Biodiversity genomics for species at risk: patterns of DNA sequence variation within and among complete mitochondrial genomes of three species of wolffish (*Anarhichas* spp.)

K.A. Johnstone, H.D. Marshall, and S.M. Carr

Abstract: The first marine fish species to be listed under the Canadian Species At Risk Act as Threatened with extinction are the spotted wolffish (*Anarhichas minor* Olafsen, 1774) and the broadhead wolffish (*Anarhichas denticulatus* Krøyer, 1844); a third species, the striped wolffish (*Anarhichas lupus* L., 1758), is listed as a species of special concern. As part of the recovery plan for wolffish, we determined the complete mitochondrial DNA (mtDNA) genome sequences of all three species to identify the most variable gene regions for population analysis. *Anarhichas* genomes comprise either 16519 or 16520 base pairs (bp), among which there are 449 single nucleotide polymorphisms (SNPs). The most variable protein-coding loci are ND4, CYTB, and ND2, with 4.40, 4.22, and 4.19 SNPs/100 bp, respectively. Comparisons of rates of synonymous and nonsynonymous nucleotide substitutions indicate no evidence of selection. The control region, characterized in many species as hypervariable, was less variable than 9 of 13 protein-coding loci (2.45 SNPs/100 bp). Phylogenetic analysis shows that *A. lupus* and *A. minor* are more closely related to each other than either is to *A. denticulatus*. Amplification and sequence analysis of a contiguous block of 6392 bp that spans the ND4, ND5, ND6, and CYTB loci is an efficient strategy for evaluating patterns of intraspecific mtDNA variability.

Résumé : Les premières espèces de poissons marins à être placées sur la liste des espèces « menacées » d'extinction selon la Loi canadienne sur les espèces en péril sont le loup tacheté (*Anarhichas minor* Olafsen, 1774) et le loup à tête large (*Anarhichas denticulatus* Krøyer, 1844); une troisième espèce, le loup atlantique (*Anarhichas lupus* L., 1758), est incluse comme espèce « préoccupante ». Comme contribution au plan de récupération des loups, nous avons déterminé les séquences du génome complet de l'ADN mitochondrial (ADNmt) chez les trois espèces afin d'identifier les régions les plus variables en vue d'une analyse de population. Les génomes d'*Anarhichas* comprennent ou 16519 ou 16520 paires de bases(pb), parmi lesquelles il y a 449 polymorphismes simple nucléotide (SNPs). Les locus codant pour les protéines les plus variables sont ND4, CYTB et ND2 qui possèdent respectivement 4,40, 4,22 et 4,19 SNPs/100 pb. La comparaison des taux de substitutions synonymes et non synonymes de nucléotides ne révèle aucun signe de sélection. La région de contrôle, caractérisée d'hypervariable chez de nombreuses espèces, est moins variable que 9 des 13 locus codant pour les protéines (2,45 SNPs/100 pb). L'analyse phylogénétique montre que les *A. lupus* et *A. minor* sont plus apparentés l'un à l'autre que chacun ne l'est avec l'*A. denticulatus*. L'amplification et l'analyse des séquences d'un bloc contigu de 6392 pb qui comprend les locus ND4, ND5, ND6 et CYTB constituent une stratégie efficace pour l'évaluation des patrons de variabilité interspécifique de l'ADNmt.

[Traduit par la Rédaction]

Introduction

The wolffish family Anarhichadidae is a small family of blenny-like marine fishes found on rocky and hard bottom areas of the northern oceans (O'Dea and Haedrich 2002). Wolffish are sedentary, slow-growing fish with stout bodies and large, blunt heads (Templeman 1986*a*, 1986*b*). Their dentition comprises large, conical anterior teeth and molariform lateral teeth, which gives them a wolf-like appearance

Received 15 March 2006. Accepted 21 November 2006. Published on the NRC Research Press Web site at http://cjz.nrc.ca on 22 February 2007.

K.A. Johnstone, H.D. Marshall, and S.M. Carr.¹ Genetics, Evolution, and Molecular Systematics Laboratory, Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.

¹Corresponding author (e-mail: scarr@mun.ca).

and enables them to feed on crustaceans and invertebrates (Scott and Scott 1988). There are two genera, the monotypic Pacific wolfeel (*Anarrhichthys ocellatus* Ayres, 1855) and *Anarhichas* L., 1758, which comprises four species — the Bering wolffish (*Anarhichas orientalis* Pallas, 1814) and three species in the North Atlantic Ocean, the striped or Atlantic wolffish (*Anarhichas lupus* L., 1758), the spotted wolffish (*Anarhichas minor* Olafsen, 1774), and the broadhead or northern wolffish (*Anarhichas denticulatus* Krøyer, 1844). *Anarhichas lupus* are recognized by a series of dark transverse bars, whereas *A. minor* and *A. denticulatus* are covered in irregular blackish brown spots, which are somewhat larger in the former than in the latter. All three species occur on both sides of the Atlantic Ocean and into Arctic waters (Fig. 1).

Although not recently the targets of directed fisheries, wolffish populations and habitats have been heavily impacted by bottom-trawling associated with the fishery for

Fig. 1. Distribution of three species of wolffish from the North Atlantic Ocean: from top to bottom, striped or Atlantic wolffish (*Anarhichas lupus*), spotted wolffish (*Anarhichas minor*), and broadhead or northern wolffish (*Anarhichas denticulatus*) (maps drawn from descriptions in Scott and Scott 1988).

Atlantic cod (*Gadus morhua* L., 1758). Although this decreased after the Atlantic cod moratorium in 1992 (O'Dea and Haedrich 2002), *A. minor* and *A. denticulatus* are still caught in directed fisheries for halibut and crab, and almost 1500 t were taken annually as bycatch between 2000 and 2002 (Department of Fisheries and Oceans 2004). Wolffish not caught may be injured by groundfish trawls, which dislocate the rocks and boulders where wolffish live, nest, and spawn. Dredging for scallops and clams also promotes resuspension of bottom sediments, and can destroy spawning habitats and damage fish gills (O'Dea and Haedrich 2002).

Indices of wolffish abundance declined by more than 90% on the Grand Banks and the Northeast Newfoundland and Labrador Shelf from the late 1970s to the early 1990s, about two wolffish generations (O'Dea and Haedrich 2002; Department of Fisheries and Oceans 2004). Consequently, *A. minor* and *A. denticulatus* became in 2001 the first marine species to be assessed by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) as Threatened with extinction, and were accordingly listed on schedule 1 of the Species At Risk Act (SARA) by the Minister in 2005. *Anarhichas lupus* were listed in 2000 as a species of Special Concern and *A. orientalis* were listed in 2002 as being Data Deficient (i.e., the available data are insufficient to assign a status).

Wolffish in the North Atlantic Ocean are currently the

subjects of a Department of Fisheries and Oceans (now Fisheries and Oceans Canada) species recovery plan that is intended to identify and correct the factors responsible for the observed decline. This plan includes a genetic analysis of their population structure to determine whether any of the species comprises distinctive subcomponents consistent with a stock structure (cf. Pepin and Carr 1993) or designatable units under SARA. Preliminary genetic studies of mitochondrial DNA (mtDNA) sequence variation in more than 400 wolffish from all three species showed very little variation within the species in the control region (K.A. Johnstone, H.D. Marshall, and S.M. Carr, unpublished observation), a gene region considered "hypervariable" in many fish species (Faber and Stepien 1997). These data gave no indication of population structure within species, and pairwise genetic differentiation among species was small, which is indicative of recent speciation that might also explain the low intraspecific variation.

To clarify the evolutionary, population, and conservation genetic status of wolffish, we obtained the complete mtDNA genome sequences of all three species to identify loci most suitable for population genetic analysis. Interspecific divergence should predict intraspecific variability at selectively neutral loci, as both are functions of the neutral mutation rate (Kimura 1983). Along with comparative genomic data on codfish, including *G. morhua*, which has also been assessed by COSEWIC as Endangered, this study represents the first genomic study of Canadian species at risk under SARA.

Materials and methods

Frozen hearts were collected at sea by Department of Fisheries and Oceans' personnel from bycatch fish of all three species. Preliminary experiments indicated that DNA obtained from most of these samples consisted of fragments of low molecular weight. To obtain high molecular weight DNA for long-range polymerase chain reactions (PCR; see below), we obtained a live A. lupus under a Department of Fisheries and Oceans' incidental harm permit at the Bonne Bay Marine Station on the west coast of the island of Newfoundland (Northwest Atlantic Fisheries Organization (NAFO) division 4R). Fresh heart, muscle, and liver tissues were collected from the fish immediately after being euthanized. DNA from frozen specimens was obtained from individual A. minor and A. denticulatus from NAFO divisions 30 and 3L, respectively. mtDNA was extracted with the QIAamp DNA Mini Kit (QIAGEN, Valencia, California), and the tissue protocol provided by the manufacturer was followed.

Initial studies of *Anarhichas* mtDNA employed the "universal" primers of Kocher et al. (1989) for the CYTB and control region (CR) loci. Of the 18 primer pairs designed by Coulson et al. (2006) for amplification and sequencing of *Gadus* and related gadiforms, three pairs successfully amplified *Anarhichas* spp.: a fish primer wCR2F and a mammalian primer *Cytb811R* for a region spanning the 3' end of the CYTB locus and the 5' end of the CR locus, g14F and g14R for part of the ND4 locus, and g08F and g08R for part of the COX1 locus. By pairing *Cytb811R* with g14F, g14R with g08F, and g08R with wCR2F, and modifying

Fig. 2. Schematic diagram of the wolffish mitochondrial genome, with three regions >4 kbp amplified by long-range PCR. Forward primers are in roman type and reverse primers are in italic type. The 466 bp fragment of the genome between the 5' ends of the *cytb811R* and wCR2F primers spans the 3' end of the CYTB locus and the 5' end of the control region (CR) locus, for which the sequence was already known.

standard PCR protocols to amplify fragments >5 kbp, we were able to amplify the entire genome (except for a 1 kbp portion that included the CR locus, the sequence of which was already known) of *A. lupus* as three overlapping fragments of >4 kbp each (Fig. 2). In the process of DNA sequencing, 42 *Anarhichas* specific primers were designed and were used along with 19 *Gadus* specific primers and 1 mammalian primer (Table 1).

For long-range PCR amplification of mtDNA from A. lupus, the TripleMaster system and High-Fidelity PCR protocol were used (Eppendorf, New York, New York). The reaction mixture was prepared in two parts. The first mixture comprised 8.4 µL of distilled deionized water (ddH₂O), 0.3 μL each of the 10 $\mu mol/L$ forward and reverse primers, and 1 µL of the template DNA. The second mixture comprised 7.4 µL of ddH₂O, 2 µL of 10× High-Fidelity buffer with Mg²⁺, 0.4 µL of 40 nmol/L dNTP, and 0.2 µL of TripleMaster polymerase mix. The two mixtures were combined and immediately preheated to 94 °C for 2 min to denature the double-stranded DNA template. The PCR cycle was 94 °C for 20 s, 54 °C for 15 s, and 68 °C for 4 min, which was repeated for 35 cycles. The reactions were thereafter cooled to 5 °C. Size of amplicons were estimated by electrophoresis of 4 µL of the PCR product through 1% or 2% agarose gel with 8 µL of ethidium bromide in 1× TBE buffer at 60 V, for up to 6 h according to the expected sizes. PCR products were purified with the QIAGEN QIAQuick PCR purification kit according to the manufacturer's directions.

For low molecular weight DNA from A. minor and A. denticulatus, standard PCR reactions for amplicons with ex-

Table 1. Primers used to amplify and (or) sequence the mitochondrial genomes of *Anarhichas* species.

