

# Genome

# Strains of Apis melliferaligustica honey bees artificially bred for apicultural traits are not consistently differentiated by mitochondrial DNA genome markers

| Journal:                                                                     | Genome                                                                             |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Manuscript ID                                                                | gen-2025-0033.R1                                                                   |
| Manuscript Type:                                                             | Research Article                                                                   |
| Date Submitted by the<br>Author:                                             | 07-May-2025                                                                        |
| Complete List of Authors:                                                    | Carr, Steven; Memorial University of Newfoundland, Department of Biology           |
| Is the manuscript for<br>consideration in a Special<br>Issue or Collection?: | Not applicable (regular submission)                                                |
| Keyword:                                                                     | Apis mellifera ligustica, apiculture, Royal Jelly, Varoa resistance, mtDNA genomes |
|                                                                              |                                                                                    |



- 1 Strains of *Apis mellifera ligustica* honey bees artificially bred for apicultural traits are not
- 2 consistently differentiated by mitochondrial DNA genome markers
- 3
- 4 Steven M. Carr, Department of Biology, 45 Arctic Drive,
- 5 Memorial University of Newfoundland, St John's NL A1C 5S7
- 6
- 7 Submitted 2025 April 02
- 8 Genome
- 9 **Revision through** 2025 May 04; submitted in revised form 2025 May 05
- 10 Address for correspondence and proofs: <u>scarr@mun.ca</u> / 1 709 687 7314 cell



# 11 Abstract

12 Strains of the Italian honey bee Apis mellifera ligustica Spinola, 1806 are selectively bred for 13 desirable apiculture traits. Ma et al. (2022) compared SNP differences in mtDNA genomes between a strain bred for enhanced royal jelly production (**RJB**) and an unselected strain (**ITB**). 14 15 Kim et al. (2019) compared SNP and intergenic repeats differences between a Varroa mite 16 resistant strain bred for high-hygienic behavior (HHB) and an unselected low-hygienic strain (LHB). Phylogenetic comparison of 23 complete A. m. ligustica mtDNA sequences, including the 17 18 two **HHB** and **LHB** strains and 14 **RJB** and **ITB** haplotypes and along with other subspecies, 19 shows significant clade structure for SNP differences and amino acid substitutions, however this 20 structure is not diagnostic of the strains under selection. Numbers of repeats show little or no 21 phylogenetic signal: similarities are symplesiomorphic and differences convergent. Differences between the HHB and LHB strains arise from coincidental fixation of alternative SNPs in 22 23 different clades. Lineages within the **RJB** and **ITB** strains are not reciprocally monophyletic, and are often identical or near identical to those in the other strain or to other variant strains. 24 Evaluation of the diagnostic and (or) adaptive significance of mtDNA markers requires broad 25 26 knowledge of within-subspecies polymorphism.

27

Keywords: Apis mellifera ligustica, apiculture, Royal Jelly, Varoa mite resistance, mtDNA
genomes, intra-subspecific systematics.

#### 30 Introduction

31 Strains of various subspecies of the European Honey Bee Apis mellifera L., including the 32 Italian or Golden Honey Bee, A. m. ligustica Spinola, 1806 have for centuries been selectively bred to enhance traits commercially desirable to apiculturists (Seeley 2019). For example, 33 34 infestation of colonies by the parasitic mite Varroa destructor is the major threat to apiculture 35 worldwide (Johnson 2023). Colony survival is improved in strains bred for enhanced hygienic behavior, according to the efficiency whereby workers remove dead or diseased bee larvae. 36 37 Other traits, such as enhanced production of "royal jelly" as a high-energy human food supplement, are also desirable and subject to artificial selection. 38 39 Kim et al. (2019) bred a high-hygienic behavior (HHB) strain of A. m. ligustica and 40 compared aspects of its mitochondrial DNA (mtDNA) genome sequence against that of a lowhygienic (LHB) strain of similar geographic origin. The HHB strain was bred by artificial 41 42 insemination. Colonies are subsequently monitored by the freezer-killed brood method, for 43 which molecular markers would be valuable. They reported counts of the numbers of repeats in several intergenic regions, and SNP differences in protein-coding genes between the two 44 45 strains, and suggested that these markers may be useful in distinguishing **HHB** from **LHB** strains. Ma et al. (2022) bred an enhanced royal jelly (RJB) strain that produces 30 times as 46 much royal jelly as an unselected Italian strain (ITB). Where oxidative metabolism in 47 48 mitochondria contributes strongly to energy production (Ma & Li, 2021), Ma et al. (2022) ask if 49 the increased energy demands for higher yield of royal jelly in the **RJB** strain might be due to 50 adaptive changes in mtDNA sequences. They compared differences between the two strains.

| 51 | Carr (2023) constructed a phylogeny of 22 subspecies of A. mellifera based on the                             |
|----|---------------------------------------------------------------------------------------------------------------|
| 52 | complete set of protein-coding mtDNA sequences, including multiple representatives of some                    |
| 53 | subspecies such as A. m. ligustica. The analysis identified a Eurasian clade, consisting of A. m.             |
| 54 | ligustica together with A. m. carnica and A. m. carpatica in a Southeast Europe clade, in                     |
| 55 | contrast to an Asia Minor clade (A. m. anatoliaca, A. m. caucasia, and A. m. meda) (cf. Carr                  |
| 56 | 2023, Figure 2). Pairwise differences among A. m ligustica sequences were greater than those                  |
| 57 | between other subspecies in the same clade, as was the case for several other subspecies. Carr                |
| 58 | (2023) showed that a proper understanding of phylogenetic relationships and biogeographic                     |
| 59 | evolution required knowledge of variation within as well as between subspecies.                               |
| 60 | Kim et al. (2019) included single mtDNA sequences from their two HHB and LHB strains                          |
| 61 | (the replicates of each strain all being identical), and asked if any observed mtDNA differences              |
| 62 | are diagnostic of the <b>HHB</b> strain, and (or) might potentially contribute to hygienic behavior.          |
| 63 | Similar questions arise for the more polymorphic <b>RJB</b> and <b>ITB</b> strains of Ma et al. (2022), where |
| 64 | it is plausible that royal jelly production is intimately linked to enhanced intracellular                    |
| 65 | metabolism in the powerhouses of the cell.                                                                    |
| 66 | Answers to these questions require consideration of the broader range of genetic                              |
| 67 | polymorphism within A. m. ligustica and related subspecies in the same evolutionary clade.                    |
| 68 | Here, I analyze differences in complete mtDNA genomes between the HHB / LHB and RJB / ITB                     |
| 69 | strains within that broader context. I test the hypothesis that SNPs, amino acid substitutions,               |
| 70 | and (or) repeat numbers in artificially selected strains of A. m. ligustica are of diagnostic and             |
| 71 | (or) functional significance, or are instead alternative partitions of neutral phylogenetic                   |
| 72 | markers.                                                                                                      |

Genome

| 74 | Materials and Methods                                                                                         |
|----|---------------------------------------------------------------------------------------------------------------|
| 75 | I obtained both complete (~ 16.5 kb) and 13 protein-coding only (11,070 b) mtDNA                              |
| 76 | sequences for 3,690 amino acids (cf. Table 2, Carr 2023) from 31 accessions in GenBank (Table                 |
| 77 | 1), including one each from LHB and HHB strains of Kim et al. (2019), n = 6 and n = 8 from the                |
| 78 | <b>ITB</b> and <b>RJB</b> strains of Ma et al. (2022) including two inter-strain duplicates, n = 7 additional |
| 79 | sequences referred to <i>A. m. ligustica</i> , n = 7 sequences referred to five subspecies in the             |
| 80 | Southeast Europe and Asia Minor clades described by Carr (2023), and an A. m. mellifera                       |
| 81 | sequence as overall outgroup.                                                                                 |
| 82 | Phylogenetic analysis was done with MEGA11 (Tamura et al. 2021) on complete                                   |
| 83 | sequences without the 3' AT-rich region (~15.6 kbp), and on protein-coding DNA triplets and                   |
| 84 | their amino acid sequences as above, by Maximum Parsimony with Subtree-Pruning and                            |
| 85 | Regrafting (SPR) and 3,000 bootstrap replicates. Maximum Likelihood analysis of protein-                      |
| 86 | coding DNA triplets was done with a General Time Reversible model, Gamma-distributed with                     |
| 87 | invariant sites (five categories), and 3,000 bootstrap replicates with Nearest-Neighbor                       |
| 88 | Interchange (NNI).                                                                                            |
| 89 | Counts of two- or three-base repeats were made from alignments of the complete                                |
| 90 | sequences at regions near 6.1 kb (AT), 10.1 kb (AAT), and 14.6 kb (TA) as identified by Kim et al.            |
| 91 | (2019).                                                                                                       |
| 92 |                                                                                                               |

