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Introduction 

 The Far-North region of Ontario is a wet terrain abundant with surface waters and 

peatland. This area, south of Hudson Bay and southwest of James Bay, is known as the Hudson 

Bay Lowlands (HBL). The vast size of the HBL separates it from other peatlands. Typically, 

peatlands are confined to geographic depressions and are isolated, surrounded by different 

biomes. The HBL is a vast “sea” of peatlands and bogs over a flat landscape, interrupted 

occasionally by soil “islands”, and rivers and lakes. The HBL extends 800 miles from the 

Nottaway and Hurricana Rivers, Quebec, to Churchill, Manitoba (Sjörs, 1959).  

 Little baseline ecological information exists in the HBL because of its remoteness. Few 

people live there, and little infrastructure exists. Recently, interest in the HBL has increased 

because of two seemingly opposing reasons: the hopes of mining a newly discovered large 

chromite and nickel-copper deposits, and a commitment by the government of Ontario in the 

2010 Far North Act to preserve ~50% of the Far North in interconnected tracts of land. 

Balancing these two disparate endeavors will be a challenge, and regardless of future actions, 

there is a great need to understand the ecology of the HBL (Jeziorski et al., 2015). 

 The present study took sediment core samples from 58 lakes in the HBL to check for 

diatom abundances in the top of the sediment. The lakes were chosen randomly. All lakes were 

shallow, with the depth ranging from 0.9m—3m, with an average depth of 1.7 m. Environmental 

variables were measured from each lake, with the lakes showing a broad range in characteristics. 

The data collected will examine relationships between diatom communities and environmental 

conditions.  

 



Exploratory Data Analysis (EDA) 

 Typically, most ecological research is done with hypothesis testing, or with the ultimate 

goal of creating data models. However, this does not always capture the complexity of ecological 

relationships. It can be helpful to first perform an exploratory data analysis (EDA) for 

multidimensional data. EDA is a method of making sense of a large data set to design future 

analyses (Borcard et al., 2011). With EDA, the researchers need not set a hypothesis for the data 

they collect, rather they can make use of visual representations of observed phenomena to make 

inferences about relationships. For the purposes of our study, we felt EDA was appropriate due 

to how little is known about the ecology of the HBL. 

 In 1977, John Tukey published the seminal book Exploratory Data Analysis. As a 

statistician, Tukey began to have doubts on the emphasis that had been placed on confirmatory 

data analyses (hypothesis testing), and it was his belief that we should instead rely on the data to 

suggest hypotheses before we actually tested them (Tukey, 1962, 1977). EDA uses graphical 

representations to interpret data rather than statistical tests relying on mathematics. Tukey states: 

“The greatest value of a picture is when it forces us to notice what we never expected to see.” 

(1977, bold and italics formatting from source). Thus, it was his belief that EDA could remove 

the ever-present confirmation bias amongst scientists testing their own hypotheses. With EDA, 

we exit the world of p-values and goodness of fit tests and enter the world of graphs, using our 

eyes to judge patterns.  

 It is important to understand what you CAN DO before you learn to measure how 

 WELL you seem to have DONE it. 

--John Tukey, Exploratory Data Analysis 



Methods 

 In 2016, we conducted a survey of 58 lakes in the Hudson Bay Lowlands region in north-

west Ontario. We collected sediment samples using an OGS designed gravity corer. Sediment 

samples were collected from the tops of the sediment, so 0.0-5.0 cm depth. For our analyses, we 

will be looking at the top 1 cm of sediment; the rest will be freeze dried for future analyses. From 

the top 1 cm, we counted and separated individual diatoms. We identified and tabulated species 

using a Leica DRMB microscope. We counted at least 90 diatom individuals from each sediment 

sample. To eliminate bias from non-random distributions of diatoms within the sediment, we 

counted every individual on the prepared slides. Environmental measurements were taken from 

each of the 58 lakes (Table 1). For water samples tested in the lab, we collected 0.5L from each 

lake. Methods were adapted from Jeziorski et al. (2015). 

Environmental Variable (abbrev.) Unit Measurement method/tool 

Lake depth (Depth) m Hawkeye DepthTrax Handheld Depth Finder* 

Temperature (Temp) °C OHAUS ST20 Pen Reader* 

Specific conductivity (Spec Cond) µS/cm OHAUS ST20 Pen Reader* 

Conductivity (Cond) µS/cm OHAUS ST20 Pen Reader* 

Dissolved organic carbon (DOC) mg/L Water sample; high temperature combustion  

Lake color (Col) TCU Secchi disk* 

Nitrogen: NH3 + NH4
- 

(N:NH3+NH4) 

µg/L Water sample, salycylate chemical titration 

method 

Nitrogen: NO3
- + NO2

- 

(N:NO3+NO2) 

µg/L Water sample; spectrophotometric cadmium 

reduction 

Total Kjeldahl Nitrogen (TKN) µg/L Water sample; digestion, distillation, ammonia 

method 

Reactive silicate (SiO4) mg/L Water sample; gas segmented continuous flow 

colorimetric analysis 

Total phosphorus (P) µg/L Water sample; ascorbic acid test 

Resistance (Resist) ohms Water sample; conductivity reader 

Total dissolved solids (TDS) g/L Water sample; gravimetric analysis 

pH N/A OHAUS ST20 Pen Reader* 

Table 1. Environmental variables measured in lakes. *Denotes measurement taken in the field, 

all other measurements taken in the lab.  



