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Model Based Statistics in Biology 
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Recap Chapter 1 

Quantitative reasoning: Example of scallops, which combined stats and models 

Recap Chapter 2 

Quantities: Five part definition 

Measurements made on four types of scale: nominal, ordinal, interval, ratio 

Recap  Chapter 3.  Re-scaling 

Logical rescaling (from one type of unit to another). 

Re-scaling is a common technique in quantitative biology. 

Operations on measured quantities differ from operations on numbers. 

 -the rules differ 

 -physically interpretable, not just abstract mathematical procedures 

 

Wrap-up: 

We can convert a scaled quantity to a ratio with no units by rescaling it to a quantity with 

the same units. This is called renormalization. We can renormalize to the maximum 

value, resulting in a ratio between zero and one.  We can renormalize to the minimum 

value, resulting in a scope. Statistical renormalization results from scaling to a statistic 

such as a sum, a mean, a range, or a standard deviation.   

 
 

 

 

 

 

 

 

Today: Renormalization in science and in statistics. 
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Normalization – General Definition 
 

We can reduce a scaled quantity to a ratio with no units by normalizing each value. 

Normalization occurs when we divide a value by a reference value having the same units.  

The generic expression for normalization is 

Q

Qref











β

 
The ratio has no units. The magnitude of a scaled quantity thus becomes independent of 

the units of measurement.  In most applications β = 1.  But we can use any value of  β 

when rescaling quantities.  Normalization where β = 1, allows us to substitute one 

measurement unit for another, as in Galileo’s use of spearlengths to measure velocity.  It 

is the basis of classical dimensional analysis. 

  A convenient reference quantity Qref is the largest observed or largest possible 

value, resulting in a reduced variable that can range from 0 to 1.  An example is running 

speed measured relative to the maximum for that species.  Yet another useful reference 

quantity is the minimum observed or possible value Qmin, which yields a scaled variable 

that ranges upward from one. An example is metabolic rate as a multiple of the standard 

metabolic rate SMR, which is measured at rest and in the absence of absorptive activity 

by the gut.  Scaling relative to Qmin expresses the quantity Q in steps that are relevant to 

that variable. In physiology the scaled quantity Qmax /Qmin is called a scope.   The 

definition of scope can be extended to any measured quantity 

scope Q
Q

Q
( ) max

min

≡  

We can use scope to  

  compare the capacity of measurement instruments,  

  compare the information content of graphs,  

  compare variability of physical systems, or biological systems.   

 

 

In addition to renormalizing to a reference value, we can  renormalize the values of a 

quantity relative to a statistic with the same units, such as a sum, a mean, a range, or a 

standard deviation. For the sake of clarity, we’ll call this statistical renormalization, to 

distinguish it from other forms of renormalization.  



 3 

 

Normalization to minimum --> scope (Schneider 2009 Chapter 11) 

Physical quantities often have a large scope.  

Quantity  =  mass of hydrogen atom  H2 

 Scope = mass(H2)/mass(earth) 

 mass(H2) = 1.0079 g·mol
−1 

·  1 mol·6.02
−1

10
−23

 atoms · 2 atom· molecule
−1 

  = 3.3·10
−24

 g 

 mass(earth) = 5.5·g·cm
−3 

 ·  4π 3
−1

 (12.756 km/2)
3
 

  = 5.98·10
19

 g  =  5.98·10
7
 Tg    (teragrams) 

 Scope = 5.98·3.3
−1

·10
31

 = 1.8·10
31

 

 

Biological quantities often have a smaller scope than physical quantities. 

 Quantity  =  respiration rate 

 Scope is of the order of 10 (maximum is ca 10 times the minimum). 

 

Quantity = body mass       

Scope = 10
21

 

 = ratio of  mass of Mycoplasma (the smallest organism) to mass of Blue Whale. 

 

Measurement instruments have a scope, defined as the maximum over the minimum 

reading. 

Example: 1 kg / 1 microgram =  10
9
 if we have a scale that will record masses to 

the nearest microgram, up to a maximum of 1 kg. 

 

 Scope of a metre-stick  =  1m / 1cm =  100 (if marked in centimetres) 

 Scope of a metre-stick  =  1m / 1mm  = 1000 (if marked in millimetres) 

 

A survey will also have a scope.  Surveys are carried out by  

  defining the sample unit,  

  listing all possible units (the frame),  

  then either sampling all possible units (complete census) 

  or sampling units at random. 

