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Model Based Statistics in Biology.    
Part II.  Quantifying Uncertainty. 
Chapter 6.2   Frequency Distributions from Models 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops, which combined stats and models 
ReCap (Ch5) 
Data equations summarize pattern in data. 
Data equations apply to regression lines and to comparison of groups. 
The sum of the squared residuals quantifies goodness of fit and improvement in fit. 
ReCap (Ch 6) 
Frequency distributions are a key concept in statistics. 
They are used to quantify uncertainty. 
Frequency distributions can be either empirical (from data) 
  or theoretical (mathematical expression). 

 
Wrap-up. 
Empirical distributions are calculated from data. 
Frequency distributions from a model are calculated from mathematical expressions. 
They are used, just like distributions from data, to 
 1.  Investigate underlying processes. 
 2.  Compare distributions (now summarized as parameters)   

3.  Make statistical decisions.  compute p-values. 
 4.  Evaluate reliability of an estimate 
They are compared to distributions from data to evaluate assumptions. 

Today: Frequency Distributions from a Model 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5) 
6.1 Frequency Distributions from Data 
6.2 Frequency Distributions from a Model 
   Notation 
 Uses 
 Computing Probabilities and Outcomes 
  Cell nuclei (binomial) 
  Lab3 
 Model vs Observed Distributions 
6.3  Fit of Observed to Model Distribution 
 

Red chalk for residuals 
Yellow chalk for model 
White chalk for data 

Lab 3a uses statistical package to apply 
material on theoretical frequency 
distributions. 
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Frequency Distributions from Probability Models 
 
When we infer from a sample to a population we do not know the true distribution of the 
population.  The classical solution is to use a frequency distribution (probability model) 
to characterize the population. To do this we must assume that our observations are 
distributed in the same way as the probability model describing the population.    
 
Here is a list of the most commonly used probability models. 
 
Discrete distributions 
 Binomial distribution 
 Poisson distribution 
 Negative binomial distribution 
 
Continuous distributions.  
 Normal distribution 

Sampling distributions generated by sampling from Normal distribution 
  Chi square distribution (from the greek letter "khai") 
  t-distribution  (normal/chisquare) 
  F-distribution (chisquare/chisquare) 
 
 
 

In 2002 these were presented as tour, first the discrete distributions, then the continuous distributions.  
For each a brief summary of underlying process followed by discussion of shape, relation to other 
distributions, and typical application. 
This was too abstract, there were not enough specific examples. 
Try 4 cases under heading of Fit of theoretical to observed. 
Case 1 Data = foraging success (students each guess and draw shape)  
  generating mechanism = trials k and success n, p fixed. 
  binomial pdf, fit. 
 Case 2. Data = counts per quadrat (students guess and draw) 
  generating mechanism = counts with low average per unit 
  (low success from unknown number of trials) 
  Poisson pdf, fit 
 Case 3.  Data = random numbers (students guess and draw) 
  generating mechanism = same probability in each category 
  uniform pdf, fit 
 Case 4.  Data = birth weights (students each guess and draw)  
Then 3 cases under heading of calculating probabilities. 
 Case 1.  Situation = trials and success.  Binomial pdf 
 Case 2.  Situation = many process.  Normal pdf 
 Case 3.  Situation = goodness of fit.  X2 pdf 
 
In 2015.  Start with concept of Data Equation 
  Show notation for probability models 
  Give brief accounting of common probability models 
  Show Observed and Model notation in Data Eq. format 
  Link to next Chapter 6.3, several cases, with residuals. 
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Theoretical Frequency Distributions (Probability models) 
We begin with a tour of  probability models and how they are defined. 
But first, a list of technical terms, for use during the tour, which begins on next page. 
 
