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Model Based Statistics in Biology.    
Part II.  Quantifying Uncertainty and Evidence. 
Chapter 7    Statistical Inference 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops, which combined  
models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap (Ch5) 
Data equations partition variability into a model component and a random component. 
Data equations apply to regression lines and to comparison of groups. 
The sum of the squared residuals allows us to compare one model to another. 
It allows us to quantify the improvement in fit, a key concept in statistics. 
ReCap (Ch 6) 
Frequency distributions are a key concept in statistics. 
They are used to quantify uncertainty. 
Empirical distributions are constructed from data 
Theoretical distributions are models of data. 
 

 
 

Today: Statistical inference. 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6) 
7.0 Inferential statistics 
 Background 
 Sampling 
 Are inferential statistics necessary? 
 Predictive probability 
 Likelihood relative to theory 
 Likelihood relative to chance 
7.1 Three modes of inference, many varieties 
 Evidentialist 
 Priorist 
 Frequentist 
7.2 Hypothesis testing with an empirical 
 distribution 
7.3 Hypothesis testing with cumulative 
 distribution functions 
7.4 Parameter Estimates 
7.5 Confidence Limits 
7.6  Goodness of fit tests 
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Background 
The word Probability derives from the latin term probabilis meaning “plausible” or 

generally approved.”   Mathematical treatment of probability begins with correspondence 
(1654) between Blaise Pascal (1623 - 1662) and Pierre de Fermat (1607 - 1665) 
concerning how to divide winnings in a game of chance.  Jacob Bernoulli (Ars 
Conjectandi 1713) and Abraham de Moivre  (The Doctrine of Chance: or, a Method for 
Calculating the Probabilities of Events in Play 1718) put probability on a sound 
mathematical foundation.  For example  de Moivre (p10) asked, concerning dice,  what is 
the “Probability of drawing an Ace in three throws?”  de Moivre (p10) calculates it at 
91/216. 

The word Statistics ultimately derives from the latin term statisticum collegium 
("council of state"). The German Statistik, first introduced by Gottfried Achenwall 
(1749), originally designated the analysis of data about the state.  It was introduced into 
English by Sir John Sinclair (1754 - 1835)  who supervised the compilation of the 
Statistical Account of Scotland (21 vols., 1791-1799).  Thus, statistics began as data to be 
used by governmental and (often centralized) administrative bodies. The use of the word 
broadened in the late 19th and early 20th century with the increasing use of inferential 
statistics founded on probability theory. 
 
Descriptive statistics describe or summarize the observed measurements of a system.  
 Examples:   Location:  mean, median, mode 
   Dispersion:  range, quartiles, standard deviations 
     coefficient of dispersion, coefficient of variation 
   Symmetry: quartiles, Pearson’s moment coefficient 
 
Inferential statistics are used to infer, predict, or forecast future outcomes, tendencies, and 
behaviors of a system, based on evidence from samples.  
 
Inferential statistics began with Bayes (1763) and Laplace (1774) who independently 
discovered the use of conditional probability to make inferences from data.  Bayes 
produced a rule for putting probabilistic limits on a single event.  Laplace showed how to 
put a probability on an event given data and equally probable causes.  Laplace (1786, 
1812) then used the central limit theorem to produce a principle for inferring a probability 
from data and the sum of all causes (Stigler 1986, p 136).  Laplace’s Principle VI is now 
called Bayes’ theorem, even though it does not occur in Bayes publication (Dale 1982). 
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Defining and drawing the sample.  The sampling process (Yule and Kendall 1950 14th 
edition) consists of defining the unit, drawing samples, and applying a measurement 
protocol to the samples. 
 
Defining the unit.   A sampling unit has spatial and temporal limits.  These are explicit 
when necessary.  They are often implicit, however.  For example a 1 ml sample from a 
bottle cast in the ocean has a stated volume from within the volume of water, taken from 
an implicitly defined volume in the water column.    
 
Drawing the sample.   This includes the temporal component of sampling. The water 
sample from a bottle cast has an implicit duration on the order of seconds, then on the 
order of a second for the time taken to trip the trigger and close the bottle at a specified 
depth in the water column.  Batches of data consist of values drawn in a consistent way 
according to a protocol, but with no claim go be representative of some larger population.  
Batches of data as defined by Tukey (1977) are useful in exploratory data analysis. 
Samples are also drawn in a consistent way according to a protocol, with some 
implication that the values are representative of some larger population of potential 
samples. 

