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Abstract - The advent of so-called NextGen DNA sequencing 
methods has massively increased the rate at which DNA 
sequence information can be generated, and the volume and 
complexity of the data matrices that apply to biological 
questions, including molecular and organismal evolution and 
population biology. One such approach is the analysis of 
complete mitochondrial DNA (mtDNA) genomes from multiple 
species simultaneously, by means of a “sequencing by 
hybridization” microarray biotechnology, the “ArkChip”. I 
review mitogenomic biology and biotechnology, describe 
some of the known knowns of bioinformatic information 
content and its computational challenges, outline new 
computational strategies for known unknowns of evolutionary 
trees (phylogeny) and population biology structures in time 
and space (phylogeography), and speculate on future 
application of Computational Science to biological unknown 
unknowns. 
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1 Introduction 

“There are known knowns; there are things we know we 
know. We also know there are known unknowns; ...we know 
there are some things we do not know. But there are also 
unknown unknowns – the ones we don’t know we don’t 
know” Donald Rumsfeld (2002) 

Advances in so-called Next Generation (’NextGen’) 
sequencing methods have created gigantic data sets that test 
the abilities of computational science both to assemble 
overlapping primary data as a single robust construct, and 
then to extract information and detect patterns within that 
construct, where at least some of the patterns are ‘unknown 
unknowns.’ 
 

Where population biologists are interested in multiple 
individuals per species, a more modest but successful strategy 
involves the mitochondrial DNA (mtDNA) genome, which 
has a long history of application in evolutionary and 
population biology, including resolution of relationships 
among humans and other Great Apes, and tracing the pre- 
and post-glacial history of human emergence Out of Africa 
into Europe, the near and far East, and the Americas. 

Figure 1 – Nuclear versus vertebrate mitochondrial 
genomes. The human nuclear genome comprises one set each 
of chromosomes from the mother and father, for a total of 
about 3 billion DNA base pairs (bp) encoding just over 
20,000 ‘genes’. In contrast, the human mitochondrial DNA 
(mtDNA) genome is a small, circular, extra-nuclear molecule 
inherited solely through the maternal egg cytoplasm. It 
comprises 38 genes concerned with the cellular ‘powerhouse’ 
functions of the mitochondrion [1,2]. 
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2 Mitochondrial Genomics 
Unlike genes on separate chromosomes in the nuclear 
genome that undergo 50% recombination each generation, 
mtDNA does not undergo genetic recombination, but is 
passed intact between mother and offspring, and in the next 
generation passes only through the daughters’ cytoplasm, 
mitochondria in the male sperm making no contribution. This 
matrilineal inheritance, combined with a higher rate of 
mutation than typical nuclear genes, makes mtDNA 
invaluable for tracing patterns of historical migration 
(vicariance) or descent (evolution) in time and space. 

 

Figure 2 – MtDNA Family Tree of Queen Victoria of 
England. Victoria is well-known to have carried a nuclear 
germline mutation for hemophilia, which she passed on as an 
autosomal recessive allele through her sons and daughters to 
the royal families of Russia and Spain. She (II-2) is less well-
known to have passed her mtDNA genome to all of her 
children, and via her daughters’ daughters’ daughters through 
five generations shown here to her great-great grandson, 
Prince Phillip (VI-3). Queen Elizabeth II (VI-2) shares her 
mtDNA with Prince Charles (VII-2), but her grandson and 
great-grandson Prince William (VIII-2) and Prince George 
(not shown) have distinct mtDNA genomes inherited from 
their respective mothers Diana (VII-1) and Kate (VIII-3). 

Since the late 1970s, DNA sequence data have been collected 
by the dideoxy or Sanger method, which involves the use of 
chemical terminators to produce sets of DNA molecules that 
differ by plus or minus one base pair, such that the complete 
sequence is obtained from the nested series. “Pseudo Color”-
coding of the terminators and large-scale automation of the 
separation process culminated in publication of the complete 
human genome sequence in 2004.  

The Sanger method has dominated the field for more than 
thirty years. Now, “Next Gen” sequencing methods offer 
increasingly rapid, high-throughput data production that does 
not rely on linear separation, but rather massively parallel 
processing of simultaneous reactions. One such method is 
sequencing by hybridization on a DNA microarray. The 
method resembles molecular ‘velcro’, where a known 
reference sequence is represented on a microarray as a series 
of short, overlapping oligonucleotide “hooks”, and is 
challenged by an unknown but homologous experimental 

sequence as a set of “threads”. The experimental DNA sticks 
only to sequence-specific “hooks,” which may include single-
base variants of the reference sequence. The microarray can 
return information about widely-separated single nucleotide 
polymorphisms (SNPs) associated with medical conditions, 
or where all possible single-base variants are included along 
with the reference mtDNA sequence, the data are the 
complete mtDNA sequences of individuals that can differ by 
from one to hundreds of SNPs [1].  