93 Results

| 94  | A Maximum Parsimony tree for SNP variation at protein-coding nucleotide sequences                                    |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 95  | was initially rooted by inclusion of A. m. mellifera (KY926884), which separated the Southeast                       |
| 96  | Europe and Asia Minor clades as previously obtained (cf. Figure 2 of Carr 2023). After removal                       |
| 97  | of <i>A. m. mellifera</i> , Figure 1 is rooted with the Asia Minor clade as the outgroup to the <i>A. m.</i>         |
| 98  | <i>ligustica</i> -inclusive clade. There are nine trees of length L = 112, which differ only in the                  |
| 99  | arrangement of unresolved tritomys. The Maximum Likelihood network has an identical                                  |
| 100 | topology, and substantially identical bootstrap support (results not shown). The Maximum                             |
| 101 | Parsimony tree for amino acid substitutions (Figure 2) recovers five trees of length L = 35, which                   |
| 102 | again differ only in the arrangements of unresolved tritomys. The topology of the amino acid                         |
| 103 | tree conforms to that of the SNP tree. The Maximum Parsimony tree for complete sequences is                          |
| 104 | substantially the same as Figures 1 and 2, except for statistically unsupported resolution of                        |
| 105 | some tritomys (results not shown).                                                                                   |
| 106 | The basic structure of the A. m. ligustica tree is a poorly-resolved basal group of five                             |
| 107 | sequences, and a well-supported, derived clade of 18 sequences that comprises two subclades                          |
| 108 | of nine sequences each (including duplicates from <b>ITB</b> and <b>RJB</b> ). The basal group includes <b>LHB</b> , |
| 109 | representatives of the ITB and RJB series, and a sequence referred to A. m. carnica (NC061380)                       |
| 110 | weakly paired with an ITB sequence. NC061380 is cladistically and phenetically distinct from the                     |
| 111 | other sequence (MN250878) referred to A. m. carnica, which along with A. m. carpatica                                |
| 112 | (AP018430) occurs inside A. m. ligustica at the base of the derived clade. When A. m. carnica                        |
| 113 | and A. m carpatica are removed, the major clade is supported by 10 SNPs (99%), and includes                          |
| 114 | an HHB-inclusive subclade supported by five SNPs (99%) (Supplementary Figure S3).                                    |

| 115 | <b>HHB</b> and <b>LHB</b> are distantly related cladistically and differ phenetically. <b>HHB</b> occurs in      |
|-----|------------------------------------------------------------------------------------------------------------------|
| 116 | one of the two derived subclades, supported by seven <b>SNPs</b> (98% of bootstrap replicates)                   |
| 117 | (Figure 1) and three amino acid substitutions (88%) (Figure 2), which clade excludes LHB.                        |
| 118 | Analysis of phylogenetically informative amino acid substitutions shows that <b>HHB</b> differs from             |
| 119 | LHB by the four synapomorphies of the derived clade (Table 2), and that LHB converges on that                    |
| 120 | clade by one parallel substitution. <b>HHB</b> and <b>LHB</b> differ by 26 pairwise SNP differences and six      |
| 121 | amino acid substitutions (Table 3), versus means of 12.7 $\pm$ 9.3 SNPs and 4.18 $\pm$ 3.59 amino acid           |
| 122 | substitutions among all A. m. ligustica sequences.                                                               |
| 123 | Counts of repeat numbers at three positions are given in the parsimony tree in Figure 1,                         |
| 124 | shown in Figure 3 for AT and in Supplementary Figure S2 for AAT and TA. AAT <sub>4</sub> is plesiomorphic        |
| 125 | for A. m. mellifera, most other subspecies, and most ligustica lineages including RJB13 and                      |
| 126 | HHB. In the clade comprising RJB13 / ITB16 + LHB, the slip to AAT <sub>3</sub> in LHB is shared with ITB16.      |
| 127 | In the unresolved clade comprising HHB / ITB08 / Buckfast, $AAT_{6,7}$ occur in the latter two. $AAT_{14}$       |
| 128 | occurs in a separate lineage. Higher TA repeat counts in HHB (TA <sub>29</sub> ) and LHB (TA <sub>20</sub> ) are |
| 129 | convergent, the most closely related lineages having lower numbers. The same is true for their                   |
| 130 | lower AT counts, $AT_{12}$ and $AT_{16}$ , respectively. Counts of the TA and AT repeats are similar in the      |
| 131 | RJB13 / ITB16 / LHB clade. Note that HHB and ITB08 have identical mtDNA protein-coding                           |
| 132 | sequences, but differ by both AAT and TA repeat counts.                                                          |
| 133 | Among the 13 distinct sequences identified in the <b>ITB</b> and <b>RJB</b> strains of Ma et al.                 |
| 134 | (2022), HHB is identical to ITB08 (OM203226). LHB is most closely related (92% bootstrap                         |
| 135 | support) to ITB16 (OM203234), from which it differs by 17 SNPs including 10 in protein-coding                    |

genes, and three amino acid substitutions. Recall that **ITB08** and **ITB16** are from the unselectedstrain.

138

#### 139 Discussion

MtDNA sequences referred to *A. m. ligustica* are extremely polymorphic, with as many as 27 SNPs and 15 amino acid substitutions between individual GenBank accessions. Differences between individuals within the subspecies in many cases exceed those between other subspecies of *A. mellifera* (cf. Carr 2023). Recognition of any SNP and (or) amino acid substitution as diagnostic of a regional population or commercial strain must consider the larger range of polymorphism within the subspecies and related subspecies. In this expanded context, I have re-examined the difference between two strains of *A. m. ligustica* (Kim et al.

147 2019), one bred for high hygienic behavior against *Varroa* mites (HHB) and the other not (LHB),

together with two strains (Ma et al. 2022), one bred for enhanced royal jelly production (**RJB**)

and the other not (IJB), and other wild and commercial strains.

Counts of repeats provide little or no phylogenetic or diagnostic signal. Compared with Figure 1, the atypical AAT<sub>3</sub> repeat in LHB is derived, compared with the basal AAT<sub>4</sub> repeat shared by HHB and other *A. m. ligustica*. Neither the AT or TA repeats distinguish HHB from LHB, nor any other branches. In general, higher or lower repeat counts in these regions have arisen by convergence and do not correspond to clades.

A. m. ligustica sensu lato includes sequences referred to both A. m. carnica and A. m carpatica, but replicate A. m. carnica sequences are polyphyletic in the basal and derived groups. When these two sequences are removed, the major clade is supported by 10 SNPs

| 158 | (99%), and includes an HHB-inclusive subclade supported by five SNPs (99%) (Supplementary              |
|-----|--------------------------------------------------------------------------------------------------------|
| 159 | Figure S3). In the data here, patristic SNP differences among subspecies of the Asia Minor             |
| 160 | outgroup are 4 ~ 7 (Figure 1), compared with 28 inter-subspecific SNPs between A. m. meda              |
| 161 | and LHB and 30 intra-specific SNPs between LHB and HHB within A. m. ligustica (Table 1). Carr          |
| 162 | (2023) discussed the taxonomic implications of smaller inter-subspecific than intra-subspecific        |
| 163 | genetic differences. Names matter: see Supplementary Figure S4 for inclusive analysis of all           |
| 164 | GenBank sequences referred to A. m. ligustica and the Eurasian clades.                                 |
| 165 | No SNP differences or amino acid substitutions are diagnostic of the <b>HHB</b> strain with            |
| 166 | respect to LHB or any other strain or single <i>ligustica</i> sequence. The amino acid sequence of HHB |
| 167 | is identical to both ITB08, an unselected Italian strain, and Buckfast, a widely-distributed           |
| 168 | commercial strain. LHB differs from the most closely related sequences, in the ITB and RJB             |
| 169 | strains, by two amino acid substitutions. Phylogenetic analysis shows that the 26 pairwise SNP         |
| 170 | and six amino acid differences between the two strains are coincidental fixations of standing          |
| 171 | polymorphism in the subspecies                                                                         |
| 172 | MtDNA sequence variation between the uniform <b>HHB</b> and <b>LHB</b> strains can be compared         |
| 173 | with that among the much more variable ITB and RJB strains of Ma et al. (2022). Identical              |
| 174 | amino acid sequences of ITB and RJB lineages occur in the basal group, and also in the three           |
| 175 | major clades and subclades (Table 2). ITB and RJB are not reciprocally monophyletic, as might          |
| 176 | be expected if selection for the latter trait coincidentally restricted mtDNA variation to a           |
| 177 | smaller subset of lineages.                                                                            |
| 178 | In conclusion, the high hygienic behavior selected for in the <b>HHB</b> strain of Kim et al.          |
| 179 | (2019) cannot be associated with any diagnostic changes in its mtDNA exome with respect to             |

