
Biol4250 – Evolutionary Genetics      smc 2021/10/28 

Laboratory Exercise – Migration / Selection equilibria in Lake Erie Water Snakes (Nerodia) 

 

 Natural Selection on allelic variation in a population that receives migrants from another population 
with different allele frequencies may achieve an equilibrium (∆q = 0), if the rate at which natural selection 
eliminates an unfavourable allele in the target population is counter-balanced by the influx of alleles from a 
source population where that same allele is favoured by selection. In the classic model, an Island population 
exists where the ‘AA’ phenotype has an adaptive superiority to the ‘BB’ phenotype, such that selection will 
reduce f(B) → 0.0. The Island receives migrants from a Mainland population at a rate m, where m is defined as 
the fraction of individuals in the island population newly arrived from the mainland each generation. The 
selection scheme on the Mainland is the reverse of that on the Island, such that ‘BB’ is favoured over ‘AA’ and 
f(B) ≈ 1.0. Where m < s, f(B) remains > 0.0 as the  gain of f(B) from migration (m) is over-balanced its loss by 
selection (s). Where m ≈ s, f(B) may reach an ‘equilibrium’ where ∆q ≈ 0. Where m > s, f(BI) → 0.0 as the island 
population becomes identical to that on the Mainland, despite the difference in adaptive environments.  

 In a classic study of ecological genetics, Ehrlich & Raven (1958) studied differences in the relatives 
frequencies of banded and unbanded phenotypes of the Lake Erie Water Snake (Nerodia [Natrix] sipedon 
insularum). Islands in the middle of the lake consist of dark grey slate rock, on which unbanded snakes are 
cryptic to their avian predators. The Ohio and Ontario mainlands on the southern and northern shores of the 
lake are sandy, on which banded snakes are more cryptic. The mainland populations are essentially fixed for the 
banded phenotype, which may be attributed to a homozygous BB genotype. The island populations show high 
proportions of the unbanded phenotype, attributed to a homozygous AA genotype. Intermediate, partially 
banded phenotypes are attributed to the AB genotype. Of the three major island groups, Kelly’s Island is closest 
to the Ohio shore, the Bass Island complex more distant, and Pelee Island rather distant from both the Bass 
Islands and the Ontario shores. Ehrlich & Raven (1958) argued that the fraction of unbanded AA phenotypes on 
any island was proportional to its distance from the mainland and hence the rate of migration m of BB 
phenotypes, moderated by a ‘stepping stone’ effect from other, nearer islands with differing f(B) (Figure 1). 

Model 

 In this lab, we will examine the Lake Erie ecosystem with a modified Stepping-Stone Model (Figure 2), so 
as to determine how patterns of genetic variation q are dependent on m and s. In a two-allele model, A is 
genetically dominant to B; this may be modified to a semi-dominant model by choice of t1 & t2 selection 
coefficients (below). A Source population S has an initial f(B) = qS ≈ 1.0 linked to four successive islands 1, 2, 3, & 
4 with initial f(B) q1, q2, q3, & q4. Migration rates m between populations are mS → m1 → m2 →  m3 → m4, where 
mX is the rate from population X to the next in the chain. m4 is the return rate to m1, such that the series is linear 
or circular, depending on m4 = 0 or > 0. Selection operates on f(B) on qS in the Source population, as calculated 
in a separate GSM worksheet for s = 0.000, 0.001, 0.010, and 0.050. Typically, qS = 0.95 , and q1 = q2 = q3 = q4 = 
0.0, which simulates the classic model of an allele initially fixed on the mainland and absent from the islands. 
Alternatively, values of q may be set to those calculated from the data in Camin & Ehrlich (1958). Thus in the 
model, the expected island q = 0 is disrupted by long-term migration from the mainland qS ~ 1, which declines 
over time due to selection against B. Island q varies despite any selective advantage. We ask, what are the 
short-, middle-, and long-term consequences?  



Figure 1 – Distribution of Nerodia sipedon insularum in Lake Erie. Minor islands not shown. Observed 
phenotype frequencies from Camin & Ehrlich (1958): Category “A” unbanded, Category “D” banded, Categories 
B & C intemediate. Unidirectional migration rates m between mainlands and islands occurs as shown, color 
coded as in Figure 2.  

Figure 2 – Schematic of migration model. Initial frequencies for f(B) [‘Banded’ allele] in the Source [‘Mainland’] 
and four island populations as shown. Note than mX is the migration rate from population ‘X’ to population ‘X+1’ 
with initial qx+1. m4 is the return rate from the fourth to the first population: if m4 > 0, the model is circular, if m4 = 
0 the model is linear terminating in Population 4.  

