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Model Based Statistics in Biology.    
Part II.  Quantifying Uncertainty and Evidence. 
Chapter 5   Data Equations 
 
 
 
 
 
 
 
 
 
 
 
 
on chalk board 
 
Recap Part I 
Ch1 Quantitative reasoning: Example of scallops, which combined stats and models 
Ch2 Quantities: Five part definition 
Ch3 Rescaling 
Ch4 Equations express an idea or concept about the relation of one quantity to another 
 
 
 
 
Wrap-up.  Data equations summarize pattern in data. 
 Data equations  have 3 parts: the data, the model, and the residuals. 
 The sum of the residuals is a measure of bias in fit. 
 The sum of the squared residuals  

measures the goodness of fit. 
   allows us to quantify the improvement in fit. 
 The likelihood ratio is calculated from the sum of squared residuals 
  It measures which of two models is more likely than the other. 
 Data equations apply to regression lines (ratio scale explanatory variable)  
  and to contrasting means among groups (nominal scale explanatory variable) 

We will use likelihood ratios to make statistical tests of  regression lines and 
 contrasting means  (t-tests, F-tests, chisquare tests, etc).   

 
 

ReCap.  Part I (Chapters 1,2,3,4) 
5.1 Introduction  
5.2 Data 
5.3 Deviations from a Single value model 
5.4 Deviations from the Mean 
5.5 Deviations from a Linear Trend 
5.6 Comparison of Models – ANOVA and  ANODEV 
5.7 Deviations from the Means of Two or More Groups 
5.8 Review questions. 

Red chalk for residuals 
Yellow chalk for model 
White chalk for data 

Today-- Data Equations 
 Defined, then an example to demonstrate the idea 
   and its application in statistical analysis.
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5.1   Introduction 
Statistics are often presented in the following sequence 
 Here are some statistics and how to compute them (means, variances) 

 Here is a little bit of probability theory (How many blue marbles do you    
expect to draw in 5 tries, from an urn with 5000 blue marbles and 
5000 red marbles ?) 

 Here are some more probability distributions--normal, 2, etc. 
 Here is how to do a t-test to compare two means. 
 Here is how to do a regression.  Etc. 
 
In this course we will take a different approach, one that will allow you to set up an 
appropriate analysis of data, without having to search for the ‘right’ test.  This approach 
is readily learned. It allows you to accomplish far more than is possible by learning a 
series of tests.  This model based approach begins with the concept of a set of data 
equations.  We will use data equations to compare models to data.   
 

Data  =  Model  +  Residual 
 
This allows us to set up simple symbolic expressions to undertake statistical analysis of 
our data.  In order to use these simple symbolic expressions with confidence, we will 
always link them with verbal and graphical expressions of the same idea. 
 
 
 
  
 
 
 
 
 
We will use data equations to measure how well a model fits the data.  We will use data 
equations to compare competing models.  Later, we will use data equations to calculate 
the error rate if we assume the model to be true (hypothesis testing).   
 
The goal of the equations lab (Lab 2) is to gain experience in working with models that 
relate one variable to another. The models in this lab expressed: 
 -metabolic rate as an allometric function of body mass (Kleiber’s Law) 
 -hormone levels in mothers as a function of time before birth 
 -femur length as allometric function of body length 
 -survival rate of snails that host human parasites as a function of temperature 
 
These equations provide ideal or expected values of one quantity, as a function of some 
other quantity.  The model values will not match observed values perfectly.  But the 
match should be close enough to be convincing.  Data equations allow us to quantify the 
fit of data to models that express important concepts in biology. 
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Definition: A data equation has three parts:  observed values Y, expected values E(H), 
and the residual  . 

Data  = Model  +  Residual 
 

    Data  =  Expected  +  Residual 
Y E H ( )   

 
Data  = Fitted values  +  Residual 

   Y Y    
 
The data are a set of measured values.  
 
Expected (model) values are calculated from an equation, such as those in the equations 
lab. 
 
The residuals are the difference between the data and fitted value. 
 