g20RGGCAGGACATTAAGGGCATTCTCAC29wCR1FACCTCCCACCCCTAACTCCCAAAGC53wCR1FATCCTGCATCTGGTAACTCCCAAAGC53wCR2FATTCCTGACATTTGGCTCTACTTC176wCR2FCTAGGGCCATCTTAACATCTTCAG739g01FCTGAAGATATTAGGATGGACCTAG1 358g02FCCAAAAACGTCAGGCCAGGGTGTAG1 499w02FTGTTCCGCTGAAATTGGCCTGAAGC2 019w02FTGTTCCGCTGAAATTGGCCTCAGC2 618g03FACCCCGAAACTGAGCGAGCTATCC2 618g03FTTACCCAAAACTGGCCTCTTG3 276g04FTTTACCAAAACTGGCCTCTTG3 244g04FTTCACGCGGGGTATGGCCCAGGGCCAGGG5 026w04FTTCAGACCGGAGTAATCCAGGTCAG4 020g05RATGTTCGGGGTATGGCCCAGGAGCC5 026w05FAGTATGCTCTTATCGGAGCCTTGG5 107w06FGTGCTCCCACTACACCACTTCCTAG5 233g06RAGCTTAATTAAGGGCCTTGTTACC6 296g07FAAACTGAGCCAAGGAGAGTATAGTTGC5 931w07RCTGGTTAGACGGCTTAGCTGTTAAC6 407w08FCAAAGGTAAAGTAAGCCGCTGTGTC6 407w08FACAACGAATGTGGGGCATACAACG7 498w08FACAACGAATGTGGGGTGACTACACG8 555w09FGCCATATTAGCTTCTTGGTGGGGGAGTAGTAG10 44w10F1ATGCGGAAAGTAGTGGGGTGACTACACG10 274w11FCTGACTCACGTGGTGGGGGGGGGGGGGGGGGGGGGGGGG	Primer	DNA sequence (5'→3')	5' base
WCR1FACCTCCCACCCTAACTCCCAAAGC53WCR1FGGCATCCTGGGTTATCCTGCTTATG161WCR2FATTCCTGGACATTTGGCTCTACGCTTATG176WCR2FCTAGGGCCATCTTAACATCTTCAG739WCR2F1TGGTATCAGGCCATCTTAACATCTTCAG739WCR2F1TGGTATCAGGCCACTCTTAACATCTTCAG1358g02FCCAAAAACGTCAGGTCGAGGTGAG1499g02RCTATTCATTCATTACAGGCAACCACCT2019y02FTGTCCGCGGAAATTGGCCCTAGAG2176g03FACCCCGAAACTGAGCGAGCTACCC2618g03RTAAGCCCTCGTAGAAAGGGCTAGG3954w04FTTCACACCGGAGTATCCCCCTTG3276g04RTGAACCTCTGTAGAAAGGGCTAGG5026w05FAGTATGCTCTTATCGGAGATAGGCCCAGGC5026w05FAGTATGCCACTAACACGACCCTTCG5931w07RCTGGTTGAGCACAGAAGAGTAATTCC5931w07RCTGGTTAGACGAGGCCTTAGCTGTTAAC6950w08F1CCACAGGTAAAGTAAGCAGCGTGTGAA6407w08RCAAGGGAAAGGAGTAATCAAAGG7908w08FACACCACATTCTGAGCAATGGTGTTACC7165g08RTAACCCCACATTCTGAGCTATGAGG7908w08FACACCAAATGTGGGGGCATCAAAGCAATG9094w10F1ATGGGAATGGAATGAATAACTAATTG9169g10RAGAGGGGAATGAATAAACTAATTG9169g10RAGAGGGGAATGGAATCAACCACCCATGGT1044w13RTAACCCCCAATTGTAGGGGTACCAAGG1258w14FCTGTCTGCGTGTGAAGGAAGCAAGGGGGGGGGGGGGGGG	q20R	GGCAGGACATTAAGGGCATTCTCAC	29
wCR1R GGCATGCTGGGTTATCTCGCTATG 161 wCR2F ATTCCTGACATTGGCTCCTACTTC 176 wCR2F1 TGGTATCAGGCCATCTTAACATCTTCAG 739 wCR2F1 TGGTATCAGGCCATCTTAACATCTCAGGAG 870 g01F CTAAGGATATTAGGATGGAGGTGAGG 1499 g02F CCAAAACGTCAGGTCGAGGTGAGG 2019 w02F TGTTCCGCGTGAAATGGCCATCATCC 2618 g03F ACCCCGGAACTGAAACGGCCTTCATAC 2841 g04F TTACCAAAAACTCGCCTTGG 3276 g04R TGTACCGGAACTGAAACGGCCTTAGG 4020 g05F AGTATCGGGGTATGGGACCATGGG 5107 wO4F TTCCAGCTGAAGGAAGATAAGTTGC 523 g06R AGCTGATAATAAAGGCCTTGTGAG 525 w06F GATGGCCAACGAAGAAGATAAGTTGC 531 w07F CTGGTTTGACGCTTAGCTGTTAACT 650 g07F AAACTAGCCAAGGAATAGCTGCTGAGG 748 g08R TAACCAAATTGTGCGCTTGACGGG 748 g08F ACGAAGTGGGTATGATGAGG 904 w08F ACGAAGTGGGGTATGAGGAGGAGTAGG 1649 w11R	wCR1F	ACCTCCCACCCCTAACTCCCAAAGC	53
wCR2FATTCCTGACATTTGGCTCCTACTTC176wCR2FCTAGGGCCCATCTTAACATCTTCAGG739wCR2F1TGGTACAGGCACATCTTAAGATCTGAGA870g01FCTGAAGATATTAGGATGGACCCTAG1358g02FCCATACAGTCAGGCCATCCAGGCTGAGG2176g03FACCCCGAAACTGAGCGATCCCAGGC2618g03FTAAGCCTCGTGAGTGCACTTCATAC2841g04FTTTACCAAAACAGCGCCTTCATAC2641g04FTTCACACGGGGTATGGCCATCATCC2619g04FTCAACCGCGGGTATGGCCCATCAGC5026w04FTCCAACAGCGGGATAGGCCCATCGC5026w05FAGTATGCTCTTATCGGAGCCATCCTAG5225w06RGATGGCGACAGGAAGGTAAGCAGGCC5031w07RCTGGGTATGACCATACCAGTCCC6950w08FAGGTATTAAAGTATTGCTGAGCGTTGC6950w08FAAGGTAAAAAAGACGGGGTGTGC6407w08RCAGAGGGTAAAGTAAGTAGGGGGTATGG798g08RTAACCCACAATCCGAGGATTCCTAAAGC6407w08FACGGAAGGAAAAATAAGCGCGTGTGTC6950w08FACGGAATAGTAAGTAGCGGGGGTGTGC798g08RTAACCCACAATCCGAGGATATCACG8473g09RACCCATATTAGCTCTTAGTGAGGG798y08FAGGGCAATCGTGGGTCACAGGCTAGTGG1044y13RTAACCCACAATCTGGGTTGGGTCC10274y11FCTGCGCATAGTGGTATGGAGGATAGTG11044y13RTACCGCGTTAAGTGTGGGTCACAGG1583g14FCCGCTCAATGGGTTAGTGGGGGAGGAGGG1670g14FCTGTGGGGTGATGTGGGGTGACGAGGGGGGGGGGGGGGG	wCR1R	GGCATGCTGGGTTATCTCGCTTATG	161
wCR2RCTAGGGCCATCTTAACATCTTCAG739wCR2F1TGGTATCAGGCCATCTTAACATCTCAG870g01FCTGAACAGCAGCACCCTAGGCTGAGGTGTAG1358g02FCCAAAAACGTCAGGTCGAGGTGTAG2176g03FACCCCGAAATGGCCGACCATCTCC2618g03RTAAGCCTCGTGAAGCCATCATCC2841g04FTTTACCATAAACATCCAGGTCAG3276g04RGOACCTCTGTAGAAAGGCCTATGG3276g04FTTCACACCGGGAGTAATCCAGGTCAG5026w04FTTCACACCGGGGTAAGGCCCATCGG5026w05FAGTATGCTCTTATCGGAGCCCATCGG5026w05FGTGCTCCACCTACACCACTTCCTAG5225w06RGATGGCGCACAGGAAGGTAAGTAGC5231w07RCTGGTTTGAGGGCTTAGCTGTTACC6296g07FAAACTAGACCACGGCTTAGCTGTTACC6407w08FCAGAGGTAAAGTAAGCGCGTGTGTC6950w08FACACGAATGTGGAGGAAGGTAACTGC7488g08RACACGAATGTGGAGGACTACACGG8473g09RACCCCATATTGACCTATGCTGTGACCAACG1659w01F1ATGGGAATGGAGGAACTACACG1659w11FCTGACCTCAGGGTAACGACCATGGC10w11RTTGACTCCCCACGGTACGCATGAGG10w11RTTGACTCCCCACGGTACGCTAGGCGAGGAGGG1670g14FCCCCTTATATAGCTTCTGGGGGGAGGAGGG11w14F2GAACACCATTCTGGGGTCACAGG14w13RTACCGCGTTAGGCGTAGGAGCAGGGGGGGGGGGGGGGGG	wCR2F	ATTCCTGACATTTGGCTCCTACTTC	176
wCR2F1TGGTATCAGGCACATCTCTAGTGAG870g01FCTGAAGTATTAGATGGACCCTAG1388g02FCCAAAAGGTCAGGTGAGGGTAG2019w02FTGTTCCGCTGAAATTGACCAGCT2019w02FTGTTCCGCTGAAATGACCAGCTAGAG2176g03FACCCCGAAACTGACGACGACCAGCT2618g04RTTACCAAAACGTCGCCCTTGG3276g04RTGAACCTCTGTAGAAAGGCCTAGG3954w04FTTCCACACCGGAGTAATCCAGGCCCAAGAGC5026w05FAGTATGCTCTTATCGAGACCCTTCG5107w06FGTGCTCCCATCACACCTTCCTAG5225w06RGATGGCGACAGGAAGAGTAAGTTAGC5293g06RAGCTTAATTAAGTATTGTTTGC5981w07RCTGGTTGAGCGCTAGGCCTTGACC6960w08F1CCCTCACCTAGCAGGCCTTCCAACC6950w08F1CCCCTCACCAAGGGCATTCTTACAGG7908w08FACACGAATTCTGCGGTTATGATGG9169g10RAGAGGGCAATGAATTCTTGAAGG9169g10RAGAGGGCAATGAAATTGGGGTAAGTGAGG1699w11FCTGACTCAGCAGGTATGTTGAGGG1694w11FTGACACCAACCAACCCATGCTGGTTG11044w13RTACCGAGTTAGGTGTACGGGGAATGATAGTAG1594w14F2GAACCTTCTTAGGCGTTAGCGGGGGTAAGG1594w14F2GAACCTTCTTAGTGGGTCCAACG1828y14FCTGTTGCAGGTTAGGGGGCAAGGAAGGAGGGGGGGGGGG	wCR2R	CTAGGGCCCATCTTAACATCTTCAG	739
901FCTGAAGATATTAGGATGGACCCTAG1 358902FCCAAAACGTCAGTCGAGGTGTAG1 499902RCTATTCATTTCATTCCAGGCACCAGCT2 019903FACCCCGAAACTGAGCGAGCTACTCC2 618903RTAAGCCTCGTGATGCATCATAC2 841904FTTTACCAAAAACATCGCCTCTG3 276904FTGAACCTCGTGTAGAACAGGCCTAGG4 020905RAGTGTCGGGGATAATCCAGGTCAG5 026w04FTCCAGACGGAGATAATCCAGGTCCAG5 026w05FAGTGTCCGGGATATGGCCCAAGAGC5 223w06RGATGGCGCACAGGACGATAAGTTGC5 931w07RCTGGTTTCAGCGCTTAGCTGTTACC6 296907FAACTTAATTAAAGTATTGTTTGC5 931w07RCTGGTTGAGCGCTTAGGCGTGTGC6 950w08RCAGAGGTAAAGTAAGCGGCGTGAGTC6 950w08FACGAGGGTAAATCTCGCGTGAGCTC7 185908FACACGAATGTGGAGCATCAAGGG7 908909RACCCATATTAGCTCTGAGAGCATCAAGG8 585w09FGGCCATCAGTGGAGCATCAAGGG8 585w09FGGCCATCAGTGGAGCAATCAAGTG9 904w11FCTACACTAGGCAATGAAGTAGGGCTC10 274w11RTGGAGAAGTTAGGGCGTACGCAAGGATTAG1 996w11FCTACACTTGGCCTTGGAGGAGTAGG11 594w14FCCCATATATGGCTTAGGAGGAGTAGG1 593w14FCCCATATATGGCTTAGGAGGAGTAGG1 593w14FCCCATATTGGGCTGGAGGAGGAGGGAGG1 593w14FCCCATATTGGGCTTAGGAGGAGCACCAAGC1 833g14RTCCAGAGTGGAAGCATTCAACC2 358w14FCCCATATTGGATGGAGGAGCTCAAGC1 833<	wCR2F1	TGGTATCAGGCACATCTCTAGTGAG	870
902F CCAAAAACGTCAGGTCAGGTGTAG 1 499 902R CTATTCATTTCACAGGCAACCAGCT 2 019 w02F TGTTCCGCTGAAATTGGCCCTGAAG 2 176 903R TAAGCCTCGTGATGCCATCATCC 2 618 903R TAAGCCTCGTGATGCCATTCATAC 2 841 904F TTTACCAAAAACATCGCCCTTG 3 254 w04F TCAGACCGGAGTAATCCAGGTCAG 4 020 905R ATGTTGCGCTTATGGAGCCCAAGAGC 5 026 w05F AGTGTGCACTATGGGGCCCAAGAGC 5 026 w05F GGGCTTCCACTACCACCTTCCTAG 5 233 g06R AGCTTAATTAAGGACCGTGTGTAAC 6 296 907F AAACTAGACCAAGGCCTTCAAAGC 6 407 w08R CAGAGGTAAAGTAAGCGCGTGTGTC 6 950 w078F ACGACGAAAGTAAGCGCGTGTGTC 6 950 w08F ACGCAATATGCGAGAATTCTCTCAATCC 7 165 g08R TAACCCACAATTGCGGAGGACTACACG 8 473 g09R ACCCCATATTGGCGAGGAGTACACG 8 473 g09R ACCCCATATTGGCACGAGGAGTAGTAG 9 169 g10R AGAGGGCAATGAAAAGTAGCGGGGGAGTAGTAG 1 044 <	g01F	CTGAAGATATTAGGATGGACCCTAG	1 358
g02R CTATTCATTCACAGGCAACCAGCT 2019 w02F TGTTCCGCTGAAATTGGCCTGAAG 2176 g03F ACCCCGAAACTGAGCGAGCTACTCC 2618 g03R TAAGCCCTCGTGAGTGCCATTCATAC 2841 g04F TTTACCAAAAACATCGCCTCTG 3276 g04R TGAACCTCCTGTAGAAAGGGCTATGG 4020 g05R ATGTTCGGGGTATGGGCCCAGGACA 4020 g05R ATGTTCGGGGTATGGGCCCAAGAC 5026 w05F AGTATGCTCTATTGGGGCCCAAGACC 5026 w05F AGTGTACCACAGGACACCACTCCTAG 5233 g06R AGCTTAATTAAGGCCGCTTAACTGTTAAC 6296 g07F AAACTAGCCAAGGACTTCAAAGC 6407 w08R CAGAGGTAAAGTAAGTTGCAAGGC 6407 w08F ACAGGTATAGCTGAGGCATTGAAGC 6490 w08F ACAGCAATGGCAGGAGTACCAAGG 7908 g08R TAACCACACTGCATGGAGGACTACACG 8473 g09R ACCCATATGGGAGGAGCTACACG 8473 g09R ACCCATATGGGACGAAGGACTACACG 10274 w10F1 ATGCGAAACCAACCAACCAACCAAGCAAGGATAAGTGTAG 904	g02F	CCAAAAACGTCAGGTCGAGGTGTAG	1 499
W02FTGTTCCGCTGAAATTGGCCCTGAAG2 176g03FACCCCCGAAACTGACCCTGGCATCCATAC2 618g03RTAAGCCCCGGTAGTGCCATCCATAC2 841g04FTTTACCAAAACATCGCCTCTTG3 276g04FTGAACCCCCGGAGTAATCCAGGCAG4 020g05RATGTTCGGGTATGGCCCAAGAGC5 026w05FAGTATGCTCTTATCGGAGCCCTTCG5 107w06FGTGCTTCCACTACACCACTTCCTAG5 225w06RGATGGCGACAGGAAGAGTAAGTTGC5 931w07RCTGGTTTGGACGCCTAACTGGTTAAC6 296g07FAAACTAGACCAAGGAATAAGTTGC6 950w08F1CCCTTCACCAGGGCCTTCAAAGC6 407w08RCAAGGGTAAAGTAAGCGCGTGGTCC6 950w08F1CCCTTCACCAGGGGCTTACAGGG7 498g08RTAACCACAATTCTGCCTTGACAGG7 908w08FACACCAATATGGGAGTACTACACG8 473g09RACCCATATTAGCTCTTAGTGAGG9 904y10F1ATGCGAAACCAACCAACCAATGTG9 199y10RAGAGGGAATGGATACTACAGG1 0274w11RTTGATCCCCAGTGGTAGCGGGAGTAGTAGG11 044w13RTACCGCGTTAGGCGTTAGGGGGATAGTAG11 654w14FCCTTTAGACCCATTGGGGTCTACGGG12 258y14FCTGTCCGGTTGGGTTGGGTTGGTTG11 258y14FCGCTATATATATTCTTATGGGCCTTCCC13 025w14FCCCCTATATATATTCTTATGGGAGGATAGG11 670y14FCTGCCATAGGCTTAGGGGGGATAGTAG14 1693y14FCCCCTATATATATTCTTATGGGAGGATAGG11 670y14FCGCCATAGGGCTTAGGGGAGGAGGGGAGGGGGGGGGGAGGGG13 615w15RCTAGCGGGAGCTGGG	g02R	CTATTCATTTCACAGGCAACCAGCT	2 019