In random sampling, also known as probability sampling, every item in the 
population has a known probability of being sampled. These probabilities are not 
necessarily equal. In simple random sampling, each item has an equal probability of 
occurring. Example of sampling with unequal probability include stratified sampling, 
multistage sampling, and cluster sampling.   

In systematic sampling items are selected according to a schedule.  An example is 
counting trees at sites every 100 m along a transect.  These are simple to implement, but 
can lead to biased estimates unless the items in the frame have been randomized or the 
method is shown to produce the same result as a random sample. 

Mechanical sampling occurs typically in sampling solids, liquids and gases, using 
devices such as probes, grabs, and scoops.  Care is needed in ensuring that the sample is 
representative of the population. 

In convenience sampling items are chosen haphazardly and in an unstructured 
manner. This is a commonly employed method. 
 
Where random sampling is not possible it is important to evaluate the degree to which the 
sample represents the population.  Inference from sample to a population results in an 
estimate. The goal is an accurate estimate that is as precise as possible.   
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Finite and infinite populations.   
 
Finite populations.  In an finite population we can identify whether a particular unit 
belongs to the population, but we can list all units.  An example would be the list of 
people living in a city or a list of streams in a watershed.  The list is called a frame. 
 
Infinite populations.  In an infinite population we can identify whether a particular unit 
belongs to the population, but we cannot list all units.  The most common example we 
will encounter is notional: all possible measurements that could be made with a given 
measurement protocol.   
 
Sample layout.  
 
In a simple random survey, all units are placed randomly, and have the same sampling 
probability, which is 1/N, where N is the number of units in the frame. Here is a diagram. 
   Figure here 
In a stratified random survey, the sampling probability is the number of units in each 
stratum of the frame.  We can define a stratum any way we like, as long as each sampling 
unit belongs to one and only one stratum.  The sampling probability is 1/Ni  where Ni is 
the number of units in stratum i. Here is a diagram. 
   Figure here 
We can use even more sophisticated and efficient designs, such as cluster sampling 
(Cochran and Cox), as long as we can calculate the sampling probability of any unit.   
 
Precision is not the same as accuracy. 
The precision of an estimate (such as a mean) is high if the uncertainty is low. 
The accuracy of an estimate is high if the sample is representative of the population. 
 
Example of sports and games 
 
Soccer.  Precision is how closely the shots at goal cluster.  Accuracy is whether shots a 
are symmetrical around the target, such as the edge of the goal.   Shots can be precise 
(cluster tightly) yet inaccurate if they are consistently off target.  Scoring points depends 
on both precision (tight clustering) and accuracy (symmetry around the target).   
 
Many games depend on both precision and accuracy.   
 Fixed target: Darts, hockey, basketball, curling 
 Random target (Boules family): Bocce, petanque, lawn bowling 
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Are inferential statistics necessary in science? 
                   Some people will claim that a result is not to be trusted unless it is so clear 

that "you can drive a truck through."  Platt (1964 Strong inference. 
Science 146: 347-353) advocates this--obtain a clear result.  A clear result 
produces agreement, without recourse to inferential statistics. 

                   However, many fields of research involve substantial uncertainty that cannot 
be eliminated by manipulative control.  A good example is epidemiology, 
in which potential sources of disease are isolated through sophisticated 
statistical methods.  Inferential statistics are the central tool of 
epidemiology.  They allow conclusions based on quantitative criteria 
open to examination. 

                    Statistical methods can be used to estimate and remove sources of 
uncertainty.  Statistical methods are used to increase the efficiency of 
experimental design, by removing extraneous effects through statistical 
calculation.  This is called statistical control. 

 
Statistical control 
 
Q: But aren’t manipulatively controlled experiments superior to statistically controlled 
observational studies ? 
   
A:  Yes they are, because we can reduce uncertainty and hence isolate cause. 
 
Q: Shouldn’t we then insist on manipulative experiments? 
 
A: Yes, but manipulative experiments are not always feasible or ethical. 
 
Q: When does statistical control become necessary? 
 
A: It becomes necessary where manipulative control is unethical (e.g. human 

health, and to an increasing degree experiments on vertebrate animals) 
 It becomes increasingly necessary as uncontrollable variation increases. 
 
Statistical control becomes increasingly important as the cost of manipulative 

control rises.  
Statistical control becomes necessary when experimental control is impossible 

(e.g.  weather effects on agricultural production, or on aquaculture, and much of 
the earth and ocean sciences. 
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Predictive Probability 
With games of chance we can calculate probabilities from the mechanical 
properties of the instruments – a die with 6 sides, a roulette wheel with 38 slots, a 
deck of 52 cards.  In the experiments we can do similar calculations.  For 
example Hartry et al (1984) report the results from experiments on memory 
transfer in planarian worms through cannibalism.   With a maze having 4 exit 
points, what is the chance of a planarian worm of arriving at the only exit with 
food?  
 