 In total, we counted 381 diatom species. To avoid an absurdly large analysis, we 

discarded any diatom species that did not appear in at least two samples or had <1% relative 

abundance. We then combined species into larger taxa groups. We ended up with 21 distinct taxa 

groups (Table 2). 

Table 2. Diatom species abbreviations. 

 

Analysis  

Principle Component Analysis (PCA) 

All analyses and graphical models were done in RStudio (R version 4.0.3, 2020-10-10). I used 

principle component analysis (PCA) methods for my analysis. PCA allows relationships between 

multiple variables to be displayed graphically, reducing the dimensions needed to do so. For 

Species Abbreviation 

Achnanthes spp Ach 

Achnanthes minutissima Achm 

Aulacoseira spp Aul 

Brachysira spp Bra 

Cymbella spp Cym 

Eunotia spp Eun 

Benthic Fragilaria spp FraBen 

Fragilaria construens Frac 

Fragilaria pinnata Frap 

Fragilaria (virescins) v. exigua Frav 

Fragilaria brevistriata Frab 

Neidium spp Nei 

Nitzschia spp Nit 

Pinnularia spp Pin 

Stauroneis spp Sta 

Planktonic Plank 

Navicula jaagii Navj 

Large Navicula complex NavLrg 

Small Navicula complex NavSml 

Navicula kuelbsii/vitiosa Navkv 

Navicula minima Navm 



example, if you were to graph out two variables to look at their relationship, you could do so on 

a simple 2-dimensional graph: 

 

The blue line accounts for all variation from left to right, and the red line accounts for all 

variation above and below the blue line. We can think of the blue line as principle component 

(PC) 1, and the red line as PC2. 

 

If we add a third variable, and want to see the relationships of all three variables, we need to 

create a 3-dimensional graph: 
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It is somewhat challenging to see the relationships between the three variables without rotating 

the graph around. In this graph, we have three principle components. The blue line is PC1, the 

red line PC2, and the green line PC3. We are unable to add a fourth (or more) variable to a graph 

because of the limitations of the human brain, however we understand that as you add more 

variables, you will have more principle components. There is a principle component for every 

variable you have in a dataset. The two strongest principle components—that is, the two 



explaining the most variance between variables—can be used to plot the subjects from where the 

variables were collected to look at relationships. 

 

Environmental variables 

I first determined the strength of the principle components for the environmental data collected. 

There were 14 variables collected from the 58 lakes, hence 14 variables. An eigenvalue is a 

measure of the importance of an axis (Jeziorski et al., 2015). The eigenvalues for the 14 variables 

are as follows: 

Eigenvalues for unconstrained axes: 

  PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8   PC9  PC10  PC11  

5.274 3.027 1.569 1.302 0.906 0.728 0.440 0.303 0.242 0.122 0.060  

 PC12  PC13  PC14  

0.026 0.000 0.000 

 

I further examined the data to see the proportion explained by each eigenvalue:  

 

Eigenvalues, and their contribution to the correlations  

Importance of components: 

                         PC1    PC2   PC3     PC4     PC5     PC6 

Eigenvalue            5.2744 3.0268 1.569 1.30212 0.90620 0.72817 

Proportion Explained  0.3767 0.2162 0.112 0.09301 0.06473 0.05201 

Cumulative Proportion 0.3767 0.5929 0.705 0.79800 0.86273 0.91474 

                          PC7     PC8     PC9     PC10     PC11 

Eigenvalue            0.43998 0.30330 0.24156 0.121852 0.060244 

Proportion Explained  0.03143 0.02166 0.01725 0.008704 0.004303 

Cumulative Proportion 0.94616 0.96783 0.98508 0.993788 0.998091 

 



                          PC12      PC13      PC14 

Eigenvalue            0.026266 3.685e-04 9.521e-05 

Proportion Explained  0.001876 2.632e-05 6.801e-06 

Cumulative Proportion 0.999967 1.000e+00 1.000e+00 

 

Now, we can plot the eigenvalues as a histogram: 

 

Figure 1. Principle component eigenvalues, environmental variables. Average eigenvalues 

shown with red line. PC1 = 37.67%, PC2 = 21.62%, PC3 = 11.20%, PC4 = 9.30% 

 

PC1 and PC2 account for almost 60% of variation amongst environmental data; thus, I feel 

confident using these two PCs to interpret these data. I plotted the environmental data on a graph 

to determine which variables were driving PC1 and PC2 (Figure 2). See Table 1 for 

abbreviations for each environmental value. 