g03F ACCCCGAAACTGAGCGAGCTACTCC 2 618 g03R TAAGCCCTCGTGATGCCATTCATAC 2 841 g04F TTTACCAAAAACATCGCCTTTG 3 254 g04R TGAACCTCTGTAGAAAGGCTTAGG 3 954 w04F TTCAGACCGGAGTAATCCAGGTCAG 4 020 g05R ATGTTCGGGGTATGGGCCCAAGAGC 5 107 w06F GTGCTTCCACTACCACCTTCCTAG 5 225 w06R GATGGCGACAGGAAGGTAAAGTGTGC 5 293 g06R AGCTTAATAAAGTATTTGTTTGC 5 931 w07R CTGGTTGAACGCGTTGTGTAAC 6 296 g07F AAACTAGACCAAGGGCCTTCAAAGC 6 407 w08R CAGAGGTAAAGTAAGCGCGTGTGTC 6 950 w08F1 CCCTTCACCTAGCAGAGATTCTCAATGC 7 498 g08R TAACCCACAATTGGGAGGAGCTACTGAAGG 7 908 w08F ACACGAATGTAGGAGGAGCTAACGG 8 555 w09F GGCCATCAGTGGTACTGAAGCTAGTGGT 9 169 g10R AGAGGCGAATGAATGAACTAACCC 10 459 w11R TGAGTGAGAGGTGTGTGGGTCACAGT 1 044 w13R TACCCCACATTGGGTCACATGTGTGGTAGTAG 1 599	w02F	TGTTCCGCTGAAATTGGCCCTGAAG	2 176
903R TAAGCCCTCGTGATGCCATTCATAC 2 841 904F TTTACCAAAAACATCGCCTCTTG 3 276 904R TGAACTCTGTAGAAAAGGCTTAGG 3 954 WOAF TTCAGACCGGAGTAATCCGGCTAGG 4 020 905R ATGTTCGGGGTATGGGCCCAAGAGC 5 026 WO5F AGTATGCTCTTATCGGAGCCCTTCG 5 027 WO6F GTGCTCCACTACACCACTTCTAG 5 225 W06R GATGGCGACAGGAAGAGTAAGTTGC 5 293 g06R AGCTTAATTAAAGTATTGTTTGC 5 931 W07R CTGGTTTGACGCGTTAGCTGTTACC 6 950 W08F CCAGAGGTATAGTCGAGGCGTGTGTC 6 950 W08F ACGCACAAATGGGAGCATACACG 7 498 g08R TAAGCCACAATGGGAGCATACACG 8 473 g09R ACCCATATTAGGTGCTAGAGGAG 7 908 w08F ACGCATAGTGGTAGAGCATATCACG 8 473 g09R ACCCATATTAGCTCCTAGGGGAGGAGGG 8 585 w09F GGCCATCAGTGGTAGACAACCACCATGCT 10 274 w11R TTGACTCTCCAGGGGAGGAGGAGGAGGAGGGGGGGGGGG	g03F	ACCCCGAAACTGAGCGAGCTACTCC	2 618
g04F TTTACCAAAACATCGCCTCTTG 3 276 g04R TGAACCTCTGTAGAAAAGGCTTAGG 3 954 w04F TTCAGACCGGAGTAATCCAGGTCAG 4 020 g05R ATGTTCGGGGTATGGCCCAAGAGC 5 026 w05F AGTATGCTCTTATCGGAGCCTTCG 5 107 w06F GTGCTTCCACTACACCACTTCCTAG 5 225 w06R GATGGCGACAGGAAGAGTAAGTTGC 5 931 w07R CTGGTTTGAGCGCTTAGCTGTTAAC 6 296 g07F AAACTAGCCAAGGGCTTCAAAGC 6 407 w08R CAGAGGTAAAGTAAGCGGGTGTGTC 6 950 w08F ACGCATAATTAGCTCTGACAAGG 7 498 g08R TAACCCACAATTCTGCCTTGACAAG 7 908 w08F ACACGAATGTGGAGTATCACAG 8 473 g09R ACCCATATTAGCTCTTAGTGAAGG 8 685 w09F GGCCATCAGTGGTACTGGAGCTATGG 9 904 w10F1 ATGAGGAGACCAATCAACCCATGCTC 10 274 w11R TTGAGTGAGGTTAGCGGGAGTAGTAG 10 459 w11F CTACACTTGGCTTAGGGGAGATAGAG 11 594 w14R ACCCCATATGGCTTAGGGGGAGAGGGGAGAGGG 11 670 <tr< td=""><td>g03R</td><td>TAAGCCCTCGTGATGCCATTCATAC</td><td>2 841</td></tr<>	g03R	TAAGCCCTCGTGATGCCATTCATAC	2 841
g04R TGAACCTCTGTAGAAAGGGCTTAGG 3 954 w04F TTCAGACCGAGGTAATCCAGGTCAG 4 020 g05R ATGTTCGGGGTATGGGCCCAAGAGC 5 026 w05F AGTATGCTCTATATGGGACCCTTCG 5 107 w06F GTGCTCCACTACACACCACTTCCTAG 5 225 w06R GATGCGGACAGGAAGAGTAAGTTGC 5 293 g06R AGCTTAATTAAAGTATTTGTTTTGC 5 931 w07R CTGGTTGAGCGCTTAGCTGGTAAC 6 296 g07F AAATTGACCCAAGGGCTTCAAGCG 6 407 w08R CAGAGGTAAAGTAGCGGTGTGTC 6 950 w08F1 CCCTTCACCTAGCAGGAGTTTCTTCAAATCC 7 165 g08R TAACCCACAATTGGCTGTGACAGG 7 498 g09R ACCCATATTAGCTGCTTGACAGG 8 473 g09R ACCCATATTAGCTGCTTAGAGG 8 685 w09F GGCCATCAGTGGTACTAAGCTATG 9 044 w10F1 ATGGTGAGAGTAAACCAACCAACCAATGTATG 9 044 w10F1 ATGGTGAGAGTAGATAGTGGC 10 274 w11R TTGACACTGAGCGTATGAAGGGCTAGTAG 10 44 w13R TACCTGCGTTTGGGTCCACAGT 11 044 <t< td=""><td>g04F</td><td>TTTACCAAAAACATCGCCTCTTG</td><td>3 276</td></t<>	g04F	TTTACCAAAAACATCGCCTCTTG	3 276
wO4F TTCAGACCGGAGTAATCCAGGTCAG 4 020 g05R ATGTTCGGGGTATGGGCCCAAGAGC 5 026 w05F AGTATGCTCTTATCGGAGCCTTCG 5 107 wO6R GATGGCGACAGGAAGAGTAAGTTGC 5 293 g06R AGCTTAATTAAAGTATTTGTTTGC 5 931 w07R CTGGTTTGAGCGCTTCAAAGC 6 296 g07F AAACTAGACCAAGGGCCTTCAAAGC 6 407 w08R CAGAGGTAAAGTAAGCGCGTGTGTC 6 950 w08F ACGCTACAATGCGAGGAATTTCTTCAATCC 7 165 g08F TAACCACCAATTCGCCTTGGACTAGCG 8 473 g09R ACCCATATTAGCTTCTAGTGAGG 7 998 w08F ACACGAATGTGGAGGACTACCAG 8 473 g09R ACCCATATTAGCTCTTAGTGAGG 9 064 w10F1 ATGGCGAACGACCAACCCATCCATGG 9 044 w10F1 ATGGCGAACGACCAACCCCATGCTC 10 274 w11R TTGACCCCCAGGTGTGGCGCCAAGGT 11 044 w12R1 TGAGGAGCTTGGGGTCAAGGT 11 044 w13R TACCTGCGCTTGAGAGGAGATAGG 12 58 g13F CTTTCCCGCTTGTGAGGAGCAAGG 12 58	g04R	TGAACCTCTGTAGAAAGGGCTTAGG	3 954
g05R ATGTTCGGGGTATGGGCCCAAGAGC 5 026 w05F AGTATGCCTTTATCGGAGCCCTTCG 5 107 w06F GTGCTTCCACTACACCACTCCTAG 5 225 w06R GATGGCGACAGGAGAGAGTAAGTTGC 5 931 w07R CTGGTTTGAGCGCTTAGCTGTTAAC 6 296 g07F AAACTAGACCAAGGGCTTCAAAGC 6 407 w08R CAGAGGTAAGGTAAGGCGTGTC 6 950 w08F ATGGGTATAGTCTGAGCATGATGAG 7 498 g08R TAACCCACAATTGGAGCTATGATGG 7 498 g08R TAACCCACATTCTGACCTGACAAG 7 908 w08F ACACCATATTAGCTCTAGAGGAGGACTACACG 8 473 g09R ACCCATATTAGCTCTAGAGGTATGG 9 169 g10R AGAGGCGAATGAATAAACTAATTG 9 904 w10F1 ATGCGAAACCAACCAACCCATGCTC 10 274 w11R TTGGACCACCACCATGCGTCGGAGGAGTAGG 11 044 w13R TACCTGCGTTTAGTGGGCCACAGT 11 044 w13R TACCTGCGTTGAGGGCTCAAGG 12 58 g13F CTTTCCCGCTTGGGGTCAAGG 11 58 g13F CTTCTCCGCTTGGGGGTCAAGG 11 593	wO4F	TTCAGACCGGAGTAATCCAGGTCAG	4 020
W05F AGTATGCTCTTATCGGAGCCCTTCG 5 107 W06F GTGCTTCCACTACACCACTTCCTAG 5 225 W06R GATGGCGACAGGAAGATAAGTTGC 5 293 g06R AGCTTAATTAAAGTATTGTTTTGC 5 931 W07R CTGGTTTGAGCGCTTAGCTGTTAAC 6 296 g07F AAACTAGACCAAGGGCCTTCAAAGC 6 407 W08R CAGAGGTAAAGTAAGCGCGTGTGTC 6 950 W08F1 CCCTTCACCTAGCAGGAATTTCTTCAATCC 7 165 g08F ATGGGTATAGTCTGAGCTATGATGG 7 498 g08R TAACCCACATTTGGCCTTGACAAG 7 908 w08F ACACGAATGTGGAGTGACTACACG 8 473 g09R ACCCATATTAGCTCTTAGTGGAGG 8 585 w09F GGCCATCAGTGGTACTGAAGCTATG 9 169 g10R AGGGGGAATGAATAAACTAATTG 9 904 w10F1 ATGGGAAGGTTGAGCAACCCAACCCAAGCT 10 274 w11R TTGATGGAAGTTAGGGTACGAAGG 10 274 w11R TTGATGGAGGTTACGAGGGAGTAGTGG 10 44 w13R TACCTGCGTTTAGTGCGTTGGGTTGG 11 258 g13F CTTTCTCCGCGTTGGAGGAGGAGTAGGG 11 594 <td>q05R</td> <td>ATGTTCGGGGTATGGGCCCAAGAGC</td> <td>5 026</td>	q05R	ATGTTCGGGGTATGGGCCCAAGAGC	5 026
wO6FGTGCTTCCACTACACCACTTCCTAG5 225w06RGATGGCGACAGGAAGAGTAAGTTGC5 233g06RAGCTTAATTAAAGTATTTGTTTTGC5 931w07RCTGGTTTGAGCGCTTAGCTGTTACC6 296g07FAAACTAGACCAAGGCCTTCTAAAGC6 407w08RCAGAGGTAAAGTAAGCGCGTGTGTC6 950w08F1CCCTTCACCTAGCAGGAATTTCTTCAATCC7 165g08FATGGTATAGTCTGAGCTAGATGG7 908w08FACACCAAATTCTGCACTGACTAGAGG7 908w08FACACGAATGTGGAGTGACTACAGG8 473g09RACCCATATTAGCTTCTAGTGAGG8 585w09FGGCCATCAGTGTACTGAAGCTATG9 044w10F1ATGCGAAACCAACCAACCCATGCTC10 274w11RTTGGCAAACCAACCAACCCATGCTC10 459w11FCTACACTTGGCTTAGGGTGACTAGAG11 644w13RTACCTGCGTTTAGTGGGTCACAGT11 044w13RTACCTGCGTTGGAAGCAAGG11 594w14FCCGTATAGTGCTACGGAGGAGTAGGG11 594w14FCTGTTGCAGGCTCAATGTCTTGC13 833g14RTTCGAGGAGCCTTGGGGTCTAACC12 358w14FCCTGTATATATTCTTATAGCCCACCGGAGG12 915w14F2GAACACTTCTTCTTGGGGGCTAAAGC13 515w15FTCGCCATAGTCATTCTAGTGGAAGAC14 216w17FTTACCACTCACCACCTTCTCAGC13 632w16FCCACAGCTTGATGTGGAGGAACAC14 216w17FTTACCACTCACCACCTTCTCCAAC14 893w18RAGCAAAGGCCGAGTAGGGAACCAAAGCAACCAACGAACCAACC	w05F	AGTATGCTCTTATCGGAGCCCTTCG	5 107
w06RGATGGCGACAGGAAGAGTAAGTTGC5 293g06RAGCTTAATTAAAGTATTTGTTTGC5 931w07RCTGGTTTGAGCGCTTAGCTGTTAAC6 296g07FAAACTAGCGAAGGGCCTTCAAAGC6 407w08RCAGAGGTAAAGTAAGCGCGTGTGTC6 950w08F1CCCTTCACCTAGCAGGAATTTCTTCAATCC7 165g08FATGGGTATAGTTGGAGCTATGACAG7 908w08FACAACGAATGTGGAGGTGACTACAGG8 473g09RACCCATATTAGCTGGAGTGACTACAGG8 585w09FGGCCATCAGTGGTACTGAAGGTAACTAG9 169g10RAGAGGGCGAATGAATAAACTAATTG9 904w10F1ATGCGAAACCAACCCATGCTC10 274w11RTTGACTCTCCCACGGTACGGGTAGTAGG11 549w11FCTACACTTGACCCATTGAAGGTACGGG11 594w12R1TGAGTGAGAGTGTGGGGTCACAGT11 044w13RTACCTGCGTTTGGAGCAGCAGGGAGTAGGG11 594w14FCCGATTAGTGTTGGGGTCACAGT11 893g14RTTCGAGGGAGCCTTGGGGTCTAACC12 358w14FCCTGTTGCAGGCTTAGGGGTCTAACC13 025w14FCTGTTGCAGGCTTAGTGGAGCAGGG13 515w15FTGCCCATAGTCATTCTAGTGACAGC13 535w16RGCTGTTTGTTAGGAGGACTAGTC13 842w16FCCACAGCTTGAGGATAAGTCGAGGAAC14 216w17FTTACCACTCCACCACTTCTCCCAAC14 893w18RAGCAAAGGCCGAGTAGGGAACCAAAGTTG14 915w18RAGCAAAGGCCGAGTAGGGAACCAAAGCTACACC14 639w18FCCGCTACAACCAACCACCCTAAAGC15 631w18FCCGCCATATTTTGGTTATCGAGGAACCAACCAACCAACCA	wO6F	GTGCTTCCACTACACCACTTCCTAG	5 225
g06RAGCTTAATTAAAGTATTTGTTTTGC 5931 $w07R$ CTGGTTGAGCGCTTAGCTGTAAC 6296 $g07F$ AAACTAGACCAAGGGCCTTCAAAGC 6407 $w08R$ CAGAGGTAAAGTAAGCGGTGTC 6950 $w08F$ ACGGTATAGTCTGAGCATGATGG 7498 $g08F$ ATGGGTATAGTCTGAGCTATGATGG 7498 $g08R$ TAACCCACAATTCGCCTTGACAAG 7908 $w08F$ ACAACGAATGTGGGAGTGACTACACG 8473 $g09R$ ACCCATATTAGCTGTAGGAGCAACACG 8473 $g09R$ ACCCATATTAGCTCAGAGGTAATGAGG 8585 $w09F$ GGCCATCAGTGGTACTGAAGCTATG 9169 $g10R$ AGAGGCGAATGAATAAACTAATTG 9904 $w10F1$ ATGCGAAACCAACCAACCCATGCTC 10274 $w11R$ TTGACTCCCCCAGGGTAGGAGGAGTAGGG 10459 $w11F$ CTACACTTGACCCAATGTGTGGGTCACAGT 11044 $w12R1$ TGAGTGAGAGTTGTGGGTCACAGT 11044 $w13R$ TACCCGCTTTGAGCGCGGTTGG 11258 $g13F$ CTTTCTCCGCTTGGAGGCCAAGG 11594 $w14R$ ACCCATATGGCTTAGGGGTCAAAG 11594 $w14F$ CCCCATATGGCTTGAGGGCCCATAGC 12358 $w14F$ CCTCTATATATTTCTTATAGCCCGCGGG 12558 $w14F$ CTGCCATAGTCATAGGCAGGCAAGAC 14219 $w17R$ TAACGCGAGGATAAGGCGAGCAAGAC 14219 $w17R$ TAACGCGAGGATAGGGAGCAAGAC 14219 $w17R$ TAACGCGAGGATAGGGAGCAAGAC 14219 $w17R$ TAACGCGAGGATAGGGAGCAAGAC 14219 $w17R$ TAACGCGAGATAGGCGAGGAAGACCAAAGCACAAGCA 14219	w06R	GATGGCGACAGGAAGAGTAAGTTGC	5 293