Residuals  =  Data   Fitted  
 
 
 
 
 
 
 
 
 
 
 
 
 
Example of expected value from an equation:  Metabolic rate of a non-passerine bird 
(Lasiewski and Dawson 1967) 

ሶܧ ൌ  ଴.଻ଶଷܯ	78.3
 

݈݇ܿܽ
ݕܽ݀

ൌ 78.3݇݃଴.଻ଶଷ 

 
Ostrich, 2.7 m tall.   Weight =  115kg 
 

ሶܧ൫݁ݑ݈ܽݒ	݀݁ݐܿ݁݌ݔܧ ൯ ൌ 78.3ሺ115݇݃ሻ଴.଻ଶଷ ൌ  ݕܽ݀/݈ܽܿ݇	2420
 
For a single ostrich, with measured value of 2300 kcal/day the data equation is 
 
   2300 = 2420 – 120  
 
   

In following examples, keep the data, the graphics, 
and the stack of data equations coordinated.   
 
In stack of Data Equations: 
Keep data on board (white chalk) 
Erase and replace the model (yellow) 
Erase and replace residuals (in red) 
 
Graphs: 
Keep axes and data points on board (white) 
Erase and replace model (yellow lines) 
Erase and replace residuals (vertical lines in red) 
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5.2   Example:  Fruit Fly Heterozygosity.  Data from Brussard (1984) 
 
To become familiar with data equations we will use data collected by Theodosius 
Dobzhansky, who was one of the pioneers of populations genetics.  Dobzhansky, one of 
the founders of the ‘modern synthesis’ in evolutionary biology, established the fact that 
natural populations have high levels of genetic variation.  Dobzhansky devoted his 
professional life to one of the central questions in population biology: the origin and 
maintenance of genetic variability.  Dobzhansky worked on fruit flies in laboratory 
populations, but during the summer he would leave the lab and study wild populations of 
fruit flies in order to look at the ecological processes that generate or erode genetic 
variability in nature. Harsher environments at higher altitudes are expected to select for a 
narrower range of phenotypes, hence reduce genetic variability.  One of the research 
questions Dobzhansky addressed was: 
 
Does genetic variability decrease at higher altitude, due to stronger selection in extreme 
environments ? 
 
To address this question Dobzhansky collected flies at different altitudes in Yosemite 
Park in the Sierra Nevada range, a spectacularly scenic location that offered pleasant 
relief from the hot summer conditions of urban Los Angeles. Dobzhansky used the best 
technique at the time, called inversion heterozygosity, to measure genetic variability.  
Here is Dobzhansky’s data on inversion heterozygosity (assuming Hardy Weinberg 
equilibrium) of 3rd chromosome inversions from the fruit fly Drosophila persimilis. 
 
The data were reported by P.F. Brussard 1984.  Geographic patterns and environmental 
gradients: The central-marginal model in Drosophila revisited.  
Annual Review of Ecology and Systematics 15: 25-64. 

 
 
  H = heterozygosity. 
  Elev = elevation in feet, converted to km 
 
 
 
 
 
 

 
 

    850  0.59 0.26 
   3000  0.37 0.91 
   4600  0.41 1.40 
   6200  0.40 1.89 
   8000  0.31 2.44 
   8600  0.18 2.62 
  10000  0.20 3.05 
 
 Elev    H(%) Elev(km) 
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Data   = ModelResidual

H   = res  res2

0.59   = 0.3 0.29 0.0841
0.37   = 0.3 0.07 0.0049
0.41   = 0.3 0.11 0.0121
0.40   = 0.3 0.10 0.01
0.31   = 0.3 0.01 0.0001
0.18   = 0.3 -0.12 0.0144
0.20   = 0.3 -0.10 0.01

0.36 0.13560

෡ܪ

5.3   Deviations from a Single Value Model.  Model:  E H ext( )   
Heterozygosity in Drosophila runs at an average of 30%, an unexpectedly high value 
when first obtained (Lewontin and Hubby 1966).  This gives us a single value model of 
the data 
Our model is E H ext( )  where ext  has a single value, 30%. 
 

Data  = Model  +  Residual 
H E H

H

H
ext

 
 
 

( )

.


 

0 3

 

 
Using this simple model we form 7 data equations, one for each observed value. 
 

    
  
 res =   0.36 
 
res2 =  0.1356 
 
L Hext

n( | ) . /  01356 2  
  n = 7 
 
The typical value of 0.30 is somewhat high for this data.  

The values tend to be more than 0.30 and hence the residuals sum to a positive value. 
 
The summed residuals measure the bias in fit.   
The sum of the squared residuals measures the goodness of fit.   
L(βext | H) is the likelihood of the parameter βext  given the data H. We will use it to 
compare the weight of evidence for one model versus another. 

 
 
 
 
 
 
 
 

Add the model value 
0.30 to the graph as a 
horizontal line.   

