrol) < E(Gtreatment)    (stated on ordinal scale) "one tail test" 
 Ho:  E(Gcontrol) > E(Gtreatment)           
3.  Ha:  E(Gcontrol) = 1/5 * E(Gtreatment)  (stated on ratio scale) 
 Ho:  E(Gcontrol)  1/5 * E(Gtreatment)  
Statement of HA on an ordinal scale (#2) is better than nominal scale (#1).  More is 

learned by risking a prediction of "greater" than in making a prediction of 
"different" 

 
Statement on ratio scale (#3) is better yet.  More is learned than if prediction was on a 

less informative ordinal scale (#2).  Statement on a ratio scale amounts to priorist 
inference.  We state the HA before obtaining data, take this as the prior, apply 
evidence, and arrive at a posterior probability.   

 
Skillful choice of HA  improves analysis. 
 
The HA/Ho pair can be chosen any way we like, to make best use of what we already 
know about the question at hand. 
 
All outcomes need to assigned either to Ho or HA 
 
Care is needed in defining the HA/Ho pair, as this will determine how we calculate the 
Type I error  (p-value).  We compute Type I error differently for one-tailed than for two 
tailed tests. 
 
Choice of HA/Ho pair *MUST* be made before undertaking the analysis. 
It is incorrect to use the difference of the observed means to choose a one tail test over a 
two tail test. 



 12

 
Standards for Type I error   
 
Instead of Fisher’s ranking of evidence  
according to Type I error. Neyman and 
Pearson decision theoretic inference 
requires that the criterion for Type I error be set before analysis.  By tradition Type I 
error is set at  = 5%.  This appears to be arbitrary.  However, it has a rationale. It is a 
compromise between Type I and Type II error.  If we reduce Type I error to 1%, we 
inevitably increase Type II error.     
 
HA Y =  0 +  xX + residual 
HA data =   model  + scatter 
       We reject the Ho at a Type I error of  = 5%  
Ho Y   =   0  + residual 
Ho data  =  constant  + scatter 
       We cannot reject the Ho if  > 5% 
       This puts us at risk of Type II error 
 
We are at risk of Type II error when we cannot reject the null hypothesis. This risk 
decreases as sample size increases, decreases as variability of data decreases, decreases as 
the effect we wish to detect becomes larger, and decreases if we increase our tolerance 
for Type I error (note the trade-off described above).  
 
Type II error can be calculated once we have the data, with means, standard deviations, 
and sample sizes.  However, calculation of Type II error after the fact is of little value for 
the analysis we just did, except perhaps to tell us, too late, that our experiment was 
doomed to failure. High variance or small sample size can both increase Type II error and 
so doom an experiment to failure. 
 
Best practice is to estimate Type II error for the research we plan to undertake, from data 
with similar variability.  
 
Why are the standards for Type I and II error different? 
One answer (Royal 1997)  is that a 5% Type II error criterion results in large costs to 
meet this standard. Another answer is that false positives (Type I error) can have a high 
cost if implemented.  

  HoTrue HoFalse 
 Reject Ho  - ->  = 5% ok  
 Cannot reject Ho ok  = 20% 
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Standards for Type II error   
 
So how much Type II error should we tolerate?  The conventional criterion is that we 
accept Type II error at 20%, while accepting Type I error at 5%.  A competent statistician 
can compute the Type II error, given some information on the variability, the magnitude 
of the effect you wish to detect, your tolerance of Type I error (5% ?), and sample size.  
 
Such calculations are called power analyses – the aim is to estimate the power of the 
research design to detect a difference, given variability, magnitude of effect, tolerance of 
Type I error, and sample size.  Here, power to detect a difference is defined as 1.  The 
power of a design with 20% Type II error is 80%.  
 

 
Critique of Null Hypothesis Testing. 
 
The case against Neyman-Pearson decision theoretic hypothesis testing began with Fisher 
and has been made repeatedly since.   Why does it remain the focus of teaching statistics?     
 

In February 2014, George Cobb, Professor Emeritus of Mathematics 
and Statistics at Mount Holyoke College, posed these questions to an American 
Statistical Association discussion forum: 
Q:Why do so many colleges and grad schools teach p = 0.05? 
A: Because that’s still what the scientific community and journal editors use. 
Q:Why do so many people still use p = 0.05? 
A: Because that’s what they were taught in college or grad school. 

 
  

Strangely, the motto chosen by the founders of the 
Statistical Society in 1834 was Aliis exterendum, which 
means "Let others thrash it out."  William Cochran 
confessed that  "it is a little embarrassing that 
statisticians started out by proclaiming what they will 
not do."   
E. A. Gehan and N. A. Lemak.  1995.  Statistics in 
Medical Research: Developments in Clinical Trials 
(Plenum Press). 
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Critique of Null Hypothesis Testing. 
 