W07R CTGGTTTGAGCGCTTAGCTGTTAAC 6 296 g07F AAACTAGACCAAGGGCCTTCAAAGC 6 407 W08R CAGAGGTAAAGTAAGGGCGTGTGTC 6 950 w08F1 CCCTTCACCTAGCAGGAATTTCTTCAAATCC 7 165 g08F ATGGGTATAGTTCGAGCTATGATGG 7 498 g08R TAACCCACAATTCTGCCTTGACAAG 7 908 w08F ACACCACAATTCTGCCTTGACAAG 7 908 w08F ACACCACAATTCTGGCTATCAAGG 8 473 g09R ACCCCATATTAGCTCTAAGTGAGG 8 585 w09F GGCCATCAGTGGTACTGAAGCTATG 9 169 g10R AGAGGGCGAATGAATAAACTAATTG 9 904 w10F1 ATGCGAAACCAACCAACCCATGCTC 10 274 w11R TTGATCTCCAGGGTAGGGAGGATAGTAG 10 44 w13R TACCTGCGTTTAGTCGTTCGGTTGG 11 258 g13F CTTTCTCCGCTTTGGAGCACAGG 11 670 g14F CTGTTGCAGGCTCAATAGTTCTCTGC 12 358 w14F CCCATATGCTTAGTGTGTGGGGCCAAGGAC 14 593 g14R TTCGAGGGAGCCTTGGGGTCAACGC 13 535 w14F CCTGTTGTTGTATGTTAGTGTGAGGAACC 14 519 <td>q06R</td> <td>AGCTTAATTAAAGTATTTGTTTTGC</td> <td>5 931</td>	q06R	AGCTTAATTAAAGTATTTGTTTTGC	5 931
g07F AAACTAGACCAAGGGCCTTCAAAGC 6 407 w08R CAGAGGTAAAGTAAGCGCGTGTGTC 6 950 w08F1 CCCTTCACCTAGCAGGAATTTCTTCAATCC 7 165 g08F ATGGGTATAGTCTGAGCTATGATGG 7 498 g08R TAACCCACAATTCTGCCTTGACAAG 7 908 w08F ACACGAATGTGGAGTGACTACACG 8 473 g09R ACCCATATTAGCTCTTAGTGAGG 8 585 w09F GGCCATCAGTGGTACTGAAGCTATG 9 169 g10R AGGGGGGAATGAATAAACTAATTG 9 904 w10F1 ATGCGAAACCAACCAACCCAACCCATGTGA 10 459 w10F1 ATGCGAAGCAACCAACCAACCAACGACC 10 274 w11R TTGATGGAGAGTTGTGGGTACGGGGAGTAGTAG 10 459 w11F CTACACTTGACCCATTGAAGTGCTC 10 274 w12R1 TGAGTGACGAGTTAGTGGTCCACAGT 11 444 w13R TACCTGCGTTTAGGGTACGAGGT 11 258 g13F CTTTCTCCGCTTGGAGGTAGG 11 594 w14R ACCCATATGGCTTACGGAGGAGTAGG 12 515 w14F CGTGTTGCTAGGGTTAACC 12 358 g14F CTGTGTGCAGGCTTAGGGCTTAACC 12 355	w07R	CTGGTTTGAGCGCTTAGCTGTTAAC	6 296
W08R CAGAGGTAAAGTAAGCACGCGTGTGTC 6 950 W08F1 CCCTTCACCTAGCAGGAATTTCTTCAATCC 7 165 g08F ATGGGTATAGTCTGAGCTAGATGG 7 498 g08R TAACCCACAATTCTGCACTTGACAAG 7 908 w08F ACACGAATGTGGAGTGACTACACG 8 473 g09R ACCCATATTAGCTTGTGAGTGACTACACG 8 473 g09R ACCCATATTAGCTTCTAGTGAGG 8 585 w09F GGCCATCAGTGGTACTGAAGCTATG 9 904 w10F1 ATGGGAAACCAACCAACCAACCATATTG 9 904 w10F1 ATGGGAAACCAACCAACCAACCAACGAGTAGTAG 10 459 w11F CTACACTTGACCATTGAAGTGCC 10 812 w12R1 TGAGTGAGAGTTATGGGTCACAGT 11 044 w13R TACCTGCGTTTGGAGTCACAGT 11 044 w13R TACCTGCGTTGGAGGTCACAGT 11 670 g14F CTGTTGCAGGCTCAATAGTCTTGC 11 893 g14R TTCGAGGAGCCTTGGGGGTCAACC 12 258 w14F CCCCTATATTCTTATGGCCTTCACC 13 025 w14F2 GAACACTCTCTTATGTGGAGAGAC 14 519 w14F2 GAACACTCTTCTTAGGGCTTACACC 13 515 <td>q07F</td> <td>AAACTAGACCAAGGGCCTTCAAAGC</td> <td>6 407</td>	q07F	AAACTAGACCAAGGGCCTTCAAAGC	6 407
w08F1 CCCTTCACCTAGCAGGAATTTCTTCAATCC 7 165 g08F ATGGGTATAGTCTGAGCTATGATGG 7 498 g08R TAACCCACATTCTGCCTTGACAAG 7 908 w08F ACAACGAATGTGGAGGAGTGACTACACG 8 473 g09R ACCCATATTAGCTCTGAGCAGG 8 585 w09F GGCCATCAGTGGTACTGAAGGAGG 9 904 w10F1 ATGCGAAACCAACCAACCATGCTC 10 274 w11R TTGACTCCCACGGGTAGCGGGAGTAGTAG 10 459 w11F CTACACTTGACCCATGCTC 10 812 w12R1 TGAGTGAGAGTTGTGGGTCACAGT 11 044 w13R TACCCGCGTTTAGTGGGTCACAGT 11 644 w13R TACCCGCTTGGAGGTCACAGT 11 044 w13R TACCCGCGTTGGAGGTCACAGT 11 893 g14F CTGTTGCAGGCTCAATAGTCTTGC 12 88 w14F CCCCATATGCCTTGCGGGGTCTAACC 12 88 w14F CCTCTATATATTCTTATAGCCCACGGGGG 12 515 w14F2 GAACATCTTCTTATGGTCTGACG 13 032 g14R TTCGAGGAGCTATGTCAGGCAAGAC 14 893 w14F2 GAACATCTTCTTATGTCTACC 13 035 <t< td=""><td>w08R</td><td>CAGAGGTAAAGTAAGCGCGTGTGTC</td><td>6 950</td></t<>	w08R	CAGAGGTAAAGTAAGCGCGTGTGTC	6 950
g08FATGGGTATAGTCTGAGCTATGATGG7 498g08RTAACCCACAATTCTGCCTTGACAAG7 908w08FACACCGAATTGGCAGTGACTACACG8 473g09RACCCATATTAGCTCTTAGTGAGG8 585w09FGGCCATCAGTGGTACTGAGAGCATATG9 169g10RAGAGGGCGAATGAATAAACTAATTG9 904w10F1ATGCGAAACCAACCAACCCATGCTC10 274w11RTTGATCTCCTCAGGGTAGCGGGAGTAGGAGTAGG10 459w11FCTACACTTGACCCATTGAAGTGCC10 812w12R1TGAGTGAGAGTTGTGGGTCACAGT11 044w13RTACCGCGTTTAGTCGTTCGGTTGG11 258g13FCTTTCTCCGCTTGGAAGCAAG11 594w14RACCCATATGGCTCAGGGTAGG11 670g14FCTGTTGCAGGCTCAATAGTCTTGC12 358w14FCCTCTTATATATTCTTATAACCCAGCGAGG12 515w14F2GAACATCTTCTTATGGCCCTCTCACC13 255w15FTCGCCATAGTCATTCTAGTGACAGC13 515w15FTCGCCATAGTCATTCTAGTGACAGC13 842w16FCCACAGCTTGATGATGAGGAACC14 216w17RTAACGCGAGGATAGGCAAGAC14 216w17RTAACGCGAGGATAGGCAAGACC14 216w17RTAACGCGAGGATAGGGAACCAAAGACC14 915w18RAGCAAAGGCCGAGTAGGGAACCAAAGCTTCG14 933w18FCCGCTACAACGAACCAACCAAACCAACCAACGCACGAG15 631w18FCCGCATACGAAACAACCAACCAAACCAACCACCCTAAGC15 631w18FCCGCATACGAAACCAACCAACCAACCACCCTAAGC15 631w18FCCGCATCAACGAAACCAACCAACCAACCAACCACC16 060g19FGAGGAGGTTTCTCAGTGAGAAATACCACC16 174	w08F1	CCCTTCACCTAGCAGGAATTTCTTCAATCC	7 165
008R TAACCCACAATTCTGCCTTGACAAG 7 908 w08F ACAACGAATGTGGAGTGACTACACG 8 473 g09R ACCCATATTAGCTTCTTGGAGG 8 473 g09R ACCCATATTAGCTTCTTGGAGG 8 585 w09F GGCATCAGTGGTACTGAAGCTATG 9 169 g10R AGAGGCGAATGAATAAACTAATTG 9 904 w10F1 ATGCGAAACCAACCAACCCATGCTC 10 274 w11R TTGATCTCCTCAGGGTAGCGGGAGTAGTAG 10 459 w11F CTACACTTGACCATTTCAAGTGCC 10 812 w12R1 TGAGTGAGAGTTGTGGGTCACAGT 11 044 w13R TACCGCGTTAGTGGAACCAAG 11 594 w14R ACCCCATATGGCTTACGGAGGAGTAGG 11 670 g14F CTGTTGCAGGCTCAATAGTCTTGC 12 858 g14F CTGTTGGAGGCTCTAGGGCTCAACC 12 358 w14F CCTCTATATATTTCTTATAACCCAGCGGAGG 12 915 w14F2 GAACATCTTCTTATGGCCTTCACC 13 025 w15F TCGCCATAGTGATGATGAGAAAGC 13 515 w15F TCGCCATAGTGATGACAGCAC 14 216 w16F CCACAGCTTGAATGTTCTAGGAAGACC 14 216	q08F	ATGGGTATAGTCTGAGCTATGATGG	7 498
W08F ACAACGAATGTGGAGTGACTACACG 8 473 g09R ACCCATATTAGCTTCTTAGTGAGG 8 585 W09F GGCCATCAGTGGTACTGAAGCTATG 9 169 g10R AGAGGCGAATGAATAAACTAATTG 9 904 W10F1 ATGCGAAACCAACCAACCCAACGTC 10 274 w11R TTGATCTCCTCAGGGTAGCGGGAGTAGTAG 10 459 w11F CTACACTTGACCCATTGAAGTGC 10 812 w12R1 TGAGTGGAGAGTTGTGGGTCACAGT 11 044 w13R TACCTGCGTTTAGGACTCCGGTTTG 11 258 g13F CTTTCTCCGCTTGGAAGCAAG 11 594 w14R ACCCATATGGCTTACGGAGGAGTAGG 11 670 g14F CTGTTGCAGGCTCAATAGTCTTGC 12 358 w14R ACCCATATGGCTTACGGAGGAGTAGG 12 915 w14F CCTCTATATATTTCTTATAGCCCAGCGAGG 12 915 w14F CTGTGTGGCTTGATGTGAGAAAGC 13 025 w14F CTAGCTGGCTTGATGTGAGAAAGC 13 515 w15F TCGCCATAGTCATTCTAGGAAAGC 13 632 w16F CCAAGCTTGATGTGTGAGAAAGC 13 632 w16F CCACAGCTTGAATGTAGCGAAGAAC 14 216 </td <td>a08R</td> <td>TAACCCACAATTCTGCCTTGACAAG</td> <td>7 908</td>	a08R	TAACCCACAATTCTGCCTTGACAAG	7 908
g09RACCCATATTAGCTTCTTAGTGAGG8 585w09FGGCCATCAGTGGTACTGAAGCTATG9 169 $g10R$ AGAGGCGAATGAATAAACTAATTG9 904w10F1ATGCGAAACCAACCAACCCATGCTC10 274w11RTTGACTCCTCAGGGTACCGGGAGTAGTAG10 459w11FCTACACTTGACCCATTGAAGTGCC10 812w12R1TGAGTGAGAGTTGTGGGTCACAGT11 044w13RTACCTGCGTTTGGATGCGTTGGGTTGG11 594w14RACCCATATGCTTGGGAGCAAG11 670g14FCTGTTGCAGGGCTCAATAGTCTTGC12 358w14F2GAACACCTTGTGGAGCCTTAGCGGAGGG12 915w14F2GAACATCTTCTTATGCCCTTCACC13 025w15FTCGCCATAGTCATGTGGAGCAAGC13 515w16FCCACAGCTTGATGTTGGAGCAAGC13 535w16FCCACAGCTTGATGTTGGAGCAAGC14 219w17FTTACCACTCCACCACTCTCCCAAC14 893w18RAGCAAAGGCCGAGTAGGGAACCAAAGTTG14 915w18FCCGCATAGTCATGGAGGAACCAAAGTTG14 915w18FCCGCATAGTAGGAAACCCAACGTTGG15 593w18FCCGCATAGTAGAGAAGCCCCTCAAGC15 631cytb811RCTGCCATTTTTGGTTTGTTAGGGAACACAACCAACCA16 060g19FGAGGAGGTTTCTCAGTAGAGAAACCAACCAACCCAACCC	w08F	ACAACGAATGTGGAGTGACTACACG	8 473
W09F GGCCATCAGTGGTACTGAAGCTATG 9 169 g10R AGAGGCGAATGAATAAACTAATTG 9 904 w10F1 ATGCGAAACCAACCAACCAATGATG 10 274 w11R TTGACTCCCCAGGGTAGCAGGAGTAGTAG 10 274 w11R TTGATCTCCCCAGGGTAGCAGGAGTAGTAG 10 459 w11F CTACACTTGACCCATTGAAGTGCC 10 812 w12R1 TGAGTGAGAGTTGTGGGTCACAGT 11 044 w13R TACCTGCGTTTGAAGCAAG 11 594 w14R ACCCATATGGCTTGGAGGACAAGG 11 594 w14R ACCCATATGGCTTGGGGTCTAACG 12 358 g14F CTGTTGCAGGGCTCAATAGTTCTTGC 11 893 g14R TTCGAGGGAGCCTTGGGGGTCTAACC 12 358 w14F CCTCTATATATTCTTATAGCCCATCCACC 13 025 w14F2 GAACATCTTCTTATGGTCAGTCAGCGAGG 13 515 w15F TCGCCATAGTCATTCTAGGACGCCAAGAC 14 216 w16R GCTTGTTGATGATGAGGAAGACC 14 216 w17F TTACGCGAGGATAAGCGAGGAAGAC 14 519 w17F TTACCACTCACCACTCTCCCAAC 14 893 w18R AGCAAAGGCCGAGTAGGGAACAAACCAAACCAAACCAACC	a09R	ACCCATATTAGCTTCTTAGTGAGG	8 585
g10R AGAGGGCGAATGAATAAACTAATTG 9 904 w10F1 ATGCGAAACCAACCAACCCATGCTC 10 274 w11R TTGATCTCCTCAGGGTACCGGGAGTAGTAG 10 459 w11F CTACACTTGAAGCCATTGAAGTGCC 10 812 w12R1 TGAGGAGAGTTGTGGGTCACAGT 11 044 w13R TACCTGCGCTTTAGTCGGTTGG 11 258 g13F CTTTCTCCGCTTGTGAAGCAAG 11 594 w14R ACCCATATGGCTTACGGAGGAGTAGG 11 670 g14F CTGTGGAGGCCTAATAGTCCTTGC 12 358 g14R TTCGAGGGAGCCTTGGGGTCTAACC 12 358 w14F CCTCTATATATTTCTTATAACCCAGCGAGGG 12 915 w14F2 GAACATCTTCTATGGGCCCTTCACC 13 025 w15F TCGCCATAGTGATGTTGTGAGAAAGC 13 515 v15F TCGCCATGATGTTGTAGGAGCAGC 13 842 w16F CCACAGCTTGAATGACGAGCAACAC 14 216 w17R TAACGCGAGGATTAAGTCGAGGAAC 14 519 w17F TTACCACTCCACCACTTCTCCCAAC 14 893 w18R AGCAAAGCCAACCAACCAACCAAAGCAAACCAAAGCA 14 915 wCytbR GTTGTCAAATGAGAAGCCCCTCCAG	w09F	GGCCATCAGTGGTACTGAAGCTATG	9 169
w10F1 ATGCGAAACCAACCAACCCATGCTC 10 274 w11R TTGATCTCCTCAGGGTAGCGGAGTAGTAG 10 459 w11F CTACACTTGACCATTTGAAGTGCC 10 812 w12R1 TGAGTGAGAGTTGTGGGTCACAGT 11 044 w13R TACCTGCGTTTAGTCGGTTCGGTTG 11 258 g13F CTTTCTCCGCTTGTGAAGCAAG 11 594 w14R ACCCATATGGCTTACGGAGGAGTAGG 11 670 g14F CTGTTGGCAGGCTCAATAGTCTTGCC 12 358 w14F CCTCTATATATTTCTTATAACCCAGCGAGG 12 915 w14F2 GAACATCTTCTTATGGCCTTCACC 13 025 w15R CTAGCTGGCTTGATGTGAGAAAGC 13 515 w15F TCGCCATAGTCATTCTAGTGACAGC 13 535 w16F CCACAGCTTGAATGTTGAGGAACC 14 216 w17F TTACCACTCCACCACTTCTCCAAC 14 893 w18R AGCAAAGCAAACCAACCAACCAAACCAAACCAACCAACC	g10R	AGAGGGCGAATGAATAAACTAATTG	9 904
