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Model Based Statistics in Biology 
Chapter 2.6 Dimensions (from Schneider 2009 Quantitative Ecology Chapter 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                         
on chalk board 
 
Recap Chapter 2 
Quantities: Five part definition 
Measurements made on four types of scale: nominal, ordinal, interval, ratio 
Data collection, recording, and error checking 
Graphical and tabular display of fully defined quantities 
Units are useful in reasoning about quantities. 
 Distinguish derived from base units, then define standard multiples. 
 Unconventional units are useful in biology. 

 
Wrap-up: 
Units are grouped by similarity into dimensions. 
Fractal and composite dimensions are constructed relative to base dimensions. 
Fractal dimensions and units are based on self-similarity. 
Suggest that students spend next few days looking for examples of 
Fractal vs Euclidean shapes.   
 Fractal dimensions lie between line and plane, plane and volume.   
          Euclidean shapes are anthropogenic.  Fractal shapes are natural. 
 

Today: Introduce concept of dimensions as a grouping of units, 
 then develop concepts of composite dimensions and fractal dimensions, 
Going to use units and dimensions as a means of reasoning about quantities. 

ReCap (Ch 1) 
Quantities (Ch2) 
2.1 Five part definition 
2.2  Types of measurement scale 
2.3 Data collection, recording, and error checking 
2.4 Graphical and tabular display of data 
 Critique of graphs and tables (Lab 5) 
2.5   Ratio scale units  

  Base units, derived units and standard multiples 
 Unconventional units 
2.6 Dimensions 
 Euclidean  
 Mechanical 
 Composite 
 Additional (Matroishkas, cash, etc) 
 Entities (Chemical and Biological) 
       Fractal 

Not here last time? 
 Course Outline 
 Name on roster 
Questionnaire results 

Bring matroishkas 
(similarity) 
Bring maple leaves 
(fractal objects) 
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Dimensions are groups of similar units 
Ratio scale units that are similar are grouped together into a dimension.  Thus, quantities 
measured in cm have the same dimensions as quantities measured in arm lengths, km, or 
nautical miles. 
 
Euclidean Dimensions 
These are related to one another by an integral change in exponent.  The group 
(centimeters, meters, yards) is related to the group (centimeters2, hectares, acres) by an 
increase in the exponent from 1 to 2.  The first group has dimensions L+1, the second 
group has dimensions L2.   
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The group (centimeters, meters, yards) is related to the group (centimeters3, meters3, 
yards3) by an increase in the exponent  from 1 to 3. 
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Consequently, simple fractions define the relation of any of the three Euclidean 
dimensions, such as area and volume. 
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Mechanical Dimensions 
The mechanical dimensions are mass M, length L, and time T, one for each of the first 
three base units in the SI system. 
 
 
 
 
 
 
 
 
 
Time, such as seconds, days, or millenia all belong to a single dimension symbolized by 
T for time.  This use of the word "dimension" differs from that in which directions in an x 
y z coordinate system are all called different dimensions. 
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Composite dimensions 
Many quantities have units with composite dimensions. 
 Examples:  What dimensions do the following quantities have ? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Example:  convert several commonly used units (handout) to dimensions 
 
The dimensions of mass, length, and time are not the only bases for composite 
dimensions.  We could choose time T, area A, and energy E as our base dimensions.   
Within this system units of units of mass become a composite dimension of T2E/A, while 
volume becomes a composite dimension of A·A½.  Any grouping is valid as long as the 
units grouped into one dimension do not also belong to another dimension. 
 
 
Additional dimensions 
 
Because the central idea of a dimension is that quantities are grouped 
according to some notion of similarity, we can use any form of similarity that we like.   
We could, if we like, define a dimension called "matroishkas" instead of length.  This 
would consist of all measuring units shaped like matroishkas (nesting dolls).  These 
objects all have the same shape. 
 
 
Depending on what we wish to measure, additional dimensions are 
added.  If we were interested in economics, we could define a 
dimension called "cash" with units of dollars, pennies, nickels, dimes, 
megabucks, etc.  If we are interested in international economics, we 
could add foreign currencies: 
pesos, yen, francs, etc. 
 

Matroishkas M 

Cash $ 
 
dollar 
dime 
megabuck 
peso 
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Additional dimensions 
 
For thermodynamics, including bioenergetics, the additional dimension 
is temperature, for which the symbol is  
 
The standard unit is a kelvin K, one degree on the kelvin scale. 
 