Run a perpendicular 
from the line to each 
point.  These are the 
residuals. 

White chalk for data,  
yellow chalk for model = straight line at 0.30 
Red chalk for residuals 
Data to left, residual calculation in middle, graph to the right 
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Keep res2 on board for 
each successive model 

5.4   Deviations from the Mean.     Model:   E H H( )  estimated from data   
Often we have no parameter value from prior evidence. 
In this case we estimate the parameter from the data we have. 
We use statistical methods to make the "best" estimate. 
 
What does "best" mean ?   There are several criteria.  We will start with two statistical 
criteria: that the residuals sum to zero (the estimate is unbiased) and that the residuals be 
as small as possible.  The number that meets both these criteria is the mean value. 
 
 
 

 
Our model is E H H( )    where  H  has a single value, 35.14%. 

Data  = Model  +  Residual 
H E H

H

H
o

 
 
 

( )

.


 

0 3514

 

Here are the data equations when the model value is the mean 
 
                                                              
res =   0  
 

res2 =  0.1171  
 
L Ho

n( | ) . /  01171 2  
 
n = 7 
 

The residuals sum to zero, meeting the criterion of no bias.  It can be shown 
mathematically that the squared deviations sum to the smallest possible value.    

This model is an improvement over our 
previous model (H = 0.30 + residual) because it is 
unbiased and has the minimum deviation of the data 
from the model.  It is not necessarily an improvement from the point of view of the 
underlying biology. We have substituted a statistical criterion (best fit) for a biological 
criterion (prior knowledge). 

Add the model value 0.3514 
to the graph as a 
horizontal line.   

Run a perpendicular from 
the line to each point.  
These are the residuals. 

White chalk for data,  
yellow chalk for model = 
straight line at 0.351 

 Data = Model + Residual 
 H =      +  res  res

2
 

 
 0.59 = 0.3514 + 0.2386 0.0569 
 0.37 = 0.3514 + 0.0186 0.0003 
 0.41 = 0.3514 + 0.0586 0.0034 
 0.40 = 0.3514 + 0.0486 0.0024 
 0.31 = 0.3514  0.0414 0.0017 
 0.18 = 0.3514  0.1714 0.0294 
 0.20 = 0.3514  0.1514 0.0229
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5.5   Deviations from a Linear Trend:    H EE I    estimated from large scale data. 
 
Our single value model of the data fails to capture the trend in heterozygosity relative to 
elevation.  This shows up in the residuals when listed from low to high elevation: positive 
residuals early in the series, negative residuals later in the series.   So we investigate a 
model that describes a decrease in heterozygosity with increase in elevation.  We start 
with the simplest possible model, a straight line increase with altitude. 
 

H H

H EE I

 

  



 



  
 

 
The parameterE in this equation (model) is the heterozygosity gradient.  It is the change 
in heterozygosity for each unit change in elevation. The gradient E has units of  % /km .  
The product E · E has units of (%/km)(km) = %.  Thus it has the same units as the 
response variable H, as it must for the equation to be dimensionally homogeneous.  
I is the Y intercept.  
 
We will start with the large scale heterozygosity gradient E.   The large scale gradient is 
the difference in heterozyzosity from the lowest to highest elevation.   

 
 

 
E  is an estimate of the slope of the line in the plot of heterozygosity versus elevation.  

The estimate is  13.98% per km increase in elevation. The hat over the symbol signifies 
that this is an estimate of the parameter. 
 
Next we calculate an offset so that the line runs through the value at 0.26 km. 
 
 
 
 

 
 

 
Here is the gradient model, with estimates from the highest and lowest elevation. 
 H   =               H  +   
 H   =           E · E  + offset +   res 
 H   =  0.1398 · E + 0.626 +   res 
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5.4   Deviations from a Linear Trend:    H EE I    estimated from data 
With this model we can calculate an expected value for each observation of 
heterozygosity, based on the elevation. 
 
 

Note bias:   res = 0.17  res2 =  0.0253  
L He( | ) . /  0 0253 7 2  

The model exactly predicts the heterozygosity at the highest and lowest elevation. 
We examine the deviations at each elevation to determine whether this model is 
acceptable. 
 high and low residuals are interspersed. 
 there are about as many negative as positive residuals 
 the sum of the residuals is somewhat biased (negative):  res = 0.17  
 
The model is satisfactory in that there are no patterns in the residuals.  The model is 
somewhat biased, leading to an estimate of the heterozygosity gradient that is more 
negative than an unbiased estimate. 
 