  



Instructions 

The Migration / Selection Excel worksheet contains three sections. The left-hand section calculates ∆q 
across populations accoring to the parameters in the center section. This sections also shows the graphical 
results (see below), reference schematics of the migration model, and a series of migration scenarios. 

 

The basic Model 2 has the initial f(B) = q for the Banded allele almost fixed in the mainland populations [if q = 1, 
selection could not act] and absent in the four island populations, in a circular model with back migration from 
Ontario to Kelly’s Island [set this as a very low rate]. Model 3 is the same as Model 2, except there is no 
migration from Ontario (m4 = 0), so the model is linear ending on the Ontario mainland. Model 1 is the Classical 
model in a slightly different form. Kelly’s Is is identical to the Mainland because m = 1 and identical initial qS = q1 
= 0.95, in contrast with Bass Is with q2 = 0.0. Selection on the mainland and Kelly’s Is drives qS = q1 → 0.0, 
whereas migration to Bass Is raises q2 → 1.0 depending on m1, despite absence of a selective advantage. 
Because m2 = 0.0 terminates migration, Model 1 comprises only two populations, with different selection 
regimes in each. The E&R data set initial values of q to their observed values, so as to show how modifying m 
causes them to depart from initial values.  

Set values of m according to an a priori migration model [examples in Excel worksheet], and in combination with 
the table of ∆q under selection s (right-hand section). Consider (1) m decreases by orders of magnitude as 
relative distances increase among populations [an inverse-log10 relationship], (2) m is constant, and results 
depend on choice of the selection scheme s, (3) combinations of (1) & (2) where both s and the migration 
gradient values of m to vary by orders of magnitude. 

Choose a column of ∆q under selection s, in the third section. Try s = 0.01 and s = 0.1 first, then s = 0.001 and s = 
0.5. Recall from the theoretical discussion that a migration / selection equilibrium occurs when s ≈ m. A good 
starting point is s = 0.01 and a uniform m = 0.01 among all populations. 

Set-up of Model Scenarios 

1) Compose values of q and m for the scenario of interest in one line of the work area. Include the 
value of s used, in the first column. [Retain all scenarios run, so they can be re-run as necessary]. 

2) Copy & Paste Values Only into boxes O33 – Y33: these are then automatically copied into boxes C2 
– M2 in the first section. 

3) Choose the column of ∆q for the chosen value of s. Copy & paste Values Only into Column AA: these 
are then automatically copied into Column L starting at Row 6 in the first section. [Be careful: 
overwriting the first five rows of Column L by simple pasting will destroy the worksheet!].  



4) The values in the first section will then be re-calculated for the input values of s, q, and m. The 
graphical result of q for each population over time will change to something like this: 

 
This scenario uses the initial data from Camin & Ehrlich, with s = 0.01 and migration rates starting at 
m = s = 0.01 and decreasing an order of magnitude with each doubling of distance [an inverse-log10 
realtionship]. Kelly’s Is, the closest to Ohio, quickly approximates the mainland. Both Bass and Pelee 
remain at relatively low f(B), with Pelee crossing Bass ~1,100 generations to a higher f(B) (Why?). 
The Ontario mainland retains a high f(B). Notes patterns at 100~500, 1,000, & 2,000 generations. 

5) Copy and paste the Excel block N36 – Z34 into a drawing program to retain the input parameters 
and the result. Repeat for all scenarios of interest. Use these figures for the Discussion. 

Discussion & Interpretation 

Consider the following scenarios for interpretation and discussion. Broadly, combine s = 0.00, 0.01, & 0.001 
versus m = 0.0001, 0.0010, & 0.0100 [except consider m < 0.00001 as necessary]. Consider short-, middle-, and 
long-term results (ca. 100, 500, and 2,000 generations, respectively). 

1. Five-population model: 
a. For a constant m among populations, how does varying s by plus-or-minus an order of 

magnitude modify the short-, middle, and long-term results? 
b. Same question, for a declining m proportional [inverse – log10] to distance among population? 

2. Mainland / Island model: For the [Mainland + Kellys] → Bass model, compare s = 0.00, 0.01, & 0.001 
a. m > s 
b. m ~ s 
c. m < or << s 

3. Under what circumstances do island q values converge on the mainland q? Why? 
4. What values of m & s best approximate the observed data of Ehrlich & Raven (1958) [Figure 1] 

a. Calculate f(B) counts for each population, approximating frequencies to the closest 10%. 
b. Calculate Chi-Square for observed and expected genotype counts. Which populations show the 

greatest departure from Hardy-Weinberg expectations? Why do you think so? 
5. Under what (if any) combinations of m & s can an approximate migration / selection equilibrium be 

reached and (or) maintained? Why? 