| 180 | LHB nor any other closely related but unselected strains. The enhanced royal jelly production of         |
|-----|----------------------------------------------------------------------------------------------------------|
| 181 | the <b>RJB</b> strain of Ma et al. (2022) is associated with multiple mtDNA lineages within that strain, |
| 182 | and also within unselected ITB and other strains with identical SNP and (or) amino acid                  |
| 183 | patterns. Absence of reciprocal monophyly between strains is evidence against the origin of the          |
| 184 | trait in any single genetic lineage, followed by loss of mtDNA variation through genetic drift           |
| 185 | during selection for the trait.                                                                          |
| 186 | Mitochondrial DNA has a long history of utility in the delineation of regional variation                 |
| 187 | within insect (Cameron 2014) and other species (Wilson et al. 1985; Carr 2020). MtDNA SNPs in            |
| 188 | Apis have been shown to be valuable tools in identification of subspecies and selected strains           |
| 189 | involved in apiculture. However, documentation of any diagnostic or functional association of            |
| 190 | such variation with production traits among commercial strains of A. m. ligustica, and likely            |
| 191 | other subspecies of Apis mellifera L., must be made with broad knowledge and appreciation of             |
| 192 | genetic polymorphism and its phylogenetic structure within the species in toto.                          |
| 193 |                                                                                                          |
| 194 | Acknowledgements                                                                                         |
| 195 | The author has benefited from discussions of apiculture and Varroa mites with Ms Paige                   |
| 196 | Marchant, Provincial Apiculturist for Newfoundland and Labrador. I thank Prof Chuan Ma for               |
| 197 | previous discussion of genetic variation in his ITB / RJB series and other subspecies of Apis            |
| 198 | mellifera. The final draft of the MS was submitted while the author was in residence at the              |
| 199 | Atlanta Soto Zen Center: gassho to all friends and the many beings.                                      |
| 200 |                                                                                                          |
| 201 | Disclosure Statement                                                                                     |

| 202 | The author reports no conflicts. The author is an Associate Editor for <i>Mitochondrial</i>                                                                      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 203 | DNA, but played no part in the review or publication of Kim et al. (2019) or Ma (2021).                                                                          |
| 204 |                                                                                                                                                                  |
| 205 | Funding                                                                                                                                                          |
| 206 | The present work is unfunded.                                                                                                                                    |
| 207 |                                                                                                                                                                  |
| 208 | Data availability Statement                                                                                                                                      |
| 209 | The data that support the findings of this study are openly available in the GenBank                                                                             |
| 210 | database at <a href="https://www.ncbi.nlm.nih.gov/taxonomy/?term=Apis+mellifera">https://www.ncbi.nlm.nih.gov/taxonomy/?term=Apis+mellifera</a> , with accession |
| 211 | numbers as given in the manuscript.                                                                                                                              |



| 212 | References                                                                                     |
|-----|------------------------------------------------------------------------------------------------|
| 213 |                                                                                                |
| 214 | Cameron SL. 2014. Insect mitochondrial genomics: implications for evolution and phylogeny.     |
| 215 | Annu Rev Entomol. 59:95–117.                                                                   |
| 216 |                                                                                                |
| 217 | Carr SM. 2020. Evidence for the persistence of ancient Beothuk and Maritime Archaic            |
| 218 | mitochondrial DNA genome lineages among modern Native American peoples. Genome.                |
| 219 | 63:349-355.                                                                                    |
| 220 |                                                                                                |
| 221 | Carr SM. 2023. Things Fall Apart: Multiple mitogenomes provide an alternative evolutionary     |
| 222 | phylogeography to Thrice Out of Africa or Asia hypotheses for Western honey bees (Apis         |
| 223 | mellifera). Nat Sci Reps. 13:9386-9398.                                                        |
| 224 |                                                                                                |
| 225 | Kim JS, Wang AR, Kim MJ, Lee HL, Kim I. 2019. Single-nucleotide polymorphism markers in        |
| 226 | mitochondrial genomes for identifying Varroa destructor-resistant and -susceptible strains of  |
| 227 | Apis mellifera (Hymenoptera: Apidae), Mitochondrial DNA Part A 30:477-489.                     |
| 228 |                                                                                                |
| 229 | Johnson BR. 2023. Honey Bee Biology. Princeton University Press. Xi + 481.                     |
| 230 |                                                                                                |
| 231 | Ma C, Hu R, Costa C, Li J. 2022. Genetic Drift and Purifying Selection Shaped Mitochondrial    |
| 232 | Genome Variation in the High Royal Jelly-Producing Honeybee Strain (Apis mellifera ligustica). |
| 233 | Front Genet. 13:835-967.                                                                       |

| 2 | $\mathbf{r}$ | Λ  |
|---|--------------|----|
|   | -            | д  |
| _ | -            | т. |

- 235 Ma C, Li J. 2021. Characterization of the Mitochondrial Genome of a High Royal Jelly-Producing
- Honeybee Strain (*Apis mellifera ligustica*). Mitochondrial DNA Part B 6:2939–2940.

238 Seeley TD. 2019. The Lives of Bees. Princeton University Press. Xiii + 351.

239

- 240 Tamura K, Stecher G, Kumar S. 2021. MEGA 11: Molecular Evolutionary Genetics Analysis
- 241 Version 11. Mol Biol Evol. 38:3022-3027.

- 243 Wilson AC Wilson, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi
- 244 RG, Palumbi SR, Prager EM, Sage RD, Stoneking M. 1985. Mitochondrial DNA and two
- 245 perspectives on evolution. Biol J Linnaen Soc. 26:375-400.





# Figure 1 - Maximum Parsimony tree of 11,070 bp (3,690 protein-coding DNA triplets) in 23

# sequences from *A. m. ligustica* and seven from five related subspecies. 3,000 bootstrap

- 250 replicates below branches, SNP changes above. Tree rooted with four sequences from the Asia
- 251 Minor clade of Carr (2023): see text. A. m. carnica and A. m. carpatica in the Southeast Europe
- clade are included within *A. m. ligustica* sensu lato. The first two clades include five *A. m.*

- 253 *ligustica* sequences including LHB, versus 18 in the major derived clade including HHB (98%
- 254 support).
- 255 Color codes indicate repeat numbers at three positions, 6.1kb (AT), 10.1kb (AAT), and
- 256 14.7kb (TA). See Figure 3 for analysis of the AT repeats, and Supplementary Figure S2 for
- analysis of the AAT and TA repeats.





# 260 Figure 2 - Maximum Parsimony tree of 3,690 amino acid residues in protein coding regions.

261 Sequences, rooting, bootstrap support, and branch length as in Figure 1. The clades inclusive of

- 262 HHB in the amino acid and SNP data (Figure 1) are essentially identical. Relationships of other
- A. *m. ligustica* lineages including **LHB** are unresolved by the amino acid data.

- 264 The basal group includes identical pairs of **ITB** and **RJB** sequences, as do the major clade
- 265 (85% bootstrap) and subclades (77% and 75% bootstrap) homologous to those in the SNP tree
- 266 (98%, 79%, and 99% bootstrap, respectively).