 X is a random variable  
 
 P(X=x)  is the relative frequency with which the values of X  
 are equal to the outcome x 
 
 F(X=x) is the frequency of events in a sample of size n 
  F(X=x)  =   n· P(X=x) 
 
 P(X < x) is the cumulative relative frequency (cumulative probability) 
 
 F(X < x) is the cumulative frequency of events in a sample of size n 
  F(X < x) =  n· P(X < x) 
 
 E(X) is the expected value of a random variable X 
  E(X) = µx    the true value of the mean of the population of events X 
  µ  is the estimate of the true mean, from the sample.  µ = − ∑n Qi

1  
 
 V(X) is the expected value of the variance of the population of events X 
  V(X) = σx

2  the true value of the variance of the population of events X 
  σ 2  estimate of variance, from a sample  ( ) ( ) ,σ 2 1 2 11= − − =− −∑ ∑n Q Q Q n Q  
 
 CD(X) = V(X) / E(X)   This ratio, the coefficient of dispersion, is often useful. 
  It can be estimated from data as   / σ µ2  
 
 E(X)  and V(X) are calculated from functions obtained by integrating the function fx(x) 
 
 fx(x) is a function that defines a random variable as normal, binomial, etc. 
  fx(x) assigns a relative frequency P(X=x)  to every possible outcome x 
  fx(x  = P(X=x) 
 
 Q ~ fx(x)  The quantity Q is assumed to be distributed as a random variable  
  defined by a particular function (Normal, Binomial, etc).   
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Discrete distributions - Binomial. 
The tour begins with the binomial distribution.  This is a discrete distribution, for which 
outcomes k are whole numbers. Along with the normal distribution, the binomial 
distribution is one of the most useful distributions in the analysis of biological data.  Like 
other discrete distributions, the binomial stems from Bernoulli trials, each with the same 
fixed success rate p. 
For data based on Bernoulli trials, the Odds of success p/(1−p) will often be of interest.   
 
Binomial distribution.    Each unit is scored as a success (1) or as a failure (0) 
 Examples:  number live vs number dead.  Number of purple vs white flowers. 
 Q = number of successes in n trials 
 Examples: Q = number of rats that develop tumors at a particular dose of a toxin 
  Q = number of seeds that germinate 
 We assume that the quantity Q is distributed according to a binomial distribution. 
  Q ~ fk(k; p, n) = P(X=k)    
  n identical and independent trials, each with success rate p 
 Under this assumption, we can use the model (the binomial distribution) 
   to compute the expected frequency distribution for each outcome k 
  F(X=k) = n! (k! (n − k)!)−1   p k (1 − p) n−1 
   k = 0 successes, 1 success, 2 successes, etc. 
 We can use the model to compute the expected (or ‘average’) value in the population. 
  E(X) = µ =  n· p = expected number of successes 
 We can use the model to compute the variance, 
  a measure of dispersion around the expected value of the population. 
  V(X) = σ2 = n· p (1−p)  
 CD(X) = (1−p), the chance of failure.  As failure rate decreases,  
  reliability as measured by CD(X) increases. 
 Odds(X) = n-1 µ2 /σ2  
 To compute the expected value (mean) and dispersion (variance) of the population, 
   we need to know the value of the parameter p 
  This value can come from prior expectation such as the proportion of  
   children that inherit two recessive genes (25% in dihybrid cross) 
  This value can come from experimental design 
   (expected number of correct turns in a maze, before training, Lab 3) 
  This value can be estimated from a sample,  /p Q n=  
   if we want to compare the fit of the sample to the model (Ch6.3) 
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Discrete distributions - Poisson. 
The next stop on the tour is the Poisson distribution.  This is another discrete distribution, 
for which outcomes k are whole numbers. It is the distributional model that underpins 
analyses of counts where the number of trials is not known.  It underpins the row by 
column contingency test, a staple in the test repertoire in textbooks. It underpins 
extension of the 2 x 2 contingency table to log-linear analysis (Bishop, Y.M.M., S.E. 
Feinberg, P.W. Holland. 1975. Discrete Multivariate Analysis.  Cambridge, MA, MIT 
Press). The Poisson distributional model assumes that the variance/mean ratio is close to 
unity.  Unfortunately, these assumptions usually go unmet for counts which are bounded 
at zero.  Examples are physical phenomena (enumbers of hurricanes) and counts of 
biological phenomena (number of deaths, number patients infected, counts of a defined 
behaviour).   
 