w11RTTGATCTCCTCAGGGTAGCGGAGTAGTAG10 459w11FCTACACTTGACCCATTTGAAGTGCC10 812w12R1TGAGTGAGAGTTGTGGGTCACAGT11 044w13RTACCTGCGTTAGTCGTCGGTTTG11 258g13FCTTTCTCCGCTTGGAAGCAAG11 594w14RACCCATATGGCTTACGGAGGAGTAGG11 670g14FCTGTTGCAGGCTCAATAGTCCTGC12 838g14FCTGTTGCAGGGCCTAATAGTCCTGC12 358w14FCCTCTATATATTCTTATAACCCAGCGAGG12 915w14F2GAACATCTTCTTATGGCCTTCACC13 025w15FTCGCCATAGTCATTCTAGTGACAAGC13 535w16FCCACAGCTTGAATGACGAGCAAGAC14 216w17FTTACCACTCCACCACTCTCCAAC14 893w17FTTACCACTCCACCACTTCTCCAAC14 893w18FAGCAAAGGCCGAGTAGGGAACCAAAGTTG14 915w18FCCGCTACAACCAACCCAACCTCAAGC15 593w18FCCGCACAACTGAAGAACCCCTCAAGC15 631cytb811RCTGCCATTTTTGGTTTACAACAC16 060g19FGAGGAGGTTTCCCAGTAGATAATGC16 174	w10F1	ATGCGAAACCAACCAACCCATGCTC	10 274
w11FCTACACTTGACCCATTTGAAGTGCC10 812w12R1TGAGTGAGAGTTGTGGGTCACAGT11 044w13RTACCTGCGTTTAGTGTGGGTCACAGT11 258g13FCTTTCTCCGCTTGGAAGCAAG11 594w14RACCCATATGGCTTAGGAGGAGTAGG11 670g14FCTGTTGCAGGGCCTAATAGTCTTGC11 893g14RTTCGAGGGACCTTGGGGTCTAACC12 358w14FCCTCTATATATTTCTTATAACCCAGCGAGG12 915w14F2GAACATCTTCTTATGGCCCTCCACC13 025w15FTCGCCATAGTCATTCTAGTGACAGC13 535w16FCCACAGCTTGAATGACGAGGAAC14 216w17FTTACCCAGCAGAGACTAAGTCGAGGAAC14 519w17FTTTACCACTCCACCACCTCTCCAAC14 893w18RAGCAAAGGCCGAGTAGGGAACCAAAGTTG14 915w07bRGTTGTCAACTGAGAAACCAAACCAAACCAACCTAAGC15 593w18FCCGCTACAACCAAACCAAACCAAACCAACC16 060g19FGAGGAGGTTTCTCAGTAGAGAAATATGC16 174	w11R	TTGATCTCCTCAGGGTAGCGGGAGTAGTAG	10 459
w12R1 TGAGTGAGAGTTGTGGGTCACAGT 11 044 w13R TACCTGCGTTTAGTCGTTCGGTTG 11 258 g13F CTTTCTCCGCTTGGAAGCAAG 11 594 w14R ACCCATATGGCTTAGGGAGGAGTAGG 11 670 g14F CTGTTGCAGGCTCAAGTCTTGC 11 893 g14R TTCGAGGGAGCCTTGGGGTCTAACC 12 358 w14F CCTCTATATATTTCTTATAACCCAGCGAGG 12 915 w14F2 GAACATCTTCTTATGGCCCTCTCACC 13 0325 w15F TGCCCATAGTCATTCTAGGACAGC 13 515 w15F TCGCCATAGTCATTCTAGGACAGC 13 535 w16R GCTTGTTTGTTAGGGAGCTAGTC 14 893 w17R TAACGCGAGGATAAGGCAGGAAGAC 14 216 w17R TAACGCGAGGATAGGGAACCAAAGTTG 14 915 w17R AGCAAAGGCCGAGTAGGGAACCAAAGTTG 14 915 w17R AGCAAAGGCCGAGTAGGGAACCAAAGTTG 14 915 w17R GTGTCAACTGAAGAAGCCCCTCAAG 15 593 w18F CCGCTACAACCAAACCAAACCAAACCAAACCAAACCAACC	w11F	CTACACTTGACCCATTTGAAGTGCC	10 812
w13R TACCTGCGTTTAGTCGTTCGGTTTG 11 258 g13F CTTTCTCCGCTTGTGAAGCAAG 11 594 w14R ACCCATATGGCTTACGGAGGAGTAGG 11 670 g14F CTGTTGCAGGCCAATAGTCTTGC 11 893 g14R TTCGAGGGAGCCTTGGGGTCTAACC 12 358 w14F CCTCTATATATTTCTTATAACCCAGCGAGG 12 915 w14F2 GAACATCTTCTATGGCCTTCACC 13 025 w15F TCGCCATAGTGTTAGTGACAGC 13 515 w15F TCGCCATAGTGTTAGGGAGGCAGCAC 13 842 w16F CCACAGCTTGAATGACGAGCAAGAC 14 519 w17F TTACCACTCCACCACTTCTCCAAC 14 893 w17F TTACCACTCCACCACTTCTCCAAC 14 893 w18R AGCAAAGGCCGAATAGGGAACCAAAGAC 14 519 w17F TTACCACTCGAGGATAAGGCACCAAAGTTTG 14 915 wCytbR GTTGTCAAACGAAAGCACCAACCAAAGTTTG 14 519 w18F CCGCTACAACCGAAGCACCAAGCAAAGCA 15 593 w18F CCGCTACAAACCAAACCAAACCAAAGCA 15 631 cytb811R CTGCCATTTTTGGTTTACAACCA 16 060 g19F GAGGAGGTTTCCAAGTAGAAAAATACCA	w12R1	TGAGTGAGAGTTGTGGGTCACAGT	11 044
g13F CTTTCTCCGCTTGTGAAGCAAG 11 594 w14R ACCCATATGGCTTACGGAGGAGTAGG 11 670 g14F CTGTTGCAGGCTCAATAGTTCTTGC 11 893 g14R TTCGAGGGACCTAGGGCTCTAACC 12 358 w14F CCTCTATATATTTCTTATAACCCAGCGAGGG 12 915 w14F2 GAACATCTTCTTATGGCCTTCACC 13 025 w15R CTAGCTGGCTTGATGTTGAGAAAGC 13 515 w15F TCGCCATAGTCATCTAGTGACAGCA 13 535 w16F CCACAGCTTGAATGACGAGCAAGAC 14 216 w17R TTAACGCGAGGATTAAGTCGAGGAAC 14 519 w17F TTTACCACTCCACCACTTCTCCAAC 14 893 w18R AGCAAAGGCCGAGTAGGGAACCAAAGTTG 14 915 wCytbR GTTGTCAACTGAGAAGACCCCTCCAG 15 593 w18F CCGCTACAACCAACCCACCTCTCAG 15 631 cytb811R CTGCCATTTTTGGTTTACAACCA 16 060 g19F GAGGAGGTTTCCAGGTAGATAATGC 16 174	w13R	TACCTGCGTTTAGTCGTTCGGTTTG	11 258
w14R ACCCATATGGCTTACGGAGGAGTAGG 11 670 g14F CTGTTGCAGGCTCAATAGTTCTGC 11 893 g14F CTGTTGCAGGCTCAATAGTTCTGC 12 838 g14R TTCGAGGGAGCCTTGGGGTCTAACC 12 358 w14F CCTCTATATATTTCTTATAACCCAGCGAGG 12 915 w14F2 GAACATCTTCTTATGGCCTTCACC 13 025 w15R CTAGCTGGCTTGATGTGAGAAAGC 13 515 w15F TCGCCATAGTCATCTAGTGACAGCC 13 635 w16F CCACAGCTTGAATGACGAGCAAGAC 14 216 w17R TAACGCGAGGATTAAGTCGAGGAAAC 14 519 w17F TTTACCACTCCACCACTTCTCCAAC 14 893 w18R AGCAAAGGCCGAGTAGGGAACCAAAGTTG 14 915 w07bR GTTGTCAACTGAGAAACCACCTTCAG 15 593 w18F CCGCTACAACCAACCCAACCTAAAGC 15 631 cytb811R CTGCCATTTTTGGTTTACAACCA 16 060 g19F GAGGAGGTTTCTCAGTAGAGAAATAGC 16 174	g13F	CTTTCTCCGCTTGTGAAGCAAG	11 594
g14F CTGTTGCAGGCTCAATAGTTCTTGC 11 893 g14R TTCGAGGGAGCCTTGGGGTCTAACC 12 358 w14F CCTCTATATATTTCTTATAACCCAGCGAGG 12 915 w14F2 GAACATCTTCTTATGGCCCTTCACC 13 025 w15R CTAGCTGGCTTGATGTTCAGAAAGC 13 515 w15F TCGCCATAGTCATCTAGTGACAGC 13 535 w16R GCTTGTTGTTGTGAGGAGCAAGAC 14 216 w17F TTACCACTCCACCACTCTCCCAAC 14 893 w18R AGCAAAGGCCGAGTAGGGAACCAAAGTTG 14 915 w07bR GTTGTCAACTGAGAAGACCCCTCAAG 15 593 w18F CCGCTACAACCAACCCAACCTAAGC 15 693 w18F CCGCTACAACAACAACCAACCAAACCAAACCA 16 060 g19F GAGGAGGTTTCCCAGTGAGAAAATGC 16 174	w14R	ACCCATATGGCTTACGGAGGAGTAGG	11 670
g14R TTCGAGGGAGCCTTGGGGTCTAACC 12 358 w14F CCTCTATATATTTCTTATAACCCAGCGAGG 12 915 w14F2 GAACATCTTCTTATGGCCCTTCACC 13 025 w15R CTAGCTGGCTTGATGTGAGAAAGC 13 515 w15F TCGCCATAGTCATGTGAGAAGC 13 842 w16F CCACAGCTTGAATGACGAGCAAGAC 14 216 w17R TAACGCGAGGATAAGTCGAGGAAC 14 519 w17F TTACCACTCCACCACTCTCCCAAC 14 893 w18R AGCAAAGGCCGAAGGAAGCAAAGATC 15 53 w18F CCGCTACAACAACCAACCAAAGTTG 15 93 w18F CCGCTACAACAACCAACCCAAAGTTG 15 631 cytb811R CTGCCATTTTTGTTACAACCAC 16 060 g19F GAGGAGGTTTCCAGGTAGAGATAATGC 16 174	q14F	CTGTTGCAGGCTCAATAGTTCTTGC	11 893
w14F CCTCTATATATTTCTTATAACCCAGCGAGG 12 915 w14F2 GAACATCTTCTTATGGCCCTTCACC 13 025 w15R CTAGCTGGCTTGATGTTAGGAAGC 13 515 w15F TCGCCATAGTCATCTAGTGACAGC 13 842 w16F CCACAGCTTGAATGACGACGACAACAC 14 216 w17R TAACGCGAGGATAAGTCGAGGAAC 14 519 w17F TTACCACTCCACCACTTCTCCAAC 14 893 w18R AGCAAAGGCCGAAGAACCCAACGTTG 15 533 w18F CCGCTACAACTGAGAAGGCACCAAAGTTTG 14 915 wCytbR GTTGTCAACTGAGAAGCCCCTCAG 15 631 cytb811R CTGCCATTTTTGTTTACAACCAC 16 060 g19F GAGGAGGTTTCCAAGTAGAGATAATGC 16 174	g14R	TTCGAGGGAGCCTTGGGGTCTAACC	12 358
w14F2 GAACATCTTCTTATGGCCCTTCACC 13 025 w15R CTAGCTGGCTTGATGTTGAGAAAGC 13 515 w15F TCGCCATAGTCATCTAGTGACAGC 13 535 w16R GCTTGTTGTTAGGGAGCTAGTTC 13 842 w16F CCACAGCTTGAATGACGAGCAAGAC 14 216 w17R TAACGCAGGGATTAAGTCGAGGAAC 14 519 w17F TTTACCACTCCACCACTCTCCCAAC 14 893 w18R AGCAAAGCCGAGTAGGGAACCCAAGTTTG 14 515 wCytbR GTTGTCAACTGAGAAGCCCCTCAGG 15 593 w18F CCGCTACAACCAACCCAACCCTAAAGC 16 060 g19F GAGGAGGTTTCTCAGTAGAGAAACACA 16 174	w14F	CCTCTATATATTTCTTATAACCCAGCGAGG	12 915
w15RCTAGCTGGCTTGATGTGAGAAAGC13 515w15FTCGCCATAGTCATCTAGTGACAGC13 635w16RGCTTGTTGTTAGGAGGACAGTC13 842w16FCCACAGCTTGAATGACGAGCAAGAC14 216w17RTAACGCGAGGATTAAGTCGAGGAAC14 519w17FTTTACCACTCCACCACTCTCCCAAC14 893w18RAGCAAAGGCCGAGTAGGGAACCAAAGTTG15 593w18FCCGCTACAACCAACCCTACGC15 631cytb811RCTGCCATTTTTGGTTACAACCA16 060g19FGAGGAGGTTTCCCAGTAGAGATAATGC16 174	w14F2	GAACATCTTCTTATGGCCCTTCACC	13 025
w15F TCGCCATAGTCATTCTAGTGACAGC 13 535 w16R GCTTGTTTGTTAGGGAGGCTAGTTC 13 842 w16F CCACAGCTTGAATGACGAGGACAGAC 14 216 w17R TAACGCGAGGATAAGTCGAGGAAC 14 519 w17F TTTACCACTCCACCACTTCTCCCAAC 14 993 w18R AGCAAAGGCCGAGTAGGGAACCAAAGTTG 14 915 w07tbR GTTGTCAACTGAGAAGACCCTCTAG 15 593 w18F CCGCTACAACCAACCTAAAGC 15 631 cytb811R CTGCCATTTTTGGTTTACAACAC 16 060 g19F GAGGAGGTTTCTCAGTAGATAATGC 16 174	w15R	CTAGCTGGCTTGATGTTGAGAAAGC	13 515
w16RGCTTGTTTGTTAGGGAGGCTAGTTC13 842w16FCCACAGCTTGAATGACGAGCAAGAC14 216w17RTAACGCGAGGATTAAGTCGAGGAAC14 519w17FTTTACCACTCCACCACTTCTCCAAC14 893w18RAGCAAAGGCCGAGTAGGGAACCAAAGTTG14 915wCytbRGTTGTCAACTGAGAAGCCTCCTCAG15 593w18FCCGCTACAACAACCACCCTAAAGC15 631cytb811RCTGCCATTTTTGGTTTACAACAC16 060g19FGAGGAGGTTTCTCAGTGAGAAATGC16 174	w15F	TCGCCATAGTCATTCTAGTGACAGC	13 535
w16F CCACAGCTTGAATGACGAGCAAGAC 14 216 w17R TAACGCGAGGATTAAGTCGAGGAAC 14 519 w17F TTTACCACTCCACCACTTCTCCAAC 14 893 w18R AGCAAAGGCCGAGTAGGGAACCAAAGTTTG 14 915 wCytbR GTTGTCAACTGAGAAGAGCCTCCTAG 15 593 w18F CCGCTACAACAACCCAACTCTAAGC 15 631 cytb811R CTGCCATTTTTGGTTTACAACCA 16 060 g19F GAGGAGGTTTCTCAGTAGAGAAAGCC 16 174	w16R	GCTTGTTTGTTAGGGAGGCTAGTTC	13 842
w17R TAACGCGAGGATTAAGTCGAGGAAC 14 519 w17F TTTACCACTCCACCACTTCTCCAAC 14 893 w18R AGCAAAGCCGAGTAGGGAACCAAAGTTTG 14 915 wCytbR GTTGTCAACTGAGAAGCCTCCAG 15 593 w18F CCGCTACCAACCCACACCCTAAAGC 15 631 cytb811R CTGCCATTTTTGGTTTACAACCA 16 060 g19F GAGGAGGTTTCTCAGTAGATAATGC 16 174	w16F	CCACAGCTTGAATGACGAGCAAGAC	14 216
w17F TTTACCACTCCACCACTTCTCCAAC 14 893 w18R AGCAAAGCCGAGTAGGGAACCAAAGTTG 14 915 wCytbR GTTGTCAACTGAGAAGCCTCCAG 15 593 w18F CCGCTACAACCAAACCCAAAGC 15 631 cytb811R CTGCCATTTTTGGTTTACAACCA 16 060 g19F GAGGAGGTTTCTCAGTAGATAATGC 16 174	w17R	TAACGCGAGGATTAAGTCGAGGAAC	14 519
w18R AGCAAAGGCCGAGTAGGGAACCAAAGTTTG 14 915 wCytbR GTTGTCAACTGAGAAGCCTCCTCAG 15 593 w18F CCGCTACAACAACCAACCCAAAGC 15 631 cytb811R CTGCCATTTTTGGTTACAACAC 16 060 g19F GAGGAGGTTTCTCAGTAGATAATGC 16 174	w17F	TTTACCACTCCACCACTTCTCCAAC	14 893
wCytbR GTTGTCAACTGAGAAGCCTCCTCAG 15 593 w18F CCGCTACAACAACCAACCCAAAGC 15 631 cytb811R CTGCCATTTTTGGTTTACAACAC 16 060 g19F GAGGAGGTTTCTCAGTAGATAATGC 16 174	w18R	AGCAAAGGCCGAGTAGGGAACCAAAGTTTG	14 915
w18F CCGCTACAACAACCAACCCAAAGC 15 631 cytb811R CTGCCATTTTTGGTTTACAACAC 16 060 g19F GAGGAGGTTTCTCAGTAGATAATGC 16 174	wCytbR	GTTGTCAACTGAGAAGCCTCCTCAG	15 593
cytb811R CTGCCATTTTTGGTTTACAACAC 16 060 g19F GAGGAGGTTTCTCAGTAGATAATGC 16 174	w18F	CCGCTACAACAACCAACCCTAAAGC	15 631
g19F gaggaggtttctcagtagataatgc 16174	cytb811R	CTGCCATTTTTTGGTTTACAACAC	16 060
	g19F	GAGGAGGTTTCTCAGTAGATAATGC	16 174