Where a microarray can be designed to accommodate 
mtDNA reference sequences from several species whose 
sequences are sufficiently distinct to prevent ‘crosstalk’, the 
result is an “ArkChip” capable of simultaneous, cost-
effective population genomic analysis at the incremental cost 
of DNA extraction and amplification for each added species 
[2]. A typical ArkChip experiment generates ca. 1,000,000 
features that comprise four A, C, G, and T hybridization 
signals for the forward and reverse DNA strands of  single 
individuals from each of seven species [4 x 2 x 17,000 x 7] 
[3]. Projects may include scores or hundreds of individuals 
per species (Figure 3). Known knowns in this process include 
algorithms that extract individual genome sequences from a 4 
x 2 x 17,000 matrix [4]. Known unknowns will compare gene 
patterns along the 17,000 element genome vector within and 
among species, based on external algorithms applied to 
exported data [5]. Unknown unknowns include creation of 
algorithms for detection of molecular and evolutionary 
patterns implicit in fully-annotated higher-order dimensions 
across genes and species. 
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Figure 3 – Schematic of the evolutionary bioinformatic 
content of the mtDNA genomes from 80 Atlantic Cod 
(Gadus morhua). Each genome comprises 16,553 bp (16.5 
Kbp), whose sequence is assembled from a consensus of the 
forward and reverse DNA strands, so that the complete data 
set comprises > 1.3 x 106 bp (Mbp). Single Nucleotide 
Polymorphisms (SNPs) have been identified at more the 500 
sites. The data have been sorted to highlight more than 200 
[dark grey block at left] that are informative as to genetic 
relationships among fish [2, 3]. Related fish genomes with a 
common ancestor (clades) have been group by column and 
are recognizably as bands across columns [4]. Alternative 
sorting can highlight patterns of molecular evolution by gene 
or codon position within genes [5]. Color-coding may 
indicate SNP sites, information content, confidence levels in 
base calls, patterns of sharing among fish genomes, etc.  

Phylogeography is the study of population genetic 
relationships in space and time. Whereas the field began in 
the early days of DNA sequencing with short sequences and 
partially-resolved relationships, the advent of genomic data 
enables complete resolution of within-species phylogenies 
and creates new challenges for their interpretation. 

 

Figure 4 – Thought experiment in phylogeographic 
genomics: more highly structured family trees are shorter 
than random trees [after [6]]. Consider 16 individuals 
found in four distinct breeding locations (four shades of 
grey), where the darkest shade is considered to be the 
ancestor of the other three. For an ideal dichotomously-
branching phylogeny that shows that individuals in each 
population are all each other’s closest relatives (i.e., none is 
more closely related to any individual outside the population 
than to any within) [left], the distribution may be explained 
by a single vicariance event (historical founding) per 
descendant population, thus L = 3. Where the phylogeny 
shows that individuals are uniformly distributed across the 
tree (i.e., they are no more closely related to other individuals 
from within the same population than they are to those from 
outside) [right], the distribution requires the maximum 
number of steps possible, L=12. Intermediate models require 
L = 4 ~ 11 events, the more structured models requiring 
fewer. For example, the trees with L = 8 and L=9 contrast 
alternative two-population models, in which the shorter has 
slightly more distinct sub-populations than the latter. 

The principles in the idealized model can then be applied to 
larger data sets with real genomic data. The phylogenetic tree 
in Figure 5 was derived by one of a variety of well-
established “known known” computational algorithms. With 
genomic data sets, the topological branching order is largely 
method-independent [7]. Moving backward in time from right 
to left, the branching order shows successively more inclusive 
groups of related individuals (clades). The shaded dots are 
characters attached to each individual, in this case its 
population of origin. The question is the co-occurrence of 
clades and populations as an historical biological process. 

 

Figure 5 – Monte Carlo randomization of population 
assignments as a test of phylogeographic structure. For an 
observed phylogenetic tree [left] that shows the distribution 
of individuals across populations, the length L of the tree is 
the minimum number of vicariance events (historical 
movements) necessary to explain it. By repeatedly 
randomizing population assignments over the tips of the tree 
[right] and determining the length of the resultant tree, the 
observed length may be compared with the random 
distribution as a test of non-random structure. A set of 10,000 
such randomizations gives a stable distribution. 