 

Figure 2. Environmental factors plotted against PC1 (x-axis) and PC2 (y-axis). Lakes plotted as 

circles. 

 

Now I can interpret the graph. On this graph, the environmental variables are called loading 

vectors. The loading vectors refer to the variables driving the PCs (“loading” the PCs). To 

determine which loading vectors are the most important drivers of variation, I look for the 

longest lines. Resistance is positively correlated with PC1, while pH, conductivity, specific 

conductivity, and total dissolved solids are negatively correlated with PC1. Dissolved organic 

carbon, lake color, and the NO3/NO2
- group are positively correlated with PC2. Total Kjeldahl 

nitrogen, temperature, phosphorus, depth, reactive silicate, and NH3/NH4 group do not appear to 



be strong drivers of PC1 or PC2. For my interpretation, I am saying a “strong” correlation is any 

value ≥ |1|. Some sources will give a smaller absolute value when determining strong correlation, 

however I am choosing |1| to reduce the number of significant vectors. 

 PC1 PC2            

Depth 0.6710 -0.58134   

Temp -0.1053 0.54847   

Spec Cond -1.3220 -0.22040   

Cond -1.3195 -0.19584   

DOC -0.3844 1.31043  

Col 0.1483 1.25192   

N:NH3+NH4 -0.6757 -0.42846  

N:NO3+NO2 0.1644 1.03168  

TKN -0.3837 0.50096  

SiO4 -0.9235 0.55568 

P -0.6862 -0.45323  

Resist 1.2074 -0.17987   

TDS -1.3231 -0.21634   

pH -1.1662 -0.07069 

Table 3. Loading values for environmental factors. Significant loadings (i.e. value ≥ |1| are 

highlighted. 

  

Next, I performed a correlation analysis on the lakes (Figure 3). This can help explain any 

differences between the 58 lakes.  



 

Figure 3. Lakes plotted against PC1 and PC2. 

 

Lakes are plotted by their site scores. A site score measures how much an object, in this case the 

lakes, correlates with the two PCs. The four colors on the graph represent four groups with 

similar characteristics. Using this figure with Figure 2 can elucidate environmental patterns 

within the lakes. 

 

Finally, we want to see where the diatom species land in this PCA (Figure 4). See Table 2 for 

diatom species abbreviations. 



 

Figure 4. Environmental factors and species plotted against PC1 and PC2. 

 

We can see some patterns emerge. Pinnularia spp., Eunotia spp., and Stauroneis spp. are 

grouped together, and they are positively aligned to the PC1 axis. Fragilaria construens, 

Fragilaria pinnata, and the benthic Fragilaria spp. are grouped together, aligning about equally 

negatively with PC1 and PC2. Nitzschia spp., Achnanthes minutissima, and the large Navicula 

complex are clustered together and aligned positively with PC2.  

 



Species 

Next, I wanted to see if it would be worthwhile to perform a PCA using the species data rather 

than the environmental data. I first calculated eigenvalues for species: 

Eigenvalues for unconstrained axes: 

  PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8  

6.291 4.049 2.378 1.690 1.325 0.965 0.919 0.762  

(Showing 8 of 21 unconstrained eigenvalues) 

 

I further examined the data to see the proportion explained by each eigenvalue:  

 

Eigenvalues, and their contribution to the correlations  

 

Importance of components: 

                         PC1    PC2    PC3     PC4     PC5 

Eigenvalue            6.2913 4.0495 2.3776 1.69004 1.32491 

Proportion Explained  0.2996 0.1928 0.1132 0.08048 0.06309 

Cumulative Proportion 0.2996 0.4924 0.6056 0.68611 0.74921 

                          PC6     PC7     PC8     PC9    PC10 

Eigenvalue            0.96467 0.91927 0.76150 0.48435 0.40903 

Proportion Explained  0.04594 0.04377 0.03626 0.02306 0.01948 

Cumulative Proportion 0.79514 0.83892 0.87518 0.89824 0.91772 

                         PC11    PC12    PC13     PC14     PC15 

Eigenvalue            0.36237 0.31527 0.27186 0.196747 0.175421 

Proportion Explained  0.01726 0.01501 0.01295 0.009369 0.008353 

Cumulative Proportion 0.93498 0.94999 0.96293 0.972304 0.980657 

                          PC16     PC17     PC18     PC19 

Eigenvalue            0.137915 0.125655 0.068053 0.045400 

Proportion Explained  0.006567 0.005984 0.003241 0.002162 

Cumulative Proportion 0.987224 0.993208 0.996449 0.998611 



                         PC20      PC21 

Eigenvalue            0.02877 4.070e-04 

Proportion Explained  0.00137 1.938e-05 

Cumulative Proportion 0.99998 1.000e+00 

 