# Figure 3. Variation in number of AT repeats near position 6.1 Kb in A. m. ligustica and related

- subspecies. See counts in Figure 1. *A. m. mellifera* is typical with AT<sub>12</sub>. The shortest are AT<sub>4</sub> in *A.*
- 271 *m. anatoliaca* and AT<sub>5</sub> in *A. m. meda* in the Asia Minor subspecies group. The longest is AT<sub>31</sub> in
- 272 Tikrit. Compare AT<sub>29</sub> and AT<sub>20</sub> in HGB and LGB, respectively: both have gained high numbers of
- 273 repeats, in parallel (cf. Figure 1). See text and Supplementary Figure S2 for discussion and
- 274 diagrams of AAT and AT repeat regions.

| GenBank  | Taxon            | Strain / ID  |
|----------|------------------|--------------|
| AP018403 | A. m. carpatica  |              |
| AP018404 | A. m. caucasia   |              |
| AP018432 | A. m. ligustica  | Buckfast     |
| AP018434 | A. m. ligustica  | BlackBee     |
| AP018435 | A. m. ligustica  | Italian      |
| KX908209 | A. m. ligustica  |              |
| KY464957 | A. m. meda       | voucher 3284 |
| KY926884 | A. m. mellifera  | voucher 1410 |
| MH341407 | A. m. ligustica  | CNU7293, HHB |
| MH341408 | A. m. ligustica  | CNU7294, LHB |
| MN250878 | A. m. carnica    |              |
| MN714160 | A. m. caucasia   |              |
| MT188686 | A. m. anatoliaca |              |
| MT859135 | A. m. ligustica  |              |
| NC001566 | A. m. ligustica  |              |
| NC061380 | A. m. carnica    |              |
| OM203219 | A. m. ligustica  | ITB01        |
| OM203222 | A. m. ligustica  | ITB04        |
| OM203226 | A. m. ligustica  | ITB08        |
| OM203228 | A. m. ligustica  | ITB10        |
| OM203234 | A. m. ligustica  | ITB16        |
| OM203237 | A. m. ligustica  | ITB19        |
| OM203249 | A. m. ligustica  | RJB01        |
| OM203259 | A. m. ligustica  | RJB11        |
| OM203261 | A. m. ligustica  | RJB13        |
| OM203264 | A. m. ligustica  | RJB16        |
| OM203283 | A. m. ligustica  | RJB35        |
| OM203304 | A. m. ligustica  | RJB56        |
| OM203305 | A. m. ligustica  | RJB57        |
| OM203344 | A. m. ligustica  | RJB96        |
| PP994689 | A. m. ligustica  | Tikrit       |

Table 1 – GenBank accession numbers, taxon referrals, and strain or series IDs for 31 mtDNA

277 genome sequences used in this study. Note the single representatives of the HHB and LHB

278 strains from Kim et al. (2019), 14 representatives of the ITB (n = 6) and RJB (n = 8) from Ma et

al. (2022), n = 7 additional sequences referred to A. m. ligustica, and n = 8 sequences referred

to six other subspecies.

| 2 | Q | 1 |
|---|---|---|
| 2 | 0 | Ŧ |

| Locus                              | ND2 | ND2 | COI | COII | COIII | ND3 | ND5 | ND4 |
|------------------------------------|-----|-----|-----|------|-------|-----|-----|-----|
| Residue                            | 14  | 62  | 47  | 209  | 73    | 102 | 244 | 289 |
| MH341408 A m ligustica CNU7294 LHB | L   | v   | Ν   | ľ    | т     | Α   | S   | F   |
| OM203237 A m ligustica ITB19       | L   | v   | N   | v    | Т     | Α   | S   | F   |
| OM203234 A m ligustica ITB16       | sL. | v   | Ν   | v    | т     | Α   | S   | F   |
| OM203261 A m ligustica RJB13       | L   | v   | N   | v    | т     | Α   | S   | F   |
| OM203305 A m ligustica RJB57       | L   | v   | N   | v    | Т     | Α   | S   | F   |
| OM203261 A m ligustica RJB01       | L   | М   | S   | Т    | S     | т   | Α   | F   |
| OM203264 A m ligustica RJB16       | L   | М   | S   | Т    | S     | Т   | Α   | F   |
| MT859135 A m ligustica             | L   | М   | S   | Ĩ    | S     | Т   | Α   | F   |
| OM203228 A m ligustica ITB10       | L   | м   | S   | I    | S     | т   | Α   | F   |
| AP018435 A m ligustica Italian     | L   | М   | S   | Т    | S     | Т   | Α   | F   |
| PP994689 A m ligustica Tikrit      | ۶L  | М   | S   | Т    | S     | Т   | Α   | F   |
| OM203222 A m ligustica ITB04       | L   | М   | S   | I    | S     | т   | Α   | F   |
| OM203283 A m ligustica RJB35       | L   | М   | S   | Ĩ.   | S     | Т   | Α   | F   |
| OM203304 A m ligustica RJB56       | L   | М   | S   | T    | S     | т   | Α   | F   |
| NC001566 A m ligustica             | F   | v   | S   | I    | S     | Т   | Α   | L   |
| KX908209 A m ligustica             | F   | v   | S   | Т    | S     | Т   | Α   | L   |
| AP018434 A m ligustica BlackBee    | F   | v   | S   | Т    | S     | т   | Α   | L   |
| OM203219 A m ligustica ITB01       | F   | v   | S   | I    | S     | Т   | Α   | L   |
| OM203259 A m ligustica RJB11       | F   | v   | S   | Ĩ    | S     | Т   | Α   | L   |
| OM203344 A m ligustica RJB96       | F   | v   | S   | T    | S     | т   | Α   | L   |
| OM203226 A m ligustica ITB08       | L   | v   | S   | L    | S     | Т   | Α   | L   |
| AP018432 A m ligustica Buckfast    | L   | v   | S   | I    | S     | Т   | Α   | L   |
| MH341407 A m ligustica CNU7293 HHB | L   | v   | S   | I    | S     | Т   | Α   | L   |

#### 283 Table 2. Phylogenetic distribution of eight phylogenetically informative amino acid

284 substitutions in A. m. ligustica. IUPAC single-letter codes. For each position, the inferred

apomorphic state as inferred from Figures 1 & 2 is offset to the left. Residues 3 and 5 – 8 show

the symplesiomorphic state in LHB (and four other sequences), versus the synapomorphic state

- inclusive of HHB (and 18 other sequences), or a subset at Residue 8. Positions 1 and 2 separate
- synapomorphic states in subclades within that clade not inclusive of HHB. Position 4 requires a

parallel change (2<sup>nd</sup> position  $A \rightarrow G: V \rightarrow I$ ) in LHB with respect to HHB in the major derived

290 clade.