A better estimate of the gradient E can be obtained from the formula for the least squares 
estimate, found in every book on statistics. 

   
We have already met the quantity ܪ െ   ഥ. It is the deviation of the observed value fromܪ
the average value of heterozygosity.   
 
Similarly, the quantity  E E  represents the deviations from the average elevation   

And  E E
2
 represents the squared deviations from average elevation. 
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5.4   Deviations from a Linear Trend. 
The formula produces an estimate of E that minimizes  H H

2
 

With this formula,  the estimate of the heterozygosity gradient comes to 
  መா= 12.73 %/km, a value that is not quite as negative (as steep)ߚ 

as our crude estimate of  13.98%/km. 
As before we compute an offset.  This offset runs through the mean values 
(0.3514,1.796), which we use as our reference point because we always have more 
information about this point than we do about the Y-intercept,  where E = 0). 
 

                            
Here is the gradient model, with unbiased estimates from the data. 

                                      
 
The data equations based on this new estimate: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 res = 0.0000  No bias 
  res2 =  0.0204 Much less than 0.1171, the value of the previous no bias model 
 L HE( | ) . /  0 0204 7 2  More likely than previous no bias model based on βo because  
  a smaller fraction raised to the same power. 
We examine the residuals to evaluate this model. 
 -residuals are all approximately the same magnitude 
 -about the same number of positive and negative residuals 
 -no pattern of low residuals followed by high residuals 
 -sum of residuals is zero  
 
The fact that the residuals sum to zero is no accident:  the least squares estimation method 
guarantees this.  The estimation also produces the smallest possible value of the sum of 
squared residuals res2. 
 

 Data = Model + Residual 
 H =  · E + Offset  +    res    res2 
 0.59 = 0.1273 · 0.26  + 0.58 + +0.0429 0.001842 
 0.37 = 0.1273 · 0.91 + 0.58 + 0.0937 0.008773 
 0.41 = 0.1273 · 1.40 + 0.58 + +0.0084 0.000071 
 0.40 = 0.1273 · 1.89 + 0.58 + +0.0605 0.003659 
 0.31 = 0.1273 · 2.44 + 0.58 + +0.0403 0.001626 
 0.18 = 0.1273 · 2.62 + 0.58 + 0.0664 0.004408 
  0.20     = 0.1273 · 3.05 + 0.58 +   +0.0079       0.000063 
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5.5    Comparison of Models - Analysis of Variance and Analysis of Deviance 
 
We have considered several models of the data. We use three measures to compare them. 
 
First:  The sum of the residuals.  This measures bias. 
We looked at several models. We find that some have biased estimates, two do not. 
 

 -0.36       
 
 
 
 

Those having unbiased estimates are preferable. 
 
Second: The sum of the squared residuals.  This measures goodness of fit. 
 

         
We conclude that the model that includes the gradient in heterozygosity  E fits the data 
better than the model without the gradient.   
 
This comparison is displayed in either of two different forms: the analysis of variance 
(ANOVA) table or the analysis of deviance (ANODEV) table.  

  
Third:  Likelihood.      Which model is more likely?   
The evidential support for the full (null) model of no gradient is SStot = 0.1174-7/2 
 
This is called the full model because it encompasses all of the variation in the data, 
relative to the simplest model, that of single value, in this case the mean. 
 
The support for the reduced (alternative) model of a gradient is SStot = 0.0204-7/2 
This is called the reduced model because it encompasses the information in the data, after 
reducing the variance by including an explanatory variable, in this case a gradient.  
The likelihood of the reduced to the full model is  LR= (0.0204/0.1174)-7/2 = 453 
 
The gradient model is 450 times more likely than the no gradient model. 
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5.5    Comparison of Models - Analysis of Variance and Analysis of Deviance 
The evidence is stronger for the gradient model than the no-gradient model. 
 We have a measure of strength of evidence.  Log10(453) = 2.66 hartleys 
  The evidence is better than 100:1 odds (log10(100) = 2 
  The evidence is not as strong as 1000:1 odds (log10(1000) = 3 
 Later we will use the LR to develop a statistical test of whether the no-gradient model 

could have arisen by chance.  
 