 

The scope is the ratio of the frame size to the unit size. 

For example a salmon survey might employ 100 km transects along river. 

The unit is the 100 km transect, the frame is length of the river, and the scope is the 

number of possible transects along length of the river. 

Extending the survey to all rivers in Labrador enlarges the scope. The unit is still 

the 100 km transect, the frame is now the sum of the length of each river.  The scope 

increases to the number of possible transects along all rivers. 
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Normalization to minimum --> scope 

Experiments also have a scope.   

A physiological experiment carried out on 4 samples from the liver tissue from one 

mouse has a scope equal to the volume of the liver divided by the volume of each sample. 

An experiment carried out on 4 tissue samples from each of 20 different mice has a 

greater scope: the ratio of the liver volume of 20 mice, divided by volume of each 

sample.  This increase in volumetric scope tells us something about the generality of the 

result.  The experiment with the greater scope is more convincing because carried out 

over a greater variety of tissue states, due to variation among mice. 

If the experimental unit is a duration, then this is used in determining the scope.   

For example an experiment on mortality of bacterial colonies in an agar plate, measured 

daily over 10 days, has a temporal scope of 10 days / 1 day = 10. 

If the experiment is repeated 10 times, the temporal scope rises to  

10 * 10 days / 1 day = 100. 

This increase in scope again tells us something about the generality of the result, which 

applies at several times, not just at one point in time. 

 

The scope of measured quantities is used in comparing survey designs and evaluating the 

limits on statistical inference from field and laboratory experiments.   

 

See  Chapter 11. The Scope of Quantities    

Chapter 12. The Scope of Research Programs. 

 

Schneider, D.C. 2009.   Quantitative Ecology: Measurement, Models, and Scaling. 

San Diego: Academic Press. 

 

Normalization relative to a statistic.  In statistical analysis, we often renormalize 

relative to a descriptive statistic, such as the sum, the mean, the range, or the standard 

deviation. 

 

Normalization to a sum 

A familiar example of renormalizing is taking a percentage: adding up the parts to 

compute the whole, then taking each part as a ratio relative to the whole. For a percentage 

the reference quantity  Qref  is the sum of all the values of Q and the exponent is α = 1, 

resulting in dimensionless values that can range from 0 to 1.  

% =












=

∑
Q

Q

i

in

i 1

1
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Normalization to a sum 
Of particular interest in statistical analysis is the scaling of counts derived from nominal 

scale scoring of units.   For example Mendel scored 929 pea plants as having either white 

flowers (224) or purple flowers (705).  Thus 24% of the plants had white flowers. 

π =






 =

224

929
0 24.

 
The same information is also expressed as an odds ratio.  The odds of a flower being 

white are 0.318 to 1. 

Odds =
−

=






 =







 =

π

π1

224 929

705 929

224

705
0 318 1

/

/
. :

 
 

Normalization to the mean of the quantity Q,  where mean Q
n

Q
n

i
( ) =

=

∑
1 1

 

1.  Wind speed vel = [ ……..]·m/sec 

measured hourly at St. John's airport on ....(day with rise and fall over 8 hours. 

 

2.  Number of vascular plant species on 7 of the Canary Islands, in the eastern Atlantic.  

Data from K. Lems 1960 Floristic botany of the Canary Islands Sarracenia 5: 1-94. 

 

Nplant =  [ 366 348 763 1079 539 575 391 ] ·  sp/island 

 

mean(Nplant) = n
−1 ΣNplant  

mean(Nplant) = 7
−1 

·4061 ·  species/island = 580 

 

dev(Nplant) = Nplant  − mean(Nplant)  

 

dev(Nplant) = [  −214 −232 +182 +498 −41 −5 −189  ] ·  sp/island 

 

kdev(Nplant)   = [ Nplant − mean(Nplant) ] / mean(Nplant) 

 

kdev(Nplant) = [−0.36 −0.56 +0.31 +0.89 −0.071 −0.0086 −0.33  ] ·  sp/island 

 

This particular normalization is often used in the physical sciences, notably meteorology 

and oceanography, where it is called the anomaly.  An example is the annual temperature 

anomaly, the degree to which average temperature in the current year differs from a 

longer term average (warm year, cold year, etc).   
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Normalization to the mean 
Normalization to the mean is central to genetics, population biology, and evolutionary 

biology, including the calculation of selection coefficients.   