|          |                |                 |                       |                        |                       |                   |                      |                        |                      | ITB19                  | ITB16                  | CNU7294 LHB            | RJB13                  | RJB57                  | RJB35                  | RJB56                  | ITB04                  | strain Tikrit          | strain Italian         | ITB10                  |                        | RJB16                  | RJB01                  | RJB96                  | RJB11                  | ITB01                  | strain BlackBee        |                        |                        | ITB08                  | strain Buckfast        | CNU7293 HHB            |
|----------|----------------|-----------------|-----------------------|------------------------|-----------------------|-------------------|----------------------|------------------------|----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| NCBI     | Taxon          | Strain          | MN714160 A m caucasia | MT188686 A m anatoliac | AP018404 A m caucasia | KY464957 A m meda | NC061380 A m carnica | AP018403 A m carpatica | MN250878 A m carnica | OM203237 A m ligustica | OM203234 A m ligustica | MH341408 A m ligustica | OM203261 A m ligustica | OM203305 A m ligustica | OM203283 A m ligustica | OM203304 A m ligustica | OM203222 A m ligustica | PP994689 A m ligustica | AP018435 A m ligustica | OM203228 A m ligustica | MT859135 A m ligustica | OM203264 A m ligustica | OM203249 A m ligustica | OM203344 A m ligustica | OM203259 A m ligustica | OM203219 A m ligustica | AP018434 A m ligustica | KX908209 A m ligustica | NC001566 A m ligustica | OM203226 A m ligustica | AP018432 A m ligustica | MH341407 A m ligustica |
| MN714160 | A m caucasia   |                 | -                     | 2                      | 2                     | 1                 | 9                    | 9                      | 7                    | 10                     | 3                      | 5                      | 4                      | 3                      | 9                      | 10                     | 9                      | 9                      | 9                      | 8                      | 9                      | 9                      | 9                      | 10                     | 10                     | 10                     | 10                     | 11                     | 10                     | 9                      | 10                     | 9                      |
| MT188686 | A m anatoliaca |                 | 5                     | -                      | 2                     | 1                 | 9                    | 9                      | 7                    | 10                     | 3                      | 5                      | 4                      | 3                      | 9                      | 10                     | 9                      | 9                      | 9                      | 10                     | 9                      | 9                      | 9                      | 10                     | 10                     | 10                     | 10                     | 11                     | 10                     | 9                      | 10                     | 9                      |
| AP018404 | A m caucasia   |                 | 4                     | 5                      | -                     | 1                 | 9                    | 9                      | 7                    | 10                     | 3                      | 5                      | 4                      | 3                      | 9                      | 10                     | 9                      | 9                      | 9                      | 10                     | 9                      | 9                      | 9                      | 10                     | 10                     | 10                     | 10                     | 11                     | 10                     | 9                      | 10                     | 9                      |
| KY464957 | A m meda       |                 | 6                     | 7                      | 6                     | -                 | 8                    | 8                      | 6                    | 9                      | 2                      | 4                      | 3                      | 2                      | 8                      | 9                      | 8                      | 8                      | 8                      | 9                      | 8                      | 8                      | 8                      | 9                      | 9                      | 9                      | 9                      | 10                     | 9                      | 8                      | 9                      | 8                      |
| NC061380 | A m carnica    |                 | 29                    | 30                     | 29                    | 25                | -                    | 10                     | 8                    | 13                     | 6                      | 8                      | 7                      | 6                      | 10                     | 11                     | 10                     | 10                     | 10                     | 11                     | 10                     | 10                     | 10                     | 11                     | 11                     | 11                     | 11                     | 12                     | 11                     | 10                     | 11                     | 10                     |
| AP018403 | A m carpatica  |                 | 32                    | 33                     | 32                    | 30                | 23                   | -                      | 2                    | 13                     | 6                      | 8                      | 7                      | 6                      | 4                      | 5                      | 4                      | 4                      | 4                      | 5                      | 4                      | 4                      | 4                      | 5                      | 5                      | 5                      | 5                      | 6                      | 5                      | 4                      | 5                      | 4                      |
| MN250878 | A m carnica    |                 | 31                    | 32                     | 31                    | 27                | 20                   | 13                     | -                    | 11                     | 4                      | 6                      | 5                      | 4                      | 2                      | 3                      | 2                      | 2                      | 2                      | 3                      | 2                      | 2                      | 2                      | 3                      | 3                      | 3                      | 3                      | 4                      | 3                      | 2                      | 3                      | 2                      |
| OM203237 | A m ligustica  | IIB19           | 30                    | 31                     | 30                    | 26                | 19                   | 24                     | 23                   | -                      | 1                      | 9                      | 8                      | 1                      | 13                     | 14                     | 13                     | 13                     | 13                     | 14                     | 13                     | 13                     | 13                     | 14                     | 14                     | 14                     | 14                     | 15                     | 14                     | 13                     | 14                     | 13                     |
| OM203234 | A m ligustica  | 11B16           | 28                    | 29                     | 28                    | 24                | 19                   | 24                     | 19                   | 20                     | -                      | 2                      | 1                      | 0                      | 6                      | 1                      | 6                      | 6                      | 6                      | 1                      | 6                      | 6                      | 6                      | 1                      | 1                      | 1                      | 1                      | 8                      | 4                      | 6                      | -                      | 6                      |
| MH341408 | A m ligustica  | CNU7294 LHB     | 32                    | 33                     | 32                    | 28                | 23                   | 20                     | 23                   | 22                     | 10                     | 10                     | 3                      | 2                      | ю<br>7                 | /                      | 07                     | 0                      | 0                      | /                      | 07                     | 0                      | ю<br>7                 | 1                      | /                      | /                      | /                      | 8                      | 6                      | 0                      | 0                      | 0                      |
| OM203261 | A m ligustica  | RJB13           | 20                    | 27                     | 20                    | 22                | 19                   | 24                     | 21                   | 20                     | 14                     | 10                     | -                      | 1                      | 1                      | 0                      | 6                      | 6                      | 1                      | 0                      | 1                      | 1                      | 6                      | 0                      | 0                      | 0                      | 0                      | 9                      | 0                      | 6                      | 0                      | 6                      |
| OM203305 | A m ligustica  | RJB07           | 20                    | 21                     | 20                    | 22                | 19                   | 12                     | 21                   | 20                     | 14                     | 18                     | 2                      |                        | 0                      | 1                      | 0                      | 0                      | 0                      | 1                      | 0                      | 0                      | 0                      | 2                      | 2                      | 2                      | 2                      | 8                      | 2                      | 2                      | 2                      | 2                      |
| OM203203 | A m liquetica  | RJDJJ<br>DID56  | 20                    | 21                     | 30                    | 20                | 21                   | 12                     | 11                   | 24                     | 22                     | 24                     | 22                     | 22                     | 2                      | 1                      | 1                      | 1                      | 1                      | 2                      | 1                      | 1                      | 1                      | 3                      | 3                      | 3                      | 3                      | 4                      | 3                      | 2                      | 3                      | 2                      |