Poisson distribution. Counts are made within units: quadrats, periods of time, etc. 
 Q = number of counts in a defined unit (usually by space, time, or both). 
 Examples: Q = number of deaths by horsekick in the Prussian army, per year 
  Q  = number of weevils in azuki beans 
 Q ~ fk(k; λ) = P(X=k) 
  Unknown number of independent trials,  
  each with fixed and small probability λ in a defined unit 
 F(X=k) =  e−λ   λ k (k!) −1    
 E(X) =  µ  = λ, the  expected (average) number of counts per unit 
 V(X) = σ2 = λ, the dispersion (variance) around the average count. 
 CD(X) = V(X) / E(X) = 1 
 To compute the expected value (mean) and dispersion (variance), 
  we need to know the value of the parameter λ 
 Unlike the binomial, we rarely have theory or experimental guidance  
  to state the value of the parameter λ 
 Like binomial, or any other distribution, we can compare a sample  
  to the Poisson distribution by estimating the  parameter λ from data (Ch6.3). 
 λ = − ∑n Q1   estimate of λ from a sample of size n 
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Discrete distributions – Negative Binomial. 
The next stop on the tour  is the negative binomial (Pascal) distribution, a discrete 
distribution for which outcomes k are whole numbers. For count data where the data 
exceeds the mean, it is the next probability model to consider after the Poisson.  
 
Negative binomial distribution.  Counts within units, just like Poisson. 
 Q = number of counts in a defined unit (usually by space, time, or both). 
 Examples: Number of plants per large quadrat 
  Counts from repeated trials where odds of failure are small/trial 
  Number of children in mother’s family in B4605/B7220 (?) 
 Q ~ fk(k; p,r ) = P(X=k), where k = r+1, r+2, etc. 
  Unknown number of independent trials,  
  each with success p that varies from trial to trial 
  r is number of failures until a success occurs. 
 X = number of successes until predefined number of failures r occur 
 F(X=k) = complicated!!  Use a routine from a stat package, or from excel. 
 E(X) =  µ  = r/p = expected number of counts per unit. 
 V(X) = σ2 = r (1−p)/p2  expected dispersion (variance) of counts. 
 CD(X)= (1−p)/p hence not necessarily equal to 1, typically > 1 
 CD(X)= 1/odds of success, hence low odds when CD(X) >1  
  Parameter p estimated from (CD+1) −1   where CD is  / σ µ2  
  Parameter r estimated from µ (CD+1) −1    
 
Discrete distributions – Geometric distribution. 
The next stop on the tour is the geometric distribution.  It appears in engineering, in the 
context of quality control.  It appears rarely in biology and the medical and health 
sciences.  It is a special case of the negative binomial distribution. 
 
Geometric distribution 
 Q = number of trials until first success. 
 Examples: Q = number of unsuccessful foraging attempts 
 Q ~ fk(k; p) = P(X = k) 
  n independent trials, with success rate p 
 F(X=k) = p (1 − p) k  
 E(X) = µ =  1/p = expected number of trials where p is known 
 V(X) = σ2 = (1−p)/p2 
 CD(X) = (1−p)/p   This is the inverse of the odds of success. 
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Discrete distributions – Uniform Distribution. 
Another discrete distribution of interest in biology is the uniform distribution.  This 
distribution is used to ensure random allocation of sampling units to experimental 
categories.  It  is also used in conducting scientifically valid surveys.  Random allocation 
(experiments) and random selection of units from a defined frame (surveys) ensure that 
the sample is representative of the population (target of inference).  For example in a 
rigorously conducted survey, random numbers from a discrete distribution are used to 
select the sampled units from a predefined frame (the population) such as list of residents 
in a defined area.   
 
Discrete Uniform distribution 
 Each integer from Qmax + Qmin has same probability 
 Q = random integer from Qmax to  Qmin 
 Q ~ fk(k; p,r ) = P(X=k) 
  Each integer from Qmax to  Qmin has equal probability of occurrence 
 F(X=k) =  1/n    
 E(X) =  (Xmax + Xmin)/2 
 V(X) = σ2 = ((Xmax −  Xmin +1) 2 −1)/12 
 Example: integer from a random number table 
   
Continuous distributions. 
 
Normal distribution 

 Outcome due to larger number of independent factors 
 Examples: birth weights, adult heights,  
  measurement errors 

 
Lognormal distribution 

Outcomes due to a small number of factors,  
or interacting factors 

 Examples:  
 
Gamma distribution 
 Continuous analog of negative binomial distribution. 
 Used as probability model for data with residuals showing asymmetrical skew. 
 Examples:  
 
Beta distribution. 
 Analog of binomial distribution, in that it is bounded between zero and one. 
 Examples: habitat percent cover.  
 