Note: Primer codes beginning with "g" were designed for *Gadus* spp. (Coulson 2004). Forward primers are in Roman type and reverse primers are in italic type.

pected sizes <1 kbp were done according to previously published methods (Coulson et al. 2006).

To sequence the PCR products, 5 μ L of the PCR product was dried by evaporation or under vacuum. The sequencing cocktail comprised 1.0 or 2.0 μ L of Big Dye (version 3.0 chemistry; Applied Biosystems Inc., Foster City, California), 1.6 μ L of 2 μ mol/L primer forward or reverse, and 2.2 μ L ddH₂O. The sequencing cycle was an initial denaturation at 96 °C for 2 min, followed by 50 cycles of a 96 °C denaturation for 2 min, 50 °C annealing for 15 s, and 60 °C extension for 4 min. Excess reactants were removed by isopropanol precipitation. The DNA was resuspended in 5 μ L of a 5:1 mixture of deionized formamide and

(A) Sequence differences among the	ne genus Lycodes and Anarhic	chas species.		
	Lycodes	A. denticulatus	A. minor	A. lupus
Lycodes	0	1708	1706	1732
A. denticulatus	99.66	0	298	340
A. minor	98.79	17.44	0	283
A. lupus	100.85	20.22	16.64	0
(B) Number of SNP differences/k	bp (p distances) among Gadua	s species.		
	<i>G</i> . (= <i>T</i> .) <i>chalcogrammus</i> EPac	<i>G. morhua</i> EAtl	<i>G. macrocephalus</i> EPac	G. m. ogac WAtl
G. (= T.) chalcogrammus WPac	4.77	38.46	40.18	40.25
G. morhua WAtl	38.26	3.32	39.58	39.25
G. macrocephalus WPac	39.85	38.72	4.91	3.25
G. m. ogac WAtl	39.72	38.46	4.51	[1.33]

Table 2. Phenetic comparison of genome differentiation in Anarhichas species and Gadus codfish mtDNA genomes.