| OM203222 | A m ligustica  | ITB0/           | 20                    | 30                     | 20                    | 20                | 20                   | 11                     | 10                   | 24                     | 22                     | 24                     | 22                     | 21                     | 1                      | 1                      | 1                      | 0                      | 0                      | 1                      | 0                      | 0                      | 0                      | 4                      | 4                      | 4                      | 4                      | 1                      | 4                      | 2                      | 4                      | 2                      |
| PP994689 | A m liquistica | strain Tikrit   | 31                    | 32                     | 31                    | 29                | 20                   | 13                     | 12                   | 25                     | 23                     | 25                     | 23                     | 23                     | 3                      | 3                      | 2                      |                        | 0                      | 1                      | 0                      | 0                      | 0                      | 3                      | 3                      | 3                      | 3                      | 4                      | 3                      | 2                      | 3                      | 2                      |
| AP018435 | A m liquistica | strain Italian  | 31                    | 32                     | 31                    | 20                | 22                   | 13                     | 12                   | 25                     | 23                     | 25                     | 23                     | 23                     | 3                      | 3                      | 2                      | 0                      |                        | 1                      | 0                      | 0                      | 0                      | 3                      | 3                      | 3                      | 3                      | 4                      | 3                      | 2                      | 3                      | 2                      |
| OM203228 | A m ligustica  | ITB10           | 30                    | 33                     | 32                    | 30                | 23                   | 14                     | 13                   | 26                     | 24                     | 26                     | 24                     | 24                     | 4                      | 4                      | 3                      | 3                      | 3                      | 2                      | 1                      | 1                      | 1                      | 4                      | 4                      | 4                      | 4                      | 5                      | 4                      | 3                      | 4                      | 3                      |
| MT859135 | A m ligustica  | 11010           | 29                    | 30                     | 29                    | 27                | 20                   | 11                     | 10                   | 23                     | 21                     | 23                     | 21                     | 21                     | 1                      | 1                      | 0                      | 2                      | 2                      | 3                      | <u>_</u>               | 0                      | 0                      | 3                      | 3                      | 3                      | 3                      | 4                      | 3                      | 2                      | 3                      | 2                      |
| OM203264 | A m ligustica  | RJB16           | 30                    | 31                     | 30                    | 28                | 21                   | 12                     | 11                   | 24                     | 22                     | 24                     | 22                     | 22                     | 2                      | 2                      | 1                      | 3                      | 3                      | 4                      | 1                      | -                      | 0                      | 3                      | 3                      | 3                      | 3                      | 4                      | 3                      | 2                      | 3                      | 2                      |
| OM203249 | A m ligustica  | RJB01           | 29                    | 30                     | 29                    | 27                | 20                   | 11                     | 10                   | 23                     | 21                     | 23                     | 21                     | 21                     | 1                      | 1                      | 0                      | 2                      | 2                      | 3                      | 0                      | 1                      | -                      | 3                      | 3                      | 3                      | 3                      | 4                      | 3                      | 2                      | 3                      | 2                      |
| OM203344 | A m ligustica  | RJB96           | 36                    | 37                     | 36                    | 32                | 25                   | 16                     | 15                   | 26                     | 26                     | 26                     | 26                     | 26                     | 10                     | 10                     | 9                      | 11                     | 11                     | 12                     | 9                      | 10                     | 9                      | -                      | 0                      | 0                      | 0                      | 1                      | 0                      | 1                      | 2                      | 1                      |
| OM203259 | A m ligustica  | RJB11           | 35                    | 36                     | 35                    | 31                | 24                   | 15                     | 14                   | 25                     | 25                     | 25                     | 25                     | 25                     | 9                      | 9                      | 8                      | 10                     | 10                     | 11                     | 8                      | 9                      | 8                      | 1                      | -                      | 0                      | 0                      | 1                      | 0                      | 1                      | 2                      | 1                      |
| OM203219 | A m ligustica  | ITB01           | 35                    | 36                     | 35                    | 31                | 24                   | 15                     | 14                   | 25                     | 25                     | 25                     | 25                     | 25                     | 9                      | 9                      | 8                      | 10                     | 10                     | 11                     | 8                      | 9                      | 8                      | 1                      | 0                      | -                      | 0                      | 1                      | 0                      | 1                      | 2                      | 1                      |
| AP018434 | A m ligustica  | strain BlackBee | 35                    | 36                     | 35                    | 31                | 24                   | 15                     | 14                   | 25                     | 25                     | 25                     | 25                     | 25                     | 9                      | 9                      | 8                      | 10                     | 10                     | 11                     | 8                      | 9                      | 8                      | 1                      | 0                      | 0                      | -                      | 1                      | 0                      | 1                      | 2                      | 1                      |
| KX908209 | A m ligustica  |                 | 36                    | 37                     | 36                    | 32                | 25                   | 16                     | 15                   | 26                     | 26                     | 26                     | 26                     | 26                     | 10                     | 10                     | 9                      | 11                     | 11                     | 12                     | 9                      | 10                     | 9                      | 2                      | 1                      | 1                      | 1                      | -                      | 1                      | 2                      | 3                      | 2                      |
| NC001566 | A m ligustica  |                 | 35                    | 36                     | 35                    | 31                | 24                   | 15                     | 14                   | 25                     | 25                     | 25                     | 25                     | 25                     | 9                      | 9                      | 8                      | 10                     | 10                     | 11                     | 8                      | 9                      | 8                      | 1                      | 0                      | 0                      | 0                      | 1                      | -                      | 1                      | 2                      | 1                      |
| OM203226 | A m ligustica  | ITB08           | 36                    | 37                     | 36                    | 32                | 25                   | 16                     | 15                   | 26                     | 26                     | 26                     | 26                     | 26                     | 10                     | 10                     | 9                      | 11                     | 11                     | 12                     | 9                      | 10                     | 9                      | 4                      | 3                      | 3                      | 3                      | 4                      | 3                      | -                      | 1                      | 0                      |
| AP018432 | A m ligustica  | strain Buckfast | 37                    | 38                     | 37                    | 33                | 26                   | 17                     | 16                   | 27                     | 27                     | 27                     | 27                     | 27                     | 11                     | 11                     | 10                     | 12                     | 12                     | 13                     | 10                     | 11                     | 10                     | 5                      | 4                      | 4                      | 4                      | 5                      | 4                      | 1                      | -                      | 1                      |
| MH341407 | A m ligustica  | CNU7293 HHB     | 36                    | 37                     | 36                    | 32                | 25                   | 16                     | 15                   | 26                     | 26                     | 26                     | 26                     | 26                     | 10                     | 10                     | 9                      | 11                     | 11                     | 12                     | 9                      | 10                     | 9                      | 4                      | 3                      | 3                      | 3                      | 4                      | 3                      | 0                      | 1                      | -                      |