Finally, I displayed the eigenvalues for species on a histogram: 

 

 

Figure 5. Eigenvalues for species. PC1=29.96%, PC2=19.28%, PC3=11.32%, PC4=8.05% 

 

The data are not as compelling as they were for the environmental factors. We must go out to 

PC3 before we reach 60% variance explained. Including PC4 brings us to almost 70% explained. 

It is my opinion that running at PCA on the species data will not yield better relationship 

inferences than with the environmental data. However, I will use the species PCs to explore 

species relationships with environmental predictors. 

 



I will first look at the variables that were most important to the environmental PC1 (resistance, 

pH, conductivity, specific conductivity, and TDS) and see how they relate to species PC1: 

 

Figure 6. Pairwise matrix of species PC1 with specific conductivity, conductivity, resistance, 

TDS, and pH. 

 

We can see strong relationships between all of these variables, however we do not see much of a 

relationship between PC1 for the species with any of these variables. Sometimes, when doing 

PCA on abundance data, the drivers of PC1 are the most abundant diatoms collected, which can 

shadow any relationships between species. It can be helpful to look at the next most important 

PC to see patters. Let’s run this analysis again with PC2 for species: 



 

Figure 7. Pairwise matrix of species PC2 with specific conductivity, conductivity, resistance, 

TDS, and pH. 

 

We can see there is a little bit more of a relationship between species and the environmental 

variables, although it is still not very clear. Since there are 21 diatom taxa involved, we can 

assume they all have varying environmental preferences, therefore we would not get as clear of a 

relationship as we would if we were looking at one taxa at a time. 

 

Next, I will look at the variables that were important to environmental PC2: dissolved organic 

carbon, lake color, and the NO3/NO2
- group. We will only look at species PC2 this time: 



 

Figure 8. Pairwise matrix of species PC2 with dissolved organic carbon, lake color, and the 

NO3/NH2
- group. 

 

With this graph, we do not see any discernable relationship between the species and any of the 

environmental variables. We do see dissolved organic carbon and color strongly positively 

related.  

 

Discussion 

 We can make some inferences about the data based on the figures we created and what 

we know about freshwater biology. From the loadings on Figure 2, we see that pH, conductivity, 



specific conductivity, and total dissolved solids (TDS) have small angles between each vector, 

hence they are closely related. Conductivity is a proxy for salt water—salt water is a better 

conductor of electricity than freshwater. Increases in TDS result in increases in conductivity. pH 

increases as water gets saltier as well. Therefore, it makes sense that conductivity, specific 

conductivity, and pH are correlated. Fragilaria construens, Fragilaria pinnata, and the benthic 

Fragilaria spp. all seem to be associated with pH, conductivity, specific conductivity and TDS. 

We can assume that these three taxa of diatoms prefer saltier, higher pH waters. 

 Resistance measures the ability of a substance to resist an electrical current. Increased 

resistance can be thought of as a proxy for fresher water. Therefore, it is obvious why we see 

resistance on the opposite side as pH, conductivity, specific conductivity and TDS. We have 

three diatom species strongly correlated positively with PC1: Pinnularia spp., Eunotia spp., and 

Stauroneis spp. We can assume that these three taxa are more sensitive to increases in salinity, 

thus are more likely to be found is lower pH and lower salinity water. 

 Color, dissolved organic carbon (DOC), and the NO3/NO2
- group are closely associated 

together, and with PC2. Color is a measurement of the transparency of a body of water, hence the 

number of dissolved solids and nutrients. It is curious that both TDS and phosphorus are 

correlated in opposite directions of color, since increases in both TDS and phosphorus cause 

higher color readings. This is something that could be explored further in subsequent studies. 

Nitzschia spp., Achnanthes minutissima, and the large Navicula complex are positively correlated 

with PC2, meaning these species thrive in waters rich with DOC and NO3/NO2
-. 

 For future studies, I would recommend focusing on the strongest environmental variables 

and how they affect diatom abundances. Some environmental variables that may be important 

but did not make my arbitrary loading value ≥ |1| cutoff are depth and reactive silicate. We see 



depth in opposition to color, DOC and NO3/NO2
-. Nutrients tend to aggregate in the shallow 

parts of water, with lower depths decreasing nutrient loading. 

 EDA is an excellent way of taking a large collection of data and letting it tell you what is 

important, rather than taking selected data and trying to prove importance. With EDA, you may 

see relationships you could have otherwise missed.  
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