Statistical results report degrees of freedom (df).What is a degree of freedom ? 
We started with 7 observations.  We have 7 degrees of freedom. 
 If we know 6 values, the 7th is still free to vary. 
We lose 1 degree of freedom when we estimate the mean from the data. 
 If we know 6 values and the mean, the 7th is not free to vary. We only have 6 df 
 Hence the total sum of squares (ANOVA) and null model (ANODEV) has 6 df. 
We lose another degree of freedom when we estimate the slope parameter. 
 We assign this degree of freedom to the regression term in the model 
 Hence the residual term has 711 = 5 df 
 
We will use the ANOVA table for the general linear model, which assumes normal 
errors.  We use the ANODEV table for the generalized linear model (any error structure) 
                                                    
Lewontin, R. C.; Hubby, J. L. (1966). "A molecular approach to the study of genic 
heterozygosity in natural populations. II. Amount of variation and degree of 
heterozygosity in natural populations of Drosophila pseudoobscura". Genetics. 54 (2): 
595–609. 
 
 * * * * 
Next, we will look at the data equations for another common situation in biology, where 
we wish to compare mean values in two or more groups. 
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5.7 Deviations from the Means of Two or More Groups    Y = 0  + x·X  
Oat Yield data from Steel and Torrie (1960) 
 
To illustrate the idea of data equations for two or more groups we will use data from 
Steel and Torrie 1960 (p237) who reported yield 
(bushels/acre) of oats (Vicland variety, infected with H. 
victoriae) with or without a chemical seed treatment 
(Panogen).  
 
Y = Yield of oats (bushels / acre) 
X = group (1 = control, +1 = treated) 
 
Null Model.  Y o  estimated from data 
 
As is often the case we do not have a parameter value 
from prior evidence. We estimate the parameter from the data we have.  The ‘best’ 
estimate is the overall mean, which is unbiased (residuals sum to zero) with smallest 
deviation (smallest sum of squared residuals). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 1 42.9 untreated 
 1 41.6 untreated 
 1 28.9 untreated 
 1 30.8  untreated 
 +1 49.5 treated 
 +1 53.8 treated 
 +1 40.7 treated 
 +1 39.4 treated 
 
  Grp  Y 

Draw in, as 
horizontal line, the 
model value of 40.95. 

Connect each dot  to 
the line with a 
perpendicular.  These 
are the residuals. 

White chalk for data,  
yellow chalk fro model = 
horizontal line at 40.95 
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Null Model (continued)   Y o  from data    

Our model is  Y o   where o  is an estimate,  40.95 bushels / acre 
Data  = Model  +  Residual 

 
Here are the data equations when the model value is the mean. 

 
 
res =   0  
res2 =  493.14  
 
መ௢หܻ൯ߚ൫ܮ  ൌ ሺ493.14ሻି଼/ଶ  
 
 
 
 
 
 
 

 

Alternative Model   Y = 0  + x·X     
where X = two groups 

 
We have no prior information to tell us the expected value for treated and untreated oats, 
so we use means estimated from the data in each group.   
 
For untreated oats the mean value is  

For treated oats  the mean value is  
 

 
 
res =  0   
res2 = 301.06  
 
 
መ௑หܻ൯ߚ൫ܮ  ൌ ሺ301.06ሻି଼/ଶ  
 
 
 
 
 

 
 

Keep res2 on board for 
each successive model 
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Data Equations.    Y = 0  + x·X    two groups 

The data equations are written using the overall mean = 40.95 bushels/acre, together 

with the group means expressed as deviations  from the grand mean. 
 
Comparing models 
How does our two group model  (treated versus control) compare to the  single value  (no 
effect) model? 
To draw a conclusion about the effects of panogen on oat yields, we compare the model 
with the group means (Y  =o +x X) to the model without the group means (Y  = o).  
That is, we compare the fit of the model having the explanatory term (X = presence or 
absence of panogen) to the simpler model, in which the explanatory term X is absent.  
The no effect model -- the one with no explanatory term --  is called the null model.  We 
have already met the null model Ho.  It is the model based on the grand mean o, for 

which the estimate was  = 40.95 bushels/acre.  The alternative model HA includes the 
explanatory variable X, as shown in the above data equations.   
 
We apply three criteria.    
 
First:  Sum of the residuals.    res    = 0 for both models.  Both are unbiased. 
 
Second:   Sum of the squared residuals.   This measures goodness of fit.  
 
Ho:      Y  = o   res2 = 493.14  = SStotal 
HA:   Y = o + x X     res2 = 301.06   
 
HA is a better fit than the null model, Ho .  
The improvement in fit (reduction in squared deviation) is: 
 res2 = 493.14  ̶ 301.06 =  192.08  =   SSmodel 
The improvement in fit as a percentage is 192.08/493.14 = 32% 
 
Third:  Likelihood.   Which model is more likely, given the data ? 
 