292

**Table 3. Pairwise SNP differences and amino acid substitutions among protein-coding** 

294 nucleotide regions of mitogenomes from A. m. ligustica and five related subspecies. Lower

- and upper triangular matrices, respectively. Inter-subspecies numbers in dark grey; inter-
- subspecies differences including A. m. ligustica in light grey. There are 26 pairwise SNP
- 297 differences and six amino acid substitutions between HHB and LHB, versus intra-subspecies
- 298 means of 12.7 ± 9.3 and 4.18 ± 3.59, respectively.

299 Supplementary Figures and Tables.





# 301 Supplementary Figure S1: Maximum Parsimony analysis of complete mtDNA

- 302 sequences. Tritomys in Figure 1 are resolved without statistical support, and bootstrap support
- 303 for various clades is increased.

Α

| MT188686 A m anatoliaca                | A | A | Т | Т | -  | A | A | Т | А | Α | Т | А | Α | Т | А   | А | Т | -   | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1    | -            | А | Α | A | Т |
|----------------------------------------|---|---|---|---|----|---|---|---|---|---|---|---|---|---|-----|---|---|-----|----|-----|-----|-----|-----|-----|-----|------|--------------|---|---|---|---|
| MN714160 A m caucasia                  | A | A | Т | Т | ÷  | A | A | Т | А | A | Т | A | A | Т | A   | А | Т | -   | -0 | -   | -   |     | -   | -   | -   | -    | -            | A | A | A | Т |
| AP018404 A m caucasia                  | A | A | Т | Т | 2  | A | A | Т | А | А | Т | А | А | Т | А   | А | т | -   | -  | -   | -   | 2   | -   | -   | -   | -    | 12           | A | A | А | Т |
| KY464957 A m meda voucher 3284         | A | A | Т | Т | -  | A | A | Т | А | A | Т | А | А | Т | -   | - | - | -   | -  | -   | -   |     |     | -   |     | -    | -            | А | A | А | Т |
| NC061380 A m carnica                   | A | A | Т | Т | ÷  | A | А | Т | А | А | Т | А | А | Т | А   | А | Т | -   | -  | ÷   | -   | -   | -   | -   | -   | -    | -            | А | А | А | Т |
| MN250878 A m carnica                   | A | А | Т | Т | 12 | A | А | Т | А | А | Т | А | А | Т | А   | А | T | 22  |    |     | 12  | 12  | 12  | 12  | 12  | 12   | 22           | А | А | А | T |
| AP018403 A m carpatica                 | A | A | T | T | -  | A | A | T | А | А | Т | A | А | Т | -   | - | - | -   | -  | -   | -   | -   | -   | -   |     | -    | -            | A | A | А | T |
| OM203237 A m ligustica ITB19           | A | A | Т | Т | 4  | A | А | Т | А | А | Т | А | А | Т | 435 | - | - | -   | -  | -   | -   | -   | -   | -   | -   | -    | 5 <b>-</b> 2 | А | А | А | Т |
| OM203234 A m ligustica ITB16           | A | A | Т | Т | -  | A | A | Т | А | А | Т | А | А | Т | -   | - | - | -   | -  | -   | -   |     | -   | -   | -   | -    | -            | А | A | А | T |
| MH341408 A m ligustica CNU7294 LHB     | A | A | Т | Т | ×  | A | A | Т | А | A | Т | A | A | Т | -   | - | - | -   | -0 | -   | -   | -   | -   | -   | -   | -    | -            | A | A | A | Т |
| OM203305 A m ligustica RJB57           | A | A | т | т | 23 | A | A | Т | А | А | Т | А | А | т | А   | А | Т | 20  | 20 | 2   | 20  | 12  | 12  | -   | 120 | 120  | 120          | А | A | А | Т |
| OM203261 A m ligustica RJB13           | A | A | Т | Т |    | A | A | Т | А | А | Т | А | А | т | А   | А | Т | -   | -  | -   |     |     |     | -   |     |      | -            | A | A | А | Т |
| OM203283 A m ligustica RJB35           | A | A | Т | Т | ÷  | A | A | Т | А | А | Т | А | А | Т | А   | А | T | -   | -  | -   | -   | -   | -   | -   | -   | -    | -            | А | A | А | T |
| OM203304 A m ligustica RJB56           | A | А | Т | т | 12 | A | А | Т | А | А | Т | А | А | т | А   | А | т | 20  | 12 | 125 | 125 | 12  | 12  | 12  | 125 | 129  | 12           | А | А | А | T |
| OM203222 A m ligustica ITB04           | A | A | T | T | -  | A | A | Т | А | A | Т | A | А | Т | А   | А | Т | -   | -  | -   | -   | -   | -   | -   | -   | -    | -            | A | A | А | T |
| PP994689 A m ligustica strain Tikrit   | A | А | Т | Т | 4  | A | А | Т | А | А | Т | А | А | Т | А   | А | т | -   | -  | -   | -   | -   | -   | -   | -   | -    | -            | А | А | А | Т |
| AP018435 A m ligustica strain Italian  | A | A | Т | Т | -  | A | A | Т | А | А | Т | А | А | Т | А   | А | T | -   | -  | -   |     |     |     | 1   | 1   |      | -            | A | A | А | T |
| OM203228 A m ligustica ITB10           | A | A | Т | Т | ÷  | A | A | Т | А | A | Т | A | A | Т | A   | А | Т | -   | -0 | -   |     |     | -   | -   | -   |      | -            | A | A | A | Т |
| MT859135 A m ligustica                 | A | A | Т | Т | 23 | A | A | Т | А | А | Т | А | А | Т | А   | А | т | 20  | 20 | 20  | 20  | 12  | 12  | -   | 2   | 120  | 12           | A | A | А | Т |
| OM203264 A m ligustica RJB16           | A | A | Т | Т |    | A | A | Т | А | A | Т | А | А | Т | А   | А | Т | -   | -  | -   | -   | 1.5 |     | -   | -   | 1.58 | -            | А | А | А | Т |
| OM203249 A m ligustica RJB01           | A | A | Т | Т | -  | A | A | Т | А | А | Т | А | А | Т | А   | А | Т | -   | -0 | -   | -   | -   | -   | -   | -   | -    | -            | А | А | А | Т |
| OM203344 A m ligustica RJB96           | A | А | Т | Т | 4  | A | А | Т | А | А | Т | А | А | т | А   | А | T | 2   | 4  | 1   | 1   | 14  | 12  | 12  | 12  | 1    | 12           | А | А | А | Т |
| OM203259 A m ligustica RJB11           | A | A | Т | Т |    | A | A | T | А | А | Т | A | А | Т | A   | А | Т | - 2 | -  | -   | -   | -   | -   | -   | -   | -    | -            | A | A | А | Т |
| OM203219 A m ligustica ITB01           | A | А | Т | Т | 4  | A | А | Т | А | А | Т | А | А | т | А   | А | т | -   | -  | -   | -   | -   | -   | -   | -   | -    | -            | А | А | А | Т |
| AP018434 A m ligustica strain Blackbee | A | A | Т | Т | -  | A | A | Т | А | А | Т | А | А | Т | А   | А | т | -   | -  | -   | -   |     |     | -   | -   |      | -            | A | А | А | Т |
| KX908209 A m ligustica                 | A | A | Т | Т | ×  | A | A | Т | А | A | Т | A | A | Т | A   | А | Т | -   | -0 | -   | -   | -   | -   | -   | -   | -    | -            | A | A | A | Т |
| NC001566 A m ligustica ligustica       | A | A | Т | Т | 23 | A | A | Т | А | А | Т | А | А | т | А   | А | т | 20  | 20 | 20  | 20  | 12  | 12  | 12  | 120 | 126  | 20           | А | A | А | Т |
| OM203226 A m ligustica ITB08           | A | A | Т | Т | .7 | A | A | Т | А | А | Т | A | А | Т | А   | А | T | -   | 5  | 1   | 5   | 15  | 5.2 | - 7 | 15  | 5.78 | 5            | А | А | А | T |
| AP018432 A m ligustica strain Buckfast | A | A | Т | Т | ×  | A | A | Т | А | A | Т | А | A | Т | А   | А | Т | А   | A  | Т   | A   | A   | Т   | А   | А   | Т    | -            | А | A | А | Т |
| MH341407 A m ligustica CNU7293 HHB     | A | A | Т | Т | 2  | A | A | Т | А | А | Т | А | А | Т | А   | А | Т | А   | A  | Т   | А   | A   | Т   | А   | A   | Т    | -            | A | A | А | Т |
| KY926884 A m mellifera voucher 1410    | A | A | Т | Т | -  | A | A | Т | A | A | Т | A | A | Т | A   | A | Т | -   | -  | -   | -   |     |     |     | -   |      | -            | A | A | A | Т |

307

В

| MN7/14160 A m caucasia T A T A T A T A T A T A T A T A T A T                         | A A <mark>T</mark> A |
|--------------------------------------------------------------------------------------|----------------------|
| AP018404 A m caucasia T A A T A T A T A T A T A T A T A                              | A A T A              |
| KY464957 A m meda voucher 3284 TATT - A A TATA TATA TATA TATA TA TA TA TA TA         | A A T A              |
| NC061380 A m carnica TATT-AAATATATATATATATATATATATATATATATAT                         | A A <mark>T</mark> A |
| MN250878 A m carnica T A A T A T A T A T A T A T A T A                               | A A T A              |
| AP018403 A m carpatica T A A T A T A T A T A T A T A T A                             | A A T A              |
| OM203237 A m ligustica ITB19 T A A T A T A T A T A T A T A T A                       | A A <b>T</b> A       |
| OM203234 A m ligustica ITB16 TATT-AAATATATATATATATATATATATATATATATAT                 | A A T A              |
| MH341408 A m ligustica CNU7294 LHB T A A T A T A T A T A T A T A T A                 | A A T A              |
| OM203305 A m ligustica RJB57 T A A T A T A T A T A T A T A T A                       | A A T A              |
| ΟΜ203261 A m ligustica RJB13 Τ Α Α ΤΑ               | A A T A              |
| OM203283 Am ligustica RJ835 TATT-AATATATATATATATATATATATATATATATATA                  | A A T A              |
| ΟΜ203304 A m ligustica RJ856 ΤΑΤΤ-ΑΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ                 | A A T A              |
| OM203222 A m ligustica ITB04 TATATATATATATATATATATATATATATATATATATA                  | <u></u> .            |
| PP994689 A m ligustica strain Tikrit TATT-AATATATATATATATATATATATATATATATATA         | A A <b>T</b> A       |
| AP018435 A m ligustica strain Italian TATT-AATATATATATATATATATATATATATATATATA        | A A A T A            |
| OM203228 A m ligustica ITB10 TATT-AATATATATATATATATATATATATATATATATA                 | A A T A              |
| M1859135 Am ligustica TATT-AATATATATATATATATATATATATATATATATA                        | A A T A              |
| OM203264 A m ligustica RJB16 TATT-AATATATATATATATATATATATATATATATATA                 | A A T A              |
| OM203249 A m ligustica RJB01 TATT-AATATATATATATATATATATATATATATATATA                 | A A T A              |
| ΟΜ203344 A m ligustica RJ896 ΤΑΤΤ-ΑΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ                 | A A T A              |
| OM203259 Am ligustica RJB11 TATT-AATATATATATATATATATATATATATATATATA                  | A A T A              |
| ΟΜ203219 A m ligustica ITB01 ΤΑΤΤ-ΑΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ                 | A A T A              |
| ΑΡ018434 A m ligustica strain Blackbee ΤΑΤΤ-ΑΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ       | A A T A              |
| KX908209 Am ligustica TATATATATATATATATATATATATATATATATATATA                         | A A T A              |
| NC001566 Am ligustica TATT-AATATATATATATATATATATATATATATATATA                        | <u></u> .            |
| ΟΜ20330 A m ligustica RU82. ΤΑΤΤ. ΑΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ                   | <u></u> .            |
| ΟΜ203226 A m ligustica ITB08 ΤΑΤΤ. ΔΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ                | <u></u> .            |
| ΑΡΟ18432 A m ligustica strain Buckfast ΤΑΤΤ- ΔΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤ | A A T A              |
| ΜΗ341407 A m ligustica CNU7293 HHB ΤΑΤΤ - ΑΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ           | A A T A              |
| KY926884 Ammelliferavoucher 1410 TATT - AATATATATATATATATATATATATATATATA             | A A T A              |

- 308 Supplementary Figure S2: Patterns of short repeats across subspecies of *A. mellifera* and
- 309 within A. m. ligustica. (A) AAT repeat region at 10.1 kb, and (B) TA repeat region at 14.6 kb. See
- distribution of counts for these and the **AT** repeat at 6.1 kb on Figure 1.