Beta-binomial distribution.   

Outcomes due to a process that determines presence absence and a second  process 
that governs number if present.  
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Continuous distributions used to calculate Type I error (p-values). 
 
Chi-square distribution 
 Sum of squared normal variables 
 Examples: 
 ratio of variance of a sample to variance of the population 
 sum of  squared differences between observed and expected numbers 
   in a genetics experiment 
 
t-distribution 
 Ratio of random normal variate to chi-square variate 
 
F-distribution 
 Ratio of one chisquare variate to another 
 
F, t, and Chi-square are related to each other. 
The all do the same job – produce a p-value from a likelihood ratio. 
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Probability Models – Symbols and notation. 
 
There are 4 forms of any distribution. The following notation distinguishes probability 
models from empirical distributions.   
  
n = sample size 
 
N = finite population 
 
Work through handout 
(below), distinguishing  
F(Q = k) from Pr(X=x) 
 
 
 
 
 
 
All 4 forms of a theoretical distribution can obtained one from another.  This is done 
either by integrating, which is like going from a frequency distribution F(Q=k) to a 
cumulative distribution F(Q<k).  Or it is done by differentiation, which  is like going 
from F(Q<k) to F(Q=k).  
 
The distributions encountered in most statistical texts are theoretical distributions, in one 
of these 4 forms.  For example the normal distribution is usually pictured in the form of 
the Pr(X=x), while the p-values are calculated from the cumulative normal distribution 
Pr(X<x).   Some of the theoretical forms are used so often that they have abbreviated 
names: the pmf is the probability mass function,  the pdf is the probability density 
function, the  cdf is the cumulative distribution function.    
 
 

 Empirical Theoretical  Theoretical 
  (k discrete)  (x continuous) 
 
 F(Q=k) N ·Pr(X=k)  N ·Pr(X=x)] 
 
 F(Q=k)/n Pr(X=k) = pmf Pr(X=x) = pdf 
 
 F(Q<k) N ·Pr(X<k)  N ·Pr(X<x) 
 
 F(Q<k)/n Pr(X<k)  Pr(X<x) = cdf 
 
 white yellow chalk  yellow 
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Table 6.1     Notation for Frequency Distributions and Probability Models. 
 Notation for frequency distributions and probability functions vary from text to 
text.  Here are some notational conventions that tend to be widely used.  Equivalent 
notation is also shown. 
 
An empirical distribution constructed from a sample of size n can be expressed in any of 
four different ways:   
F(Q = k) histogram of values   frequencies 
F(Q = k)/n histogram of proportions   relative frequencies 
F(Q < k) histogram of cumulative values cumulative frequencies 
F(Q < k)/n histogram of proportions   cumulative relative frequencies 
 
Theoretical distributions can be either discrete (binomial, Poisson) or continuous (normal, 
chisquare, F, t).  These are functional expressions.  The probability density function pdf is 
a function for the probability, or relative frequency.   The cumulative density function cdf 
is for the cumulative probability, or cumulative frequency.  These function can thus be 
considered models for the frequency distribution obtained from data. 
  Observed Expected   k is discrete  Q is measured 
  n = sample N = finite population x is continuous X is continuous 
 
Frequency F(Q = k) Frequency of Q in the sample of size n (the histogram) 
  n·Pr(X < k) Expected frequency that X in sample, limited to k values 
  n·Pr(X < x) Expected frequency X in sample, X continuous 
  N·Pr(Q < k) Expected frequency that Q in population, k values only 
  N·Pr(X < x) Expected frequency  X in population, X continuous 
Relative  
Frequency F(Q = k)/n Proportion of Q in the sample of size n 
  Pr(Q = k) Probability that Q = k probability mass function, pmf 
  Pr(X=x) Probability that X = x probability density function, pdf 
Cumulative 
Frequency F(Q < k) Cumulative frequency of Q 
  n·Pr(Q < k) Expected frequency that Q<k in sample, limited to k values 
  n·Pr(X < x) Expected frequency  X<x in sample, X continuous 
  N·Pr(Q < k) Expected frequency that Q<k in population, k values only 
  N·Pr(X < x) Expected frequency  X<x in population, X continuous 
Cum. Relative 
Frequency  F(Q < k)/n Proportion of Q < k in the sample of size n 
  Pr(Q < k) Probability that Q < k cumulative mass function, cmf 
  Pr(X < x) Probability that X < x cumulative density function, cdf 
 