Note: In A, the sequence differences were calculated as the absolute number of differences in the aligned complete sequences (upper half of the matrix), or the number of SNPs/kbp for the 15082 bp aligned between zoarcoid and gadid sequences, less the CR locus, and missing or ambiguous sequences (lower half of the matrix). In B, the number of SNP differences/kbp (*p* distances) was calculated over the same 15082 bp (after Coulson et al. 2006). In B, interspecific and intraspecific differences are compared across oceans (italic type); the *Gadus macrocephalus ogac* Richardson, 1836 comparison (brackets) is for two individuals from the western Atlantic Ocean (cf. Carr et al. 1999; Coulson et al. 2006). EPac, eastern Pacific Ocean; EAtl, eastern Atlantic Ocean; WAtl, western Atlantic Ocean.

25 mmol/L Na₂EDTA buffer, heated to 95 °C for 2 min, and cooled rapidly to 5 °C. The denatured samples were spotted onto a paper comb and electrophoresed in an ABI377 automated DNA sequencer. The ABI Data Collection (version 2.6) software was used to collect the trace data and the Sequence Analysis (version 3.2) software was used to extract the sequence chromatograms.

Sequencer version 4.1.2 (GeneCodes, Ann Arbor, Michigan) was used to assemble and edit the mtDNA fragments of the three *Anarhichas* species. These fragments were initially aligned against the *G. morhua* reference sequence (NCBI accession No. NC002081), in which the positions of the initial primer sets were known.

Phylogenetic and phenetic analyses were carried out using the phylogenetic analysis using parsimony (PAUP*) program version 4.0b10 (Swofford 2002). The exhaustive search algorithm was used to evaluate the properties of each of the three bifurcating trees possible with the complete genomes of the three Anarhichas species and another zoarcoid perciform species, the eelpout Lycodes toyamensis (Katayama, 1944) (NCBI accession No. NC004409), as the outgroup. A bootstrap analysis with 10 000 replicates was done to estimate the statistical significance for the nodes of the tree. Neighbor-joining phenetic analysis of uncorrected average pairwise distances (p distances) was also done. To compare the extent of intra- and inter-specific mtDNA genome differentiation with other fish species, the four zoarcoid genome sequences were aligned with those of seven gadid codfish (Gadus sensu lato; Carr et al. 1999) described in Coulson et al. (2006) (NCBI accession Nos. DQ356937-DQ356941 and DQ356946), with the addition of a second sequence from Gadus (= Theragra) chalcogrammus Pallas, 1814 (NCBI accession No. NC004449) from the western Pacific Ocean. CR locus sequences, which were not available for all gadines, were removed, and PAUP* was used to removed any missing and (or) ambiguous characters. For the consensus data set of 15082 bp, p distances were calculated and are shown as numbers of changes per kilo base pairs in Table 2.

Variability of individual Anarhichas genes within genomes was calculated three ways: first as the average of the three pairwise sequence divergences among species (p distance) and second as the density of interspecific single nucleotide polymorphisms (SNPs), calculated as the ratio of the number of SNPs observed among all three species to the total gene length, expressed as the number of SNPs/100 bp. The two indices are closely related: the former will underestimate the actual extent of nucleotide divergence by not correcting for multiple-hit nucleotide substitutions at the same site, whereas the latter will underestimate variability by not counting the homoplasic changes implied by the inferred phylogeny. The latter provides a more intuitive measure of observed variability. The third measure of variability is the difference between the rates of synonymous (d_S) and nonsynonymous (d_N) nucleotide substitutions in each gene, according to the algorithm of Nei and Gojobori (1986) as implemented in MEGA version 3.1 (Kumar et al. 2004). This measure detects unusual patterns of amino acid substitution, for example, as a result of selection (cf. Coulson et al. 2006). The expected Poisson distribution of SNPs over tRNA loci was calculated by the recursive algorithm described by Zar (1999: 181). Nonparametric rank-order correlations of SNP density among protein-coding loci between the three Anarhichas species and the three Gadus codfish species (G. morhua, G. (= T.) chalcogrammus, and Gadus macrocephalus Tilesius, 1810) (Coulson et al. 2006) (DQ356938, DQ356939, and DQ356946), and comparisons of variability indices among Anarhichas loci made independently of absolute magnitude, were calculated by Kendall's coefficient of rank correlation (τ) as implemented in BIOMstat version 3.30m (Applied Biostatistics, Inc. 2002; Sokal and Rohlf 1995: 593).

Results

The long-range PCR procedure amplified more than 97% of the complete mtDNA genome of *A. lupus* in three over-

Fig. 3. Phylogenetic relationships among the mitochondrial genomes of *Anarhichas* species and *Lycodes toyamensis*. The minimum length tree requires 2074 changes, with branch lengths as shown. The tree indicates that *A. lupus* and *A. minor* are each other's closest relatives; this arrangement is supported by 96.9% of bootstrap replications.

lapping fragments of 6835, 4555, and 4276 bp (Fig. 2). The sequence of the remaining 466 bp segment of the genome (including the 3' end of the CYTB locus and the 5' end of the CR locus) had been determined previously. The genomes of the other two wolffish species were amplified with various combination of the *Anarhichas* and *Gadus* specific primers in Table 1. The three genomes were sequenced with the same set of primers.

The mtDNA genome sequences comprised 16519 bp in *A. lupus* and 16520 bp in the other two species. The sequences have been submitted to GenBank and assigned the accession numbers EF427916, EF427917, and EF427918 for *A. lupus, A. minor,* and *A. denticulatus,* respectively. The gene order is identical to that of *L. toyamensis,* except that *L. toyamensis* has an extra 169 bp segment 3' to the tRNA–Val locus that is not present in *Anarhichas* species. This segment has been deleted from the alignment analyzed here.

A total of 449 SNP sites were observed among the individuals representing the three species. *Anarhichas lupus* and *A. minor* differed by 248 pairwise differences (226 transitions and 22 transversions), *A. minor* and *A. denticulatus* by 274 differences (248 transitions and 26 transversions), and *A. lupus* and *A. denticulatus* by 286 differences (254 transitions and 32 transversions) (Table 2A). Interspecific *p* distances among *Anarhichas* species range from 16.64 to 20.22 substitutions/kbp (subs/kbp), which is approximately one-half that among *Gadus* species (from 38.46 to 40.25 subs/kbp) (Table 2B) and about four to five times as large as the differences among transoceanic individuals within *Gadus* species (from 3.25 to 4.77 subs/kbp).

With *L. toyamensis* included as an outgroup, there are 1944 variable sites, of which 146 are phylogenetically informative (sensu Nei 1987). The three possible bifurcating trees for four terminal taxa had lengths of 2074, 2094, and 2100 changes. The shortest tree indicates that *A. lupus* and *A. minor* are more closely related to each other than they are to *A. denticulatus*; this tree is supported by 96.9% of 10 000 bootstrap replicates (Fig. 3). Random resampling of 1, 2, 4, or 8 kbp of the complete genome supported the same tree in 57.2%, 66.2%, 77.4%, and 89.4% of bootstraps, respectively. This tree is also supported by neighbour-joining distance analysis (*p* distances) in 96.3% of bootstraps, as well

as by weighted parsimony and various distance models with >95% bootstrap support in all cases (results not shown).

The most variable protein-coding loci as measured by SNP density were ND4, CYTB, and ND2, with 4.40, 4.22, and 4.19 SNPs/100 bp, respectively. The least variable loci were ATP8 (also the shortest region), COX2, and ND3, with 1.19, 1.57, and 1.99 SNPs/100 bp, respectively (Table 3). The CR locus was less variable than 9 of 13 protein-coding regions (2.45 SNPs/100 bp) (Table 4). Most tRNA loci were either invariant or had only 1 SNP site, and the 20 tRNA loci collectively showed only 18 SNP sites over 1410 bp (1.28 SNPs/100 bp), which was lower than all except 1 protein-coding locus. Although 3 tRNA loci had three or more SNP sites and were thus more variable than any protein-coding locus (tRNA-Val, tRNA-Arg, and tRNA-Trp: >4 SNPs/100 bp), the observed distribution did not depart significantly from the expected random Poisson distribution of 18 SNPs over 20 tRNA loci ($\chi^2_{0.05,[3]} = 4.21$, 0.10). The 16S and 12S rRNA loci were the leastvariable gene regions (1.18 and 0.35 SNPs/100 bp, respectively). The relative ranks of locus variability as measured by SNP density and mean p distance are highly correlated (Kendall's $\tau = 0.9731$, $p \ll 0.01$), as are the rankings of SNP density and the rate of synonymous substitution (d_s) (Kendall's $\tau = 0.7871$, $p \ll 0.01$) and p distance vs. $d_{\rm S}$ (Kendall's $\tau = 0.8387$, $p \ll 0.01$). The correlations of SNP density and p distance with $d_{\rm N} - d_{\rm S}$ were slightly lower (Kendall's $\tau = 0.7179$ and 0.7949, respectively), but still $p \ll 0.01$ in both cases.

Similarly, there is a significant rank-order correlation of SNP densities between *Anarhichas* species and *Gadus* species (Kendall's $\tau = 0.4615$, p = 0.0140), but the association is far from exact. ND4 ranked first in *Anarhichas* and second in *Gadus*; however, the second- and third-ranked loci in *Anarhichas* (CYTB and ND2) ranked seventh and sixth in *Gadus*. The most highly ranked locus in *Gadus* (ND6) ranked fourth in *Anarhichas*, and the ATP6 and ND3 loci also had substantially lower ranks in *Anarhichas* (ninth and eleventh vs. fourth and fifth, respectively) (Fig. 4).

Discussion

The determination of the complete mtDNA genome se-

	· · · · ·	8	0			1	
Gene	Length	SNP occurrence	SNP density	р	$d_{\rm S}$	$d_{ m N}$	$d_{\rm N} - d_{\rm S}$
ND1	975	36	3.69	2.57	0.0858	0.0000	-0.0858
ND2	1048	44	4.19	2.54	0.0857	0.0054	-0.0803
COX1	1554	50	3.15	2.11	0.0728	0.0018	-0.0710
COX2	699	11	1.57	1.05	0.0424	0.0000	-0.0424
ATP8	168	2	1.19	0.80	0.0374	0.0000	-0.0374
ATP6	684	17	2.49	1.66	0.0568	0.0014	-0.0554
COX3	786	19	2.42	1.61	0.0538	0.0036	-0.0503
ND3	352	7	1.99	1.23	0.0416	0.0030	-0.0385
ND4L	297	8	2.69	1.80	0.0671	0.0000	-0.0671
ND4	1386	61	4.40	3.01	0.0837	0.0079	-0.0758
ND5	1839	59	3.21	1.90	0.0609	0.0060	-0.0550
ND6	523	21	4.02	2.55	0.0857	0.0035	-0.0822
CYTB	1162	49	4.22	2.64	0.0905	0.0047	-0.0851

Table 3. Length (bp), SNP occurrence, SNP density (no. of SNPs/100 bp), mean pairwise difference (p), rates of synonymous (d_S) and nonsynonymous (d_N) nucleotide substitutions, and the difference of the latter two measures for protein-coding loci of the mitochondrial genomes among *Anarhichas* species.

Note: The regions are listed in their linear order in the genome.

Table 4. Length (bp), SNP occurrence, and SNP density (no. of SNPs/100 bp) for the Control Region (CR),rRNA-coding, and tRNA-coding loci of the mitochondrial genomes of *Anarhichas* species.

Gene	Length	SNP occurrence	SNP density
CR	981	24	2.45
12S rRNA	948	3	0.32
16S rRNA	1697	20	1.18
tRNA-Phe	68	0	0
tRNA-Val	72	4	5.56
tRNA-Leu	74	0	0
tRNA-Ile	70	1	1.43
tRNA-Gln	68	0	0
tRNA-Met	69	0	0
tRNA-Trp	70	3	4.29
tRNA–Ala	72	0	0
tRNA-Asn	74	0	0
tRNA–Cys	66	1	1.52
tRNA–Tyr	67	1	1.49
tRNA-Ser	71	0	0
tRNA-Asp	69	1	1.45
tRNA-Lys	74	1	1.35
tRNA-Gly	69	1	1.45
tRNA-Arg	69	3	4.35
tRNA-His	64	0	0
tRNA-Ser	72	1	1.39
tRNA-Leu	73	0	0
tRNA-Glu	79	1	1.27
All tRNAs	1410	18	1.28

quences of *Anarhichas* species provides benchmark data for the investigation of their genetic biodiversity. The analysis presented here can better inform a recovery plan for these species by identifying the gene regions of highest variability, which would best be able to identify any distinctive fishery stocks and (or) designatable units under SARA.