The likelihood ratio is LR = (301.06/493.14)(-8/2) = 7.2 
The model with treatment effects is only 7 times more likely than the no effect model. 
The weight of evidence (LR < 20) is not in favor of the treatment effect model. 
 
Could this improvement in fit and in likelihood have been due to chance variation in 
measurements ? 
Later, we will use the likelihood to develop a test for deciding whether the improvement 
in fit and is attributable to chance.   
 
See worksheet     ( ST237.xls)   
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5.8 Review Questions 

 
 
1. Here are the 7 values of  fly heterozygosity assigned randomly to the 7 values of 

altitude . 
 

Calculate the sum of the residuals and the sum of the 
squared residuals  for the null and alternative model. 
 
How does the random improvement in fit compare to 
that for the unrandomized data? 

 
Calculate the likelihood ratio for the gradient model 
compared to the no gradient model (no change with 
increasing altitude) for the random data. 
 
How does the likelihood ratio for the random data 
compare to that before randomization?  (take LR for unrandomized compared to 
randomized). 

 
 

2. Here are the heterozygosity values for Drosophila pseudoobscura, measured at the 
same locations as D. persimilis. 

 
Calculate the sum of the residuals and the sum of the squared 
residuals  for the null and alternative model. 
 
Calculate the likelihood ratio for the gradient model 
compared to the no gradient model (no change with 
increasing altitude) 
 
How does the likelihood ratio for this species compare to that 
for D. persimilis?  (take LR for D. persimilis compared to D. 
pseudoobscura). 

 
 

 
 

ft km Random 
sample 

of H 
850 0.25908 0.37
3000 0.91440 0.59
4600 1.40208 0.18
6200 1.88976 0.20
8000 2.43840 0.40
8600 2.62128 0.31
10000 3.04800 0.41

ft km  H 
850 0.25908 0.70 
3000 0.91440 0.69 
4600 1.40208 0.71 
6200 1.88976 0.70 
8000 2.43840 0.70 
8600 2.62128 0.62 
10000 3.04800 0.68 
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 *** Linear Model *** 
 
Call: lm(formula = H ~ Alt.km., data = Brussard, subset = 1:7, na.action =  
 na.exclude) 
Residuals: 
       1        2        3       4       5       6        7  
 0.04292 -0.09367 0.008411 0.06049 0.04032 -0.0664 0.007921 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept)   0.5801   0.0529    10.9711   0.0001 
    Alt.km.  -0.1273   0.0262    -4.8619   0.0046 
 
Residual standard error: 0.06394 on 5 degrees of freedom 
Multiple R-Squared: 0.8254  
F-statistic: 23.64 on 1 and 5 degrees of freedom, the p-value is 0.004625  
 
Analysis of Variance Table 
Response: H 
Terms added sequentially (first to last) 
          Df  Sum of Sq    Mean Sq  F Value       Pr(F)  
  Alt.km.  1 0.09664358 0.09664358 23.63833 0.004625356 
Residuals  5 0.02044213 0.00408843                      
 
 
 *** Generalized Linear Model *** 
 
Call: glm(formula = H ~ Alt.km., family = gaussian, data = Brussard, subset = 1:7, na.action 
= na.exclude, control = list(epsilon = 0.0001, maxit = 50,  
trace = F)) 
Deviance Residuals: 
          1           2           3          4          5           6  
 0.04291757 -0.09366627 0.008410879 0.06048802 0.04032481 -0.06639626 
 
           7  
 0.007921242 
 
Coefficients: 
                 Value Std. Error    t value  
(Intercept)  0.5800609 0.05287169  10.971105 
    Alt.km. -0.1272907 0.02618113  -4.861927 
 
(Dispersion Parameter for Gaussian family taken to be 0.0040884 ) 
 
    Null Deviance: 0.1170857 on 6 degrees of freedom 
Residual Deviance: 0.0204421 on 5 degrees of freedom 
 
Number of Fisher Scoring Iterations: 1  
Analysis of Deviance Table 
Gaussian model 
Response: H 
 
Terms added sequentially (first to last) 
        Df   Deviance Resid. Df Resid. Dev  
   NULL                       6  0.1170857 
Alt.km.  1 0.09664358         5  0.0204421 
 
 

 