Equivalent  notation Pr(Q = k) f(x) pmf P(Q = k) for discrete variables 
   Pr(X = x) f(x) pdf P(X = x) for continuous 
   Pr(Q < k) F(x) cmf P(Q < k) for discrete variables 
   Pr(X < x) F(x) cdf P(X < x) for continuous 
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Frequency Distributions from Probability Models -- Notation and Concordance 
 The notation adopted here distinguishes theoretical and empirical distributions. It 
distinguishes the four forms of any distribution. The symbols are consistent with 
prevalent usage in the literature.  
 However this is not the only notation.  In text it is sometimes unclear whether a 
theoretical or an empirical distribution is being used.  In texts it is sometimes difficult to 
determine which of the four different forms is under discussion.  This usually takes some 
scrutiny to determine.  It helps to keep in mind that there are four different forms, then 
work out which distribution is being used. 
Because notation varies among texts, the recourse is to set up a concordance.  That is, list 
one set of symbols, then list the corresponding symbols from the second set immediately 
beneath the first set.   
 
Application:  Table 6.1 in Sokal and Rohlf (1995).  
 Discuss and translate each column.  
 In Box 6.1   Q  =  birth weights                       
Add in: outcomes(Q)=k Column (1) 
  Pr(X=x)  Column (5)    = probability density function pdf 
  Pr(Q=k)  Column (6) 
  N·Pr(Q=k)  Column (7) 
  Residuals  Column (8) 
  z-scores  Column (3)   = (class mark  − mean)/st.dev 
 
Another application from text.  Eq 6.1 page 101 
  The normal distribution.   What is Z ? 
  Which of the four forms are we looking at ? 
Looking at the graph, it seems that Pr(Y=y) is meant,  
where Y = birth weight and y is outcomes(Y). 
 it is a theoretical distribution (i.e. an equation) 
 it is on relative basis (sum = 1)  based on Fig 6.2 and 6.3 
 it is not cumulative 
 by elimination it is Pr(Y=y)= Z   
  but note that this Z has nothing to do with z-score 
 z scores are single data values standardized relative to mean and to sd 
 
Another application.    Eq 6.2 in Sokal and Rohlf.  what is meaning of z here ? 
 It is now for a sample, not the population. 
 It is E[F(Q=k)]  not E[F(Q=k)/n] 
 
Another application.    p 103 in Sokal and Rohlf  cdf and pdf. 
page 103 pdf =  probability density function  Pr(X=x) 
  cdf =  cumulative distribution function Pr(X<x)

This goes well if most people have 
books.   
Dropped in 2003 because few 
people had books. 
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Frequency Distributions from Probability Models -- Uses 
 
1. Clue to underlying process. 
 

If an empirical distribution fits one of the following, then this suggests the kind of 
mechanism that generated the data.   

  
 Uniform distribution 
  e.g. number of people per table in crowded room 
  generating mechanism is that all outcomes have equal probability 
 Normal distribution  
  e.g. oxygen intake per day 
  generating mechanism is usually several independent factors 
 t-distribution = small sample from normal distribution 
 Chisquare = distribution of a variance  e.g Fig 7.5 Sokal & Rohlf95 
 F-distribution = ratio of variances 
 Poisson distribution  
  e.g. counts of rare plant per quadrat 
  gen. mechanism is rare and random event 
 Binomial distribution 
  e.g. number of heads on several tosses of coins 
  e.g. number of successful captures in several tries by predator 
  gen. mechanism is yes/no outcome on repeated trials 
 Beta binomial 
  e.g. captures by several predators, each with diff. probability of success 
  gen. mechanism is collection of binomial processes, each with different 
   probablity of success 
 Negative binomial 
  e.g. number of plants in quadrat, if not rare 
  gen. mechanism is sequence of prior events, such as several critical 
    events leading up to successful colonization of quadrat 
 
2. Used to summarize data.  For example, number of births per unit area 
  summarized as Poisson parameter.  Estimate of parameter of appropriate 
  distribution is a powerful summary of set of observations. 
 Summarization in this form lends itself to comparisons.  For example: 
  birth rate in one habitat as a parameter) versus that in another. 
  The information in a distribution is reduced to a few parameters,  
  which we use to compare the information. 
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Theoretical Frequency Distributions -- Uses  (continued) 
 
3. Decision making.  Can use theoretical distribution to calculate p-value, instead of 
undertaking the effort of tabulating a frequency distribution. 
 