Figure 6 shows the application of the Monte Carlo method to 
a population genomic data set from Harp Seals (Pagophilus 
groenlandicus) (after [6]). Harp Seals breed in exactly four 
places in the North Atlantic and adjacent waters, in the White 
Sea, Greenland Sea, the Newfoundland & Labrador Ice Front, 
and the southern Gulf of St Lawrence [top]. Whereas the two 
westernmost breeding sites are known to exchange animals, 
trans-Atlantic genetic relationships and those among the two 
eastern populations in particular have been unclear. The well-
defined arrangement of populations sets up several a priori 
biogeographic hypotheses, including a linear ‘four stepping-
stone’ model [middle] and a ‘two-stone’ trans-Atlantic model 
[bottom].   
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Figure 6 - Results of Monte Carlo simulations of 
alternative phylogeographic hypotheses for Harp Seals 
(Pagophilus groenlandicus) (after [6]). Phylogeographic 
models are encoded in a 4x4 matrix, so that it is possible to 
weight movements among population to reflect hypotheses of 
random or linear movements, or the likelihood of longer 
versus shorter movements. Each graph shows the distribution 
of the length L of 10,000 randomizations by the method in 
Figure 5, as compared to the observed length [shaded 

column]. For the linear, four-stone ‘stepping stone’ model 
[middle], the observed tree falls within the left-hand 5% tail 
and thus indicates that the model explains the distribution 
significantly better than does the random hypothesis of no 
structure. In contrast, the two-stone model [bottom] that 
groups the western and eastern population as pairs falls to the 
right of the 5% tail, such that it is not significantly shorter 
than random. The four-stone model is a better explanation of 
the distribution than the two-stone model [6]. 

Given the Monte Carlo procedure as a means of testing for 
non-random structure in intra-specific phylogenies as a 
whole, is it possible to make quantitative distinctions among 
the component populations of the species? Inspection of the 
tree may suggest qualitative patterns, for example that two 
populations seem to differ in their distribution among clades. 
Traditionally, such comparisons would be quantified by 
relative frequencies in row-by-column tests. However, when 
genomic data differentiate every individual, and simple 
comparison of group frequencies masks the nested nature of 
those groups as clades, such methods are unproductive. A 
more productive approach is to derive a numerical proxy for 
each of the phylogenetic components of the total population.  

 

Figure 7 – Cumulative pairwise distance curves for 
populations of Harp Seals (after [6]). From a matrix of the 
observed pairwise DNA differences between all individuals 
in each of five populations, the cumulative curve shows the 
total fraction of the population differentiated at or below a 
particular pairwise difference. This curve serves as a 
quantitative proxy for a time-dependent branching family 
tree. Compared at 50%, curves displaced to the left indicate 
relatively ‘young’ populations in which the majority of 
animals diverged recently, in contrast to curves displaced to 
the right that indicate typically ‘older’ relationships. 
Differences among curves may be evaluated by a non-
parametric Kolmogorov-Smirnov test, which evaluates the 
single greatest vertical difference between pairs of curves, 
which in this dimension indicates more or less rapid 
phylogenetic diversification [6]. 
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3 Conclusions 
The advent of NextGen DNA sequencing methods has 
massively increased the rate at which DNA sequence 
information can be generated, and the volume and complexity 
of the data matrices that apply to biological questions, 
including molecular and evolutionary biology. Questions 
include known knowns where computational methods can be 
applied to automated signal processing and ease of 
comparison among data sets, known unknowns inherent in 
patterns revealed for the first time by highly-resolved 
genomic phylogeny and phylogeography, and unknown 
unknowns lurking in cross-comparisons and pattern-detection 
among the higher-order dimensions of ordered data matrices. 
In summary, 

• Biotechnology 
– Iterative whole-genome DNA sequencing 

on microarrays: the ArkChip 
– Known Knowns: Optimization & 

Automation of signal processing 
algorithm 

– Known Unknowns: Comparison of data 
patterns within / between species 

• Phylogenetic Genomics in time 
– Known Knowns: Reconstruction of 

intraspecific phylogenies (‘family trees’) 
• Phylogeographic Genomics in space 

– Known Unknowns: quantitation of 
phylogeny in space 

• Monte Carlo models for testing 
phylogeographic hypotheses 

• Non-Parametric comparison of  
proxies of  phylogenetic topology 

• Unknown Unknowns ? 
– Higher-order interactions in microarray 

data: sequence x species x array 
– Pattern identification in multiple 

dimensions 
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