 

An example is  incidence of pale-eyed (I = ge) or wild type (I = wild) flies in 8 progenies 

of the housefly Musca domestica (Sokal and Rohlf 2012 p 731).  New variable, frequency 

of wild type flies fI=wild obtained by logical rescaling from nominal to ratio scale:   

 fI=wild = [83  77  110  92  51  48  70  85] ·  flies.     ΣfI=wild = 616 

This is normalized to the number of flies per progeny,  

 Nb = [130  120  206  150  82  109  112  151] ·  flies.   ΣNb = 1060 

to obtain the proportion of pale eyed flied 

 

 pI=wild = fI=wild/Nb = [0.64  0.64  0.53  0.61  0.62  0.44  0.63  0.56] ·wildtype/progeny  

  mean(pI=wild) = ΣfI=wild/ΣNb = 616/1060 = 0.58 wildtype/progeny 

 

Proportions are usually normalized as a ratio, rather than as a difference. 
 
 pI=wild/mean(pI=wild)  =  [1.10 1.10  0.92  1.06  1.07  0.76  1.08  0.97] 

 

The proportion of wild type flies was highest in progenies 1 and 2,  lowest in progeny 6. 

Selection coefficients are, in turn, calculated from these proportions.   
 

Normalization to the mean – The coefficient of Variation 

 The examples of normalization so far have been for each value of a variable.  

Normalization is also applied to measures of variability, resulting in a single ratio.  The 

most familiar example is the coefficient of variation. 

CV
stdev Q

mean Q
≡

( )

( )
 

The standard deviation is defined as   

 

where Q  is the average value of Q 

 

The coefficient of variation is a unitless ratio that permits comparison of the variability of 

two scaled quantities, free of the effects of choice of measurement scale or the effects of 

size.  For example, we can use the CV to compare morphological variability in mice and 

elephants. 

 

Normalization to a range 
The range is defined as the largest minus smallest value, usually in a sample. 

Another example of renormalization is ranging (Sneath and Sokal 1973) which uses both 

the minimum and maximum value to reduce the quantity to the range 0 to 1. 

 
Q

Q Q

Q Q
'

min

max min

≡
−

−

( )stdev Q
n

Q Q
n

i

( ) = −
=

∑
1 21
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Normalization to the standard deviation 
The standard  deviation is a measure of dispersion.  The standard deviation is defined as   

 

where Q  is the average value of Q 

 

This is a common form of normalization in statistical treatments of data. 

 

Returning  to example of number of plant species on 7 Canary Islands, we have: 

 
dev(Nplant) = [ −214 −232 +182 +498 −41 −5 −189  ] ·  sp/island 
 
dev

2
(Nplant)  =  [  45857 53890 ..... ] ·  (sp/island)

2
 

 
Σdev

2
(Nplant) = 419537 

mean squared deviation 
msd(Nplant)  =  n

−1 Σdev
2
(Nplant)  =  7

−1 
419537  =  59934 (sp/island)

2
 

 
root mean squared deviation 

rmsd(Nplant)  =  sqrt(msd) =  sqrt(59934)  =  245 sp/island 
variance 

var(Nplant)  =  (n−1)
 −1 Σdev

2
(Nplant)  =  6

−1 
419537  =  69923 (sp/island)

2
 

 
standard deviation 

std(Nplant)  = sqrt(var(Nplant))  =  sqrt(69923)  =  264 sp/island 
 

standard deviates 
nscore(Nplant)  =  (Nplant - mean(Nplant) ) / std(Nplant) or nscores 
 
nscore(Nplant)  =  [  −214/264  −232/264  ... ]  =  [−0.81  −0.88 ... ]  
 

Q
Q mean Q

stdev Q
'

( )

( )
≡

−
 

 

The normal score of a scaled quantity is unitless because both the mean and  the standard 

deviation have the same units as the measurements used to compute these statistics.  

Normal scores permit comparison of quantities that differ in magnitude and variability.  

They reduce any quantity to a mean value of zero with a standard deviation of unity.  

Legendre and Legendre (1998) discuss applications and potential problems of this and 

other statistical reduction to dimensionless ratios. 
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n
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