Many statistical texts have tabled valued of theoretical distributions for this purpose.  In 
the days before computers thse tables were the best way to use theoretical distributions.  
With computers these tables are obsolete and imprecise.  It takes no longer to compute an 
exact probability with a computer (e.g. with Minitab) than to look up a critical value in a 
table.  The computer value is better, because the precise probability is returned, not an 
outcome corresponding to one of a small number of tabled probability.  The use of 
computers to calculate exact probabilities is consistent with modern practice in statistics, 
which is to report exact p-values corresponding to an outcome.  This is much better then 
simply declaring "the result was significant at 5%" 
 
Many examples of this use of theoretical distributions in statistics. 
 
Will use Minitab to calculate p-values from observed outcome (cdf command) 
 
This can be visualized as same maneuver used with empirical distribution.  Start with 
outcome, move up to curve (the theoretical distribution), then across to the probability. 
 
 
 
                                                  
 
                                                   RF(Q<K) 
 
 
 
 
 
 
 

                                                                                
                                                                                         Outcomes k 
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Theoretical Frequency Distributions -- Uses  (continued) 
 
4. Reliability.  Put probability range around an outcome.  Read from probability 
space to sample space.   
 
This use of theoretical frequency distributions also made easier with computers.  In 
Minitab this is done with invcdf command. 
 
Can be visualized as starting with range on the y-axis (probability range) then proceeding 
across to the curve, then down to pair of outcomes that correspond to the probability 
range. 
 
 
 
 
                                                        RF(Q<K) 
 
 
 
 
 
 
 
 
 Outcomes k 
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Theoretical Frequency Distributions -- Computing probabilities 
 
Cell nuclei. 
 
The most common use of theoretical distributions in statistics is calculating p-values and 
setting confidence limits.   Theoretical distributions have additional uses.  These will be 
covered here briefly. 
 
One use of theoretical distributions is to calculate expected outcomes, before data are 
collected. 
 
Here is an example, using the Binomial distribution. 
 
 At any one time, 2% of all cell nuclei are undergoing mitosis. 
 Question:  How many nuclei must be examined in order to have a 95% 
  chance of finding at least one nucleus dividing ? 
 
  Two percentges here, makes it confusing.   
   2% chance of each nuclei dividing 
   100%  − 2 %  = 98% of each not dividing 
 
   95% chance of finding at least one nucleus dividing 
   100%  − 95% = 5% chance of finding none dividing. 
 
  Similar questions that are easier : 
   How many examined to have 2% success ?     1   
   How many to have 98% failure ?    1    
  How many to have 5% failure ?    more than 1   
  How many to have 95% success   more than 1, same as above   
 
  Looking for the frequency of an outcome (at least one event) 
  Same as the frequency of another outcome 1  − RF(no events) 
 
  Can calculate either Pr(at least 1)  or   Pr(none) 
  Easier to calculate Pr(none) 
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Computing Probabilities   (Binomial example continued) 
 
With problem in mind, search for right formula for Pr(X=x) or Pr(Q=k) 
Want the pdf Pr(X=x) or the probability mass function pmf = Pr(Q=k) 
What kind of distribution ? 
Series of success-failures, each independent, each with  same probability (2%) 
The appropriate distribution is the binomial distribution. 
The problem is like coin flipping, except that the "coin" lands on heads 2%  tails 98% 
This is a discrete distribution so we want the pmf 
The formula for the binomial distribution pmf is: 
 
  Pr(Y=k))   =  C(k,Y) · pk−Y qY 
 
  trials     k = cell nuclei examined for mitosis 
  outcomes Y = mitosis  happening  (number of successes) 
  rate  p = proportion not undergoing mitosis at any one time 
     q = proportion undergoing mitosis = 1−p 
     C(k,Y) = combinations of k things taken Y at a time. 
   