Temperature is a measure of heat content, and strictly speaking, we already have a 
composite unit for this E/M = M1 L2 T2 M1 = L2 T2 = velocity2 
We can interpret temperature as the square of the velocity of the particles (atoms, 
molecules) and dispense with temperature as a separate dimension.  However, this is 
awkward and inconvenient, so we treat temperature as a separate dimension, rather than 
as a squared velocity (derived dimension). 
 
For electromagnetic quantities the standard unit is an ampere, which 
suggests that current would be the dimension.  However, an ampere is a 
derived unit, 1 coulomb per second, where a coulomb is a mole of 
electrons. 
Hence ampere = coulomb/second = Q1 T1 
For electromagnetic quantities there is little need to introduce an additional dimension, if 
Q = charge with a standard unit of 1 coulomb (= 1 mol electrons). 
 
Entities 
 
For chemistry and biochemistry, we add the dimension of  recognizable 
chemical entities (Stahl 1962).  Examples of chemical entities are 
atoms, ions, and molecules. 
 
The dimension of chemical entities does not have a conventional 
symbol.  One choice is #, for which the standard unit is the mole.   
1 mol = 6.02 ·1023 particles  
 
In biology, the additional dimension will be a count of recognizable biological entities 
(Stahl 1962).  It is useful to distinguish biological entities at different levels of biological 
organization. 
 
  Biochemical entitites:  ions, atoms, molecules (including proteins) 
  Genetic entities:  chromosomes, genes, alleles, mutations 
  Cellular entities: nuclei, mitochondria, cells 
  Behavioural entities: attempts, successes, modal action patterns (MAPs) 
  Population entities: interacting species 

  Community level entities:  
  number of taxa (species, order, etc), 
  number of trophic levels. 

Temperature  
 
oKelvin 
 

Charge Q 
 
coulomb 

Chemical  
Entities # 
 
mol 
millimol 
micromol 
nanomol 
picomol 
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There is no standard symbol or standard units for the dimension of 
biological entities.  We could again use Q for this dimension, with a 
standard unit of a mole.  However, this is going to be inconvenient, as 
we are often interested in exact counts of small numbers of entities. 
 
Possible units: 
 
2 mol bacteria  = 2 · 6.02 · 1023 bacteria   inconveniently large 
2 dozen genes  = 2 · 12 genes   inconvenient, not divisible by 10 
2 gross alleles  = 2 · 12 dozen alleles  also inconvenient 
2 score cells            = 2 · 20 cells    
2 kilocount ants           = 2 · 103 ants  
2 megacount fish           = 2 · 106 fish 
 
In biology, the most useful units are kilocounts, megacounts, or variants: 
For example, a protein might measure 120 kilobases long. 
 Units such as a kilocount of cells, or a kilocount of predator attacks, or a 
megacount of potential encounters are not standard, but they are useful in biology and 
can be handled in a rigorous fashion (Stahl 1962). 
 The philosophical objection to using counts of objects or events as a measurement 
scale (Ellis 1966) can be met by insisting that this scale does not consist of numbers; it 
has units of entities (animals, genes, etc) on a ratio scale.   
 This reasoning follows Kyburg (1984), who argues that all measurements must 
have units. 
 
Dimensionless Quantities 
 The ratio of two quantities with the same units is a dimensionless number 

 
In this course we will be calculating likelihood ratios (Odds, t, F, 2) and probabilities for 
those ratios. 
 

Biological 
Entities # 
 
mol 
dozen 
gross 
score 
kilocount 
megacount 

Name      Symbol Explanation  
  
Ratio of like quantities Q/Qref Q and Qref have the same units 
Relative variation Q/Q Q is difference in two values 
Relative difference d ln Q = Q-1 d Q 
Doubling ratio log2 (Q/Qref) 
e-fold logarithmic  ratio ln (Q/Qref) 
Ten fold logarithmic ratio log10 (Q/Qref) 
Binomial ratio n+ / N n+ is number of successes, N is number of trials 
Probability of an event Pr(X=x| ) X is variable, real number x on the interval 0<x<1  
   is known parameter 
Likelihood ratio LR L( | X) / L(ref | X)  is estimate of unknown parameter, given data X 
Support ln LR Evidential support for  relative to ref   
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Dimensions (concluded) 
Reasoning according to the principle of dimensional similarity has a long history.  
It goes back to Galileo and Newton (in physics), to Fourier (in thermodynamics), and to 
D'Arcy Thompson (in biology). 
Dimensional or similarity arguments have an important place in biology.  
 