This ‘sociological inertia’ has many components.  
 

-Likelihood inference (Royal 1997) and priorist inference have yet to make their way 
into general purpose text books. 
 
-Texts fail to provide clear reasons for using any one of the three modes—evidentialist, 
frequentist hypothesis testing, or 20th century priorist. 
 
-Calculations of Type I and II error remain indispensible in the design of experiments 
where there are substantial monetary costs to increasing sample size, and real risks in 
allowing experimental intervention, as with medical research.   
 
- p-values have become established as standards of evidence in the published literature, 
even though they are not measures of evidence.  Manuscript and thesis reviewers often 
lack the background to evaluate hypothesis tests, and almost always take p-values as 
evidence.  
 
-Lack of computational machinery for priorist inference before the advent of 
programmable computers with adequate computational capacity.   
 
-Replacement of R.A. Fisher’s  guidelines for null hypothesis testing with Neyman-
Pearson decisions.  Fisher (1922 p 80) used categories. 

If p is between 0.1 and 0.9 there is certainly no reason to suspect the hypothesis 
tested. If it is below 0.02 it is strongly indicated that the hypothesis fails to account 
for the whole of the facts. We shall not often be astray if we draw a conventional 
line at 0.05, and consider that higher values of [chisquare] indicate a real 
discrepancy. 

Posthumouus editions of Design of Experiment (Fisher 1935) refer to the exact value 
of Type I error in assessing evidence. 

"Convenient as it is to note that a hypothesis is contradicted at some familiar level 
of significance such as 5% or 2% or 1% we do not, in Inductive Inference, ever need 
to lose sight of the exact strength which the evidence has in fact reached." 

The phrasing points at the p-value as a measure of evidence, whether or not that was 
intended. Throughout his life Fisher argued vehemently against Neyman-Pearson 
decision theoretic hypothesis testing.  
 
The critique of null hypothesis testing reached a crescendo, resulting in 2016 statement 
by the American Statistical Association (Wasserstein and Lazar 2016.).  The statement 
listed a series of “don’ts” mostly focused on the words “statistical significance.” The 
2016 statement was followed up by a 2019 statement  (Ronald L. Wasserstein, Allen L. 
Schirm & Nicole A. Lazar (2019) Moving to a world beyond “p < 0.05”, The 
American Statistician, 73:sup1, 1-19) that took the next step, recommending that 
declarations of  “statistical significance” be abandoned. 
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Null hypothesis testing in a public setting. 

 
The logic of the null hypothesis assumes neutral onlookers.  An example was catching 
fish, among friends willing to consider a statistical analysis. What about science in a 
public setting where the public does not consist of neutral onlookers? In a public setting 
we cannot assume neutral onlookers.  People bring strong beliefs, different experiences, 
and divergent economic interests to any discussion of evidence in matters that affect us 
all. 

 
For example, does vaccination increase the risk of autism ? 
Parents of autistic children are not neutral onlookers.  A vocal set of parents believe that 
vaccination causes autism and as a result the rate of vaccination against childhood 
diseases (mumps, measles, polio) has dropped in several locations in North America. 
Is this a problem?  Yes.  It allows diseases to reappear in populations that are normally 
free of the disease.  It puts at risk those children who would not survive the disease, even 
though most would.  Having had measles (and chicken pox) I can easily look upon these 
diseases as just part of life.  But what about the larger picture? What about the children, 
outside of my experience, that did not survive when I had the measles? 
 
Another example.  Are genetically modified organisms dangerous as food? 
A majority of the American public believe that it is.  Few biological scientists believe that 
it is.  This issue is the largest gap between the beliefs of biologists and the beliefs of the 
public in North America.  To an increasing degree research scientists function in a public 
setting that does not consist of neutral onlookers.   
 
Scientists that use observational data face an additional problem.  They cannot appeal to 
long run probabilities based on thousands of runs of an experimental protocol. 
 
Finally there is the fact that null hypothesis testing is not intuitive and so does not do well 
in public settings.   
 
Which mode of inference to use?   
 
The worked examples in this course will list reasons for choice among the 3 modes.   
They will also list reasons for both varieties of frequentist inference --Fisher sorting 
versus a Neyman-Pearson  fixed Type I error.   An important criterion will be whether the 
results are repeatable (as with an experiment).  A similarly important criterion is enough 
prior evidence to form a convincing prior probability.   Another criterion will be a 
consideration of the costs of Type I error for subjects (as in the health sciences), for the 
experimenter, and for the public.  And finally a last criterion: will the results be used in a 
public setting with non-neutral onlookers. 
 
 