The molecular analysis shows that *A. lupus* and *A. minor* are more closely related to each other than either is to *A. denticulatus*. The genomic difference between *A. lupus*

Fig. 4. Total number of SNPs observed among three species of *Anarhichas* and three species of *Gadus* (*G. morhua*, *G. macrocephalus*, and *G.* (= *T.*) *chalcogramma*) (Coulson et al. 2006), expressed as number of SNPs/100 bp of gene length. Solid boxes indicate loci at which the relative rank of SNP density is higher in *Anarhichas* than in *Gadus* and shaded boxes indicate the reverse; ATP8 ranked last in both genera.

and A. minor (~20 subs/kbp) is about half that found between pairs of Gadus species (~40 subs/kbp), including another COSEWIC-assessed species, G. morhua. Because of the close relationships of the three species, the entire genome is required to resolve their branching order at >95% confidence. In contrast, Coulson et al. (2006) found that a random sample of about one-half of the genome sequence was sufficient to resolve almost all interspecific branches among gadines at >95% confidence. Given the estimated time of divergence of Atlantic G. morhua and Pacific G. macrocephalus at 3.5 million years before present, at the time of the last opening of the Bering strait (Carr et al. 1999; Coulson et al. 2006), extrapolation suggests that the three *Anarhichas* species separated from one another ca. 2 million years ago.

A closer relationship of A. lupus and A. minor is supported by an examination of several morphological and ecological characters. For example, both are typical benthophages with teeth adapted for feeding on bottomdwelling invertebrates (echinoderms, molluscs, and crustaceans), in contrast to A. denticulatus, which has teeth adapted for feeding on mobile invertebrates (ctenophores and jellyfish) (Albikovskaya 1982). All three species are pan-Atlantic (Fig. 1) but appear to have rather different niche requirements in this region. Anarhichas denticulatus have the widest distribution, found in the eastern Atlantic Ocean from Iceland to Novaya Zemlya and in the western Atlantic Ocean from Mould Bay to Sable Island Bank. They also have the greatest range of depths, from 151 to 600 m, and are known to feed close to the surface in open water — behaviours that are uncommon in the other two species. Anarhichas lupus are found in the eastern Atlantic Ocean from Iceland to the west coast of France, and from Greenland to the Gulf of Maine, and are thus the most southerly distributed species. They are the most abundant species in the area of Newfoundland and Labrador, where they are found from 101 to 350 m (Albikovskaya 1982). Anarhichas minor have the most restricted distribution, from Iceland to Bergen and from Greenland to the Grand Banks, where they are usually restricted to depths >450 m (Scott and Scott 1988). Given the phylogenetic relationships shown here, we can hypothesize that A. lupus and A. minor represent alternative, derived specializations at more restrictive, benthic strata, in contrast to a more widespread, generalist ancestral type represented by A. denticulatus.

The 449 SNPs observed in the mtDNA of the three individual representatives of the Anarhichas species occur at an average density of 26.8 SNPs/kbp, which varies from 3.2 to 44.0 SNPs/kbp among the major gene regions. SNP density among protein-coding loci in these individuals is exactly one-half of that among three individuals representative of three Gadus species (3.0 vs. 6.0 SNPs/100 bp), which is in agreement with the twofold difference in intrageneric genetic distances (18.8 vs. 39.58 subs/kbp) (Table 2). Such a correspondence is expected on the assumption of selective neutrality (Kimura 1983), as is the observation that all measures of locus variability are highly correlated. Rates of nonsynonymous substitution are very low at every locus, and the difference $(d_N - d_S)$ is always negative, so that Fisher's exact test of the distribution of synonymous and nonsynonymous substitutions (Zhang et al. 1997) would not approach significance for any comparison. There are thus no indications of unusual patterns of selection at work on Anarhichas genomes. The significant rank-order correlation of SNP density among protein-coding loci between Anarhichas and Gadus indicates that patterns are broadly similar; however, there are many exceptions. The three most variable loci in Anarhichas ranked second, seventh, and sixth, respectively, in Gadus; this includes the CYTB locus (second vs. seventh) for which a large number of SNP variants have been identified in G. morhua (Carr and Marshall 1991; Pepin and Carr 1993; Arnason 2004). Whether such intergeneric differences are a function simply of variation in the neutral mutation rate among loci, or instead indicate differing patterns of natural selection, can be evaluated by further comparison of intraspecific patterns of nucleotide substitution in *Anarhichas* and *Gadus* with the interspecific patterns shown here (Kreitman 2000).

Although many studies of fish and other populations have used the CR locus on the expectation that it is routinely hypervariable (Brown et al. 1979; Kocher and Carleton 1997; Ingman et al. 2000), in wolffish this region is one of the least variable (less than 9 of 13 protein-coding loci) and is not a good candidate for intraspecific comparisons. The available population data confirm this (K.A. Johnstone, H.D. Marshall, and S.M. Carr, unpublished observation). As shown by this study and others (Faber and Stepien 1997), hypervariability of the CR locus is often not the rule in nonmammalian taxa. Other studies have advocated the use of loci in the NADH gene complex for single- and multi-locus population analyses (Russo et al. 1996). Recently, use of the 5' end of the COX1 locus as a "barcode" across species and taxa, including fish, has been advocated, with the expectation that the locus will be routinely variable among species and less so within (Ward et al. 2004). Again, the present data do not show a uniform pattern among taxa: COX1 is more variable interspecifically in Anarhichas species than in Gadus species (ranked sixth vs. tenth). The present data should emphasize that patterns of locus variability are not readily generalized across even relatively closely related taxa (zoarcoid perciform fishes) and that preliminary investigation of taxon-specific patterns is routinely warranted before carrying out a fullscale population genetic study.

The results of this study suggest several strategies for population genetic investigation of Anarhichas species. A single-locus analysis would best target the ND4 locus with primers g13F and g14R, which would amplify this gene within a fragment of 1476 bp. Where amplification of fragments of this size from samples with predominantly low molecular weight DNA is difficult, amplification of the ND4 region in two PCR reactions, with primer pairs of g13Fw14R (896 bp) and g14F-g14R (781 bp), should be feasible. A second strategy would be a multi-locus analysis of the contiguous ND4, ND5, CYTB, and COX1 genes, which includes two of the most variable loci. Use of long-range PCR amplification with the primers w13F and cytb811R would amplify a 6329 bp fragment that includes these four loci, and provide more than one-third of the genome for analysis. Alternatively, whole-genome approaches are also available that would examine variation in the complete 16.5 kbp genomes (Carr and Marshall 2005; Carr et al. 2007).

Note added in proof

The original description of the walleye pollock is *Gadus* chalcogrammus Pallas, 1814 in Pallas' Zoographia rosso-asiatica. Volume 1 of this work was published in 1811, which is often cited as the year of publication of this combination (e.g., Cohen et al. 1990), but the description of the pollock occurs in volume 3, which was published in 1814, according to *International Commission of Zoological No-menclature* opinion 212. The correction should also be applied to the discussion in Carr et al. (1999) and Coulson et al. (2006).

Acknowledgments

We thank the staff of the Northwest Atlantic Fisheries Science Centre, Fisheries and Oceans Canada, St. John's, especially Mr. Dave Kulka, Dr. Mark Simpson, and Mr. Chris Holloway for their support on the project and for obtaining the bycatch samples; Drs. R. Hooper and M. Burton for aid in obtaining DNA from a fresh striped wolffish; and two anonymous reviewers for helpful comments on an earlier draft of the manuscript. We thank Mark Coulson for sharing his data in advance of publication, and Sarah Flynn, Angela Pope, Stephanie Royston, and Corinne Wilkerson for technical and other assistance. The data were collected as part of the B.Sc. (Hons.) thesis research of the senior author, who thanks her friends and her parents, Terry and Kathy Johnstone. Funding was provided by the Grants and Contributions program of Fisheries and Oceans Canada.

References

- Albikovskaya, L.K. 1982. Distribution and Abundance of Atlantic wolffish, Spotted wolffish and northern wolffish in the Newfoundland Area. Northwest Atl. Fish. Organ. Sci. Counc. Stud. 3: 29–32.
- Applied Biostatistics, Inc. 2002. BIOMstat. Version 3.30m [computer program]. Applied Biostatistics, Inc., Setauket, N.Y.
- Arnason, E. 2004. Mitochondrial cytochrome b DNA variation in the high-fecundity Atlantic cod: trans-Atlantic clines and shallow gene genealogy. Genetics, **166**: 1871–1885. doi:10.1534/ genetics.166.4.1871. PMID:15126405.
- Brown, W.M., George, M., Jr., and Wilson, A.C. 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 76: 1967–1971. doi:10.1073/pnas.76.4.1967. PMID:109836.
- Carr, S.M., and Marshall, H.D. 1991. Detection of intraspecific DNA sequence variation in the mitochondrial cytochrome *b* gene of Atlantic cod (*Gadus morhua*) by the polymerase chain reaction. Can. J. Fish. Aquat. Sci. **48**: 48–52.
- Carr, S.M., and Marshall, H.D. 2005. The ArkChip a multispecies mitochondrial genome DNA "re-sequencing" strategy for biodiversity and conservation genomics. Comp. Biochem. Physiol. A, 141: S88–S89.
- Carr, S.M., Kivlichan, D.S., Pepin, P., and Crutcher, D.C. 1999. Molecular systematics of gadid fishes: implications for the biogeographic origins of Pacific species. Can. J. Zool. 77: 19–26. doi:10.1139/cjz-77-1-19.
- Carr, S.M., Marshall, H.D., Duggan, A.T., Flynn, S.M.C., Johnstone, K.A., Pope, A.M., and Wilkerson, C.D. 2007. Phylogeographic genomics of mitochondrial DNA: patterns of intraspecific evolution and a multi-species, microarray-based DNA sequencing strategy for biodiversity studies. Comp. Biochem. Physiol. D Genomics and Proteomics. In press.
- Cohen, D.M., Inada, T., Iwamoto, T., and Scialabba, N. 1990. FAO species catalogue. Vol. 10. Gadiform fishes of the World. Food and Agriculture Organization of the United Nations, Rome.
- Coulson, M.W. 2004. Mitochondrial genomic phylogeny of gadid fish: implications for biogeographic origins and taxonomy. M.Sc. thesis, Memorial University of Newfoundland, St. John's.
- Coulson, M.W., Marshall, H.D., Pepin, P., and Carr, S.M. 2006. Mitochondrial genomics of gadid fish: implications for biogeographic origins and taxonomy. Genome, 49: 1115–1130. doi:10. 1139/G06-083. PMID:17110992.
- Department of Fisheries and Oceans. 2004. Allowable harm assessment for spotted and northern wolffish. Department of Fisheries

and Oceans, Can. Sci. Advis. Sec. Stock Status Rep. No. 2004/031.

- Faber, J.E., and Stepien, C. 1997. The utility of mitochondrial DNA control region sequence for analyzing phylogenetic relationships among populations, species, and genera of the Percidae. *In* Molecular systematics of fishes. *Edited by* T.D. Kocher and C.A. Stepien. Academic Press, New York. pp. 129–143.
- Ingman, M., Kaessmann, H., Paabo, S., and Gyllensten, U. 2000. Mitochondrial genome variation and the origin of modern humans. Nature (London), 408: 708–713. PMID:11130070.
- Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK.
- Kocher, T.D., and Carleton, K.L. 1997. Base substitutions in fish mitochondrial DNA: patterns and rates. *In* Molecular systematics of fishes. *Edited by* T.D. Kocher and C.A. Stepien. Academic Press, New York. pp. 13–24.
- Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Pääbo, S., Villablanca, F.X., and Wilson, A.C. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. U.S.A. 86: 6196–6200. doi:10.1073/pnas.86.16.6196. PMID:2762322.
- Kreitman, M. 2000. Methods to detect selection in populations with applications to the human. Annu. Rev. Genomics Hum. Genet. 1: 539–559. doi:10.1146/annurev.genom.1.1.539. PMID:11701640.
- Kumar, S., Tamura, K., and Nei, M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150–163.
- Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.
- Nei, M., and Gojobori, T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3: 418–426. PMID:3444411.
- O'Dea, N.B., and Haedrich, R.L. 2002. A review of the status of the Atlantic wolffish, *Anarhichas lupus*, in Canada. Can. Field-Nat. **116**: 423–432.
- Pepin, P., and Carr, S.M. 1993. Morphological, meristic, and genetic analysis of stock structure in juvenile Atlantic cod (*Gadus morhua*) from the Newfoundland Shelf. Can. J. Fish. Aquat. Sci. 50: 1924–1933.
- Russo, C.A.M., Takezaki, N., and Nei, M. 1996. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny. Mol. Biol. Evol. 13: 522–536.
- Scott, W.B., and Scott, M.G. 1988. Atlantic fishes of Canada. University of Toronto Press, Toronto.
- Sokal, R.R., and Rohlf, J.M. 1995. Biometry. 3rd ed. W.H. Freeman and Co., New York.
- Swofford, D.L. 2002. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates Inc., Sunderland, Mass.
- Templeman, W. 1986a. Contribution to the biology of the Spotted wolffish (*Anarhichas minor*) in the Northwest Atlantic. J. Northw. Atl. Fish. Sci. 7: 47–55.
- Templeman, W. 1986b. Some biological aspects of the Atlantic wolffish (*Anarhichas lupus*) in the Northwest Atlantic. J. Northw. Atl. Fish. Sci. 7: 57–65.
- Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R., and Hebert, P.D.N. 2004. DNA barcoding Australia's fish species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360: 1847–1857.
- Zar, J.H. 1999. Biostatistical Analysis. 4th ed. Prentice-Hall Inc., Upper Saddle River, N.J.
- Zhang, J., Kumar, S., and Nei, M. 1997. Small-sample tests of episodic adaptive evolution: a case study of primate lysozymes. Mol. Biol. Evol. 14: 1335–1338. PMID:9402743.