  Dimensions are a way of thinking about quantities based on similarity. 
 Which ones are similar? Which are related ? 
 Example:  what are the dimensions of a flux ? 
 
 Flux  =  seed number drifting laterally 
  Dimensions are: # L2 T1 =  density /time 
 
 Flux =  seed concentration · velocity 
 
  =  #/V · L/T  =  # L2 T1  
 
 These two fluxes appear to be different, because drawn in different ways, and  
      perhaps measured differently. 
 But they are equivalent. They have the same dimensions. 
 
 Mass Flux = mass of seeds drifting laterally = M A1 T1 
 
 This is not the same as numerical flux. 
 Example: flux of nutrients across cell wall.  What units ? (typical) 
 
This illustrates quantitative reasoning based on grouping units according to similarity. 
 
 
Fractal dimensions   
 
Euclidean dimensions are related to one another by integral powers (exponents). 
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Fractal dimensions are related to one another by fractional exponents.   
For example, we can have a dimension of crooked lengths LD  where 
 1 < D < 2    "D between 1 and 2" 
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What does a dimension "between 1 and 2"  mean ? 

Diagram of particles 
moving laterally 
through a plane 

Diagram of particles in a 
cubical volume with arrow 
showing lateral motion 
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The units in this dimension are all more convoluted than a straight line (Df = 1), but not 
so convoluted as to fill a plane (Df = 2).   
All of the units in this dimension are equally convoluted. 
  if Df = 1.4,  then we have m1.4  km1.4  yd1.4  ft1.4 etc 
 
Example of maple leaves.  Each person gets a leaf. 
 Look at perimeter from far away (hold up leaf).  
 You can see perimeter is convoluted into series of 5 major lobes. 
 Now look more closely.   
 You can see that within each major lobe there is more convolution.   
 It turns out that the degree of convolution within each major lobe is  
  nearly the same as the degree of overall convolution. 
 If you look even more closely, you can see that extremely fine serrations  
  exist on the minor lobes within the major lobes.   
 The perimeter of the leaf is of similar convolution at large, medium,  
  small scales, and all scales in between.  
 This idea is quantified as a fractal dimensions LDf 

 
We can extend this to fractal areas.  LDf  where 2 < Df < 3 
 
Example of sea surface on a calm day.  Nearly flat,  Df = 2.  
Then wind picks up, creating small waves, which begin developing into larger waves, so 
that after a time we have small waves on medium waves on large waves.  The dimension 
of the sea surface has increased from L2 to something more convoluted, say L2.2.  We 
could measure this in fractal m2.2 fractal km2.2 etc. 
 
 
Fractal Dimensions in Biology 
 
We are thoroughly familiar and take for granted the logic of the Euclidean world of street 
grids, buildings, walls, floors, tables, and plates. 
But we ourselves are fractal;  
 our lungs, blood vessels, and nervous systems are fractal. 
We live on a planet with fractal landscapes, formed by fractal rivers. 
We have been taught to think according to Euclidean dimensions, while living in a fractal 
world. 
 
Our effect on the landscape is to reduce its fractal dimension, building roads, 
straightening rivers, and laying out fields.  But the landscape remains fractal.   
 
The habitats that support life are fractal.  A convoluted shoreline, being fractal, provides 
more habitat to bacteria than to fish.  More bacteria can be laid end to end along a stretch 
of seafloor than can fish.  If we were to lay bacteria end to end following the seafloor 
topography, then lay fish end to end along the same stretch, then straighten out the chain 
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of bacteria and of fish, the chain of bacteria will exceed the length of the fish chain.  The 
concept of fractal dimension permits us to compute how much longer the bacteria chain 
will be, based on the fractal dimension and the ratio of the length of the fish to a 
bacterium. 
 
 
 
 
 
 
 
Fractals are a relatively new yet completely appropriate  way of measuring natural 
objects. They allow us to quantifying the complexity of natural objects--cells, tissues, 
organisms, populations, habitats, and ecosystems.  
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