The probability of arriving at the exit with food is (0.5)4 = 0.0625, the odds are 
(1-0.0625)/0.0625  =  15 to 1 against arriving at the exit with food.   
Once a worm ‘learns’ the maze (consistently arrives at the exit with food) the 
worm is fed to a cannibalistic conspecific to test for memory transfer, defined as 
the cannibal doing better than chance in the maze, without practice. 
 
In experimental design we work with fixed criteria against chance, typically 
better then 5% chance or 0.95/0.5 = 19 to 1 odds.   How many exits do we need 
to meet this criterion? 
The probability of arriving at the only exit with food in a maze with 5 exit points 
is (0.5)5 = 0.03125, the odds are (1-0.03125)/0.03125  =  31 to 1 against arriving 
at the exit with food.  Based on predictive probability, we would choose the 5 exit 
maze to meet our criterion for “better than chance.” 
 
Likelihood relative to theory  
 
Once we have drawn our data, we can calculate the likelihood of the 
experimental result and then compare this to theory.  Here is an example-- the 
expected number of purple flowers in a dihybrid cross between pure strains of 
purple flowered pea plants (dominant trait) and white flowered plants (recessive 
trait). 
 
Mendel (1865) reported 224 white and 705 purple flowing plants in a dihybrid 
cross.   We can calculate the odds of this observed outcome, relative to the 
theoretical 3:1 ratio.   
 Observed Odds:  Purple/White = (705/929) / 224/929) = 705/224 = 3.147 
 Odds from theory: Purple/White = 3:1 
 Odds ratio: 3.147 / 3 = 1.049 
There is no evidence (even at a threshold odds ratio of 2:1) against theory.  
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Likelihood relative to chance. 
 
 Only rarely we do we have theory to use as a reference.  In the absence of 
theory we use “just chance” as the reference likelihood.  An example is the 
heterozygosity gradient in fruit flies. 
 
H  =   ̂  o    +             res2 =  0.1171  

H =  ̂ E · E + Offset +           res2 =  0.0204  
The reduction in squared deviation was:      res2 =  0.0966  
 
The sum of the squared residuals was reduced from 0.1171 to 0.0204 by adding a 
parameter, the altitudinal gradient in heterozygosity, which we estimated at -0.1273 
%/km, using least squares to obtain the estimate.  The research model (with the slope) 
was  LR = (0.0204/0.1171)-7/2 = 453 times more likely than the reference model, that 
heterozygosity was unrelated to altitude.  This likelihood ratio is “good  evidence” 
against chance at 1% and odds of 99 to 1, but not “strong evidence” at 0.1% and odds of 
999 to 1. 
 
We conclude that the model with the gradient in heterozygosity E is more likely than the 
model without the gradient.   
 
For the oat yield data, we had no prior estimate of the increase in yield.  So we use “just 
chance” as the reference model.  The model that includes the difference in means  x  
improved the fit from 493  to 301, an improvement of  192.08/493.14 = 32%. The 
strength of the evidence depends on the number of observations.  For the 8 observations 
in this example, the likelihood ratio for the research model (with the two means) was  
LR = (493.14 / 301.16)-8/2 = 7.2 times more likely than the reference model, no relation 
between yield and treatment with Panogen.  The evidence is less than adequate, if we 
take LR = 20 as a convenient criterion for adequate evidence.  For a probability of 5%, 
more likely than not is 0.95/0.05 = 19:1 or nearly 20.   
 
In both cases—pea genetics, and oat yields—we used likelihood inference. We calculated 
whether the research model was more likely to have generated the observed values than 
the “just chance” reference model.  The “just chance” reference model is called the null 
model.  Hypothesis testing against a null hypothesis is founded on likelihood inference.   
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Comparison of probability and likelihood 
 In this table the vertical bar | is read “given” 
 

Probability Likelihood 
Definition Pr( Result | Parameter) L( Parameter | Data ) 

Example Pr( 3 successive heads | fair coin ) L( Fair coin | Data ) 
Inference Prospective Retrospective 
Medical analogy Prognosis   Diagnosis   

Example Prognosis before a biopsy Diagnosis after a biopsy 
Games of chance Betting before play Betting during play 

Example Roulette, dice Bid whist, Bridge, Poker 
Science Experimental design Analysis of experimental data 

Example Prospective power analysis Regression, ANOVA 
Relation to data Before taking data After taking data 
Calculations From known parameters From known data 
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