  It is easier to work with failures where C(k,Y) = 1 
   There is only 1 way to get all failures in k trials 
   C(Y=k)   = 1 
 
  If we work with failures (p = 98%), then the equation reduces to: 
 
  Pr(Y=k))   =  pk−Y qY 
   if p = 98% failure at any one time, how many nuclei have to be 
    examined in order to have 5% failures ? 
   This is the same as asking the chance (95%) of finding more than 0 
   k is unknown 
   p = 98%  failure 
   Y = 0 
   Pr(Y=k) = 1 − 95% = 5%  
   Pr(Y=k) =    pk−Y qY =    0.98k−0 0.020 
        0.05 = .98k−0 .020 
        ln(0.05) = k(ln(0.98) + 0 · ln(0.02) 
        k = ln(0.05)/ln(0.98) 
        k = 148 
 
 It is sometimes hard to tell if formula has been applied correctly. 
 To check, ask whether the answer look reasonable. 
 do other answers (similar values)  look reasonable ? 
  e.g.  if p = 80% rather than 98% should k go up or down ? 
   then calculalate k for 80% of time not dividing. 

This material requires 
extensive preparation, 
to go well. 
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Computing probabilities from observed versus theoretical distributions. 
 
Examples 
 randomization test in S&R section 18.3 
 Fisher's exact test. 
 Non-parametric tests based on ranks 
   Tables are based on tally of outcomes, not on equation for th. distribution 
 
Examples of probabilities computed from theoretical distributions (equation for each) 
 t, F, Chi-square,  Anova 
 
 
What are the advantages and disadvantages of these ? 
 
Observed distributions 
 Advantages 
  no assumptions 
  easiest to defend because no assumptions 
 Disadvantages 
  lots of computation 
  not always easy to carry out.   
  no ready made commands in stats packages 
 
Theoretical distributions 
 Advantages 
  Easy to do in statistical packages,  
   which are set up to use theoretical distributions 
  Familiar 
  Good recipes, known performance 
 Disadvantages 
  Assumptions may not apply, so p-value may be wrong 
  Checking assumptions can be laborious 
   Almost as easy to do the observed distribution as 
    to do a thorough check on assumptions 
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Probabilities from Theoretical versus Observed Frequency Distributions 
 
A note on "non-parametric" tests:    It is a confusing term.  
 Does this refer to statistical test with no parameters ? 
 Does this refer to test with no parametric distribution of outcomes ? 
 I.e. does it apply to use of empirical rather than theoretical  
  frequency distributions ?  

  For example, some texts refer to a chisquare test as a "non-parametric" 
test.  In fact such a test has parameters (expected row and column 
proportions).  It typically employs a theoretical frequency distribution 
(Chi-square, with parameter = df).  A chisquare test is most certainly a 
parametric test. 

 
In practice non-parametric has come to mean a special type of test where  
  data are reduced to ranks 
 These are becoming historical artifacts (from the days of no computers) 
 Reasoning was that linear models (t-tests, regressions, etc) 
  based on theoretical distributions could not be trusted 
  because residuals were not normally distributed. 
 So the solution, before computers, was to reduce data to 
  rank scale so that all outcomes could be enumerated 
  for a statistic based on ranks. 
Texts for natural scientists have whole chapter sdevoted to these kinds of tests.    

Kruskal Wallis etc. 
 These are randomization tests that use the strategy of  reducing data to ranks. 
 If you have a computer or access to the web this is no longer necessary 
 It is not a very good solution because information is lost. 
 Randomization tests based on data are better. 
 
As we have seen, a t-test can now be done with non-normal data. 
 Just do a randomization test, using the t-statistic 
  (no assumptions about distribution needed). 
 
 Practice that developed from 20th century texts was once necessary:. 

 Start with set of classic methods  (regression, ANOVA, etc) 
 If normal error assumptions violated, use another set of methods 
These are based on defensive position of a 'non-parametric test' 
The cost is stupefying the data (to ranks, loss of information). 
The 21st century solution: present randomization tests early in the course, rather than 
bringing in 'non-parametric' tests at the end as curatives whenever first set of methods 
cannot be used. 
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