# Supplementary Figure S3: Maximum Parsimony analysis of complete protein-coding nucleotide sequences, excluding *A. m. carnica* and *A. m. carpatica*. Support for the derived clade of *A. m. ligustica* sequences increases to ten SNPs (99% bootstrap support), and for the HHB-inclusive clade to five SNPs (99%). Support for the derived clade including HHB in the analogous amino acid-based tree increases to four substitutions (98%) (not shown).



318 Supplementary Figure S4: Names Matter - Maximum Parsimony analysis of complete

# 319 mtDNA sequences from all GenBank accessions referred to taxa in the Southeast European

- and Asia Minor clades of Carr (2023). Note polyphyletic distributions of sequences in the
- 321 OP40407# series with respect to sequences referred to the same subspecific taxa. Note
- specially OP404077 & OP404078 referred to *A. m. meda* with respect to *A. m. ligustica* (ITB19).
- 323 See main text for discussion of sequences referred to *A. m. carnica* and *A. m. carpatica*.

|                          |     |     |   |   |   | 1   | 1 | 1 | 1 | 1 | 1  | 1 | 1  | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3   | 3  |
|--------------------------|-----|-----|---|---|---|-----|---|---|---|---|----|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|----|
|                          |     |     | 2 | 3 | 8 | 0   | 2 | 2 | 4 | 7 | 8  | 8 | 9  | 0 | 1 | 2 | 6 | 6 | 6 | 8 | 0 | 0 | 0 | 0 | 1 | 3 | 5 | 6   | 7  |
|                          | 1   | 6   | 6 | 8 | 5 | 7   | 1 | 5 | 5 | 4 | 4  | 6 | 1  | 0 | 7 | 8 | 2 | 7 | 9 | 0 | 1 | 5 | 7 | 9 | 6 | 2 | 4 | 2   | 2  |
|                          | 4   | 2   | 2 | 4 | 6 | 0   | 1 | 0 | 0 | 4 | 1  | 4 | 9  | 7 | 9 | 3 | 1 | 1 | 5 | 7 | 5 | 5 | 5 | 0 | 6 | 9 | 1 | 0   | 4  |
| OM203237 ITB19           | Ī   | V   | V | N | T | V   | Ì | i | T | A | Í  | Ē | Í  | S | M | S | F | ī | i | V | Ì | Ĺ | T | G | G | A | Ì | M   | T  |
| OM203234 ITB16           | lī  | v   | v | N | 1 | v   | v | 1 | Ť | A | li | м | li | S | м | s | F | i | v | 1 | Т | 1 | Ť | G | G | A | M | M   | м  |
| MH341408 CNU7294 I HB    | lī. | v   | v | N | i | ŕ   | v | ī | Ť | A | li | м | li | S | М | Ľ | F | i | v | i | Ť | i | Ť | G | G | A | м | M   | м  |
| OM203261 RJB13           | lī  | v   | i | N | i | v   | v | ī | Ť | A | li | M | li | S | М | S | F | i | v | i | Ť | i | Ť | G | G | A | м | i I | 1  |
| OM203305 RJB57           | L   | v   | v | N | i | v   | v | Ē | Ť | A | M  | M | li | S | M | s | F | i | v | i | Ť | i | Ť | G | G | A | M | i   | i  |
| OM203249 RJB01           | L   | È   | v | S | Î | È   | v | L | S | Т | 1  | м | м  | A | М | s | F | i | v | i | Ť | i | T | G | G | A | M | M   | i. |
| OM203264 RJB16           | L   | i   | v | S | i | i   | v | L | S | T | 1  | M | M  | A | М | s | F | i | v | i | Ť | i | T | G | G | A | M | M   | i. |
| MT859135 A. m. ligustica | L   | i   | v | S | i | i   | v | L | S | T | li | M | M  | A | M | S | F | i | v | i | T | i | T | G | G | A | M | M   | i  |
| OM203228 ITB10           | L   | i   | V | S | I | i   | V | L | S | Т | li | M | M  | A | L | S | F | I | v | 1 | T | 1 | Т | G | R | A | M | M   | i. |
| AP018435 strain Italian  | L   | 1   | V | s | 1 | 1   | V | L | s | т | 1  | M | м  | A | 1 | s | F | м | V | 1 | т | 1 | т | G | G | A | M | M   | 1  |
| PP994689 strain Tikrit   | L   | 1   | V | S | 1 | i   | V | L | s | Т | 1  | M | M  | A | 1 | S | F | M | V | 1 | т | 1 | Т | G | G | A | M | M   | 1  |
| OM203222 ITB04           | L   | L   | V | S | 1 | 1   | V | L | s | т | 1  | M | м  | A | M | s | F | 1 | V | 1 | т | I | Т | G | G | A | M | M   | 1  |
| OM203304 RJB56           | L   | 1   | V | s | 1 | 1   | V | L | s | Т | 1  | M | м  | A | М | s | F | 1 | V | 1 | Т | 1 | Т | G | G | т | M | M   |    |
| OM203283 RJB35           | L   | I I | V | s | 1 | 1   | V | L | s | Т | 1  | M | м  | A | М | s | F | 1 | V | 1 | Т | 1 | Т | G | G | A | M | М   | 1  |
| OM203344 RJB96           | L   | 1   | V | s | 1 | 1   | V | L | s | т | 1  | M | м  | Α | М | s | F | 1 | V | 1 | т | 1 | Т | G | G | A | M | M   | 1  |
| NC001566 A. m. ligustica | F   | V   | V | S | 1 | 1   | V | L | s | Т | 1  | M | м  | Α | М | s | L | 1 | V | 1 | Т | 1 | Т | G | G | A | M | M   | 1  |
| KX908209 A. m. ligustica | F   | ٧   | V | S | 1 | 1   | V | L | s | Т | 1  | M | м  | Α | Μ | s | L | 1 | V | 1 | Т | 1 | Т | E | G | A | M | М   | 1  |
| AP018434 strain BlackBee | F   | V   | V | s | 1 | 1   | V | L | s | Т | 1  | M | М  | Α | Μ | s | L | 1 | V | 1 | Т | 1 | Т | G | G | A | M | М   | 1  |
| OM203219 ITB01           | F   | V   | V | s | 1 | I I | V | L | s | Т | 1  | M | М  | A | Μ | S | L | 1 | V | 1 | T | 1 | Т | G | G | A | M | М   | 1  |
| OM203259 RJB11           | F   | V   | V | S | 1 | L   | V | L | S | Т | 1  | M | М  | Α | М | S | L | 1 | V | 1 | Т | 1 | Т | G | G | A | М | М   | 1  |
| OM203226 ITB08           | L   | V   | ٧ | S | 1 | 1   | V | L | s | Т | 1  | M | м  | A | Μ | s | L | 1 | V | 1 | Т | 1 | Т | G | G | A | M | М   | 1  |
| AP018432 strain Buckfast | L   | V   | V | S | 1 | 1   | V | L | s | Т | 1  | M | M  | Α | Μ | S | L | 1 | V | 1 | Т | 1 | 1 | G | G | A | M | Μ   | 1  |
| MH341407 CNU7293 HHB     | L   | V   | V | S | 1 | L   | V | L | s | Т | 1  | M | M  | Α | Μ | S | L | 1 | V | 1 | Т | 1 | Т | G | G | A | Μ | М   | 1  |

# 325 **Supplementary Table T1: Amino acid substitutions in A. m. ligustica.** Apomorphic

326 states are inferred from Figures 1 & 2, and are offset to the left. There are 29 positions with

amino acid substitutions, of which 15 are autapomorphic (bold, grey), including eight in **RGB19**,

and 14 synapomorphic (Bold), including position #1070 with an inferred parallel change (I') in

329 LHB. See Table 1 for distribution of phylogenetically informative changes by position in the

330 genome.