Analysis of a tri-hybrid test cross
    
    
    
Theoretical: 
      Given three loci, linked on a single chromosome in the following
      order
       
      -----A----------B----------C-----
        
      Then, a cross
      between ABC//ABC
      x abc//abc
        tester involves
      
     
        -----A----------B----------C-----
       
        -----A----------B----------C-----
    
         
          -----a----------b----------c-----
          -----a----------b----------c-----
    
     Recombination may not occur at all (parental type), 
          or may occur between A & B, or B
        & C (single crossovers) 
          or between both: a double crossover
      
        During Meiosis I,
      single cross-over between the A
        & B loci looks like:
      
     
        -----A----------B--------C-----  => ABC Parental
          -----A---\  /---B--------C-----  => aBC Single recombinant
                 
        X        
      
       
-----a---/ 
        \---b--------c-----  => Abc Single recombinant
      -----a----------b--------c-----  => abc Parental
    
      A single cross-over between the B
        & C loci looks like:
      
     
        -----A--------B----------C-----  => ABC Parental
          -----A--------B---\  /---C-----  => abC Single recombinant
                          
        X
       
-----a--------b---/ 
        \---c----- 
      => ABc Single recombinant
      -----a--------b----------c-----  =>
          abc Parental
    
    Each crossover changes
the
          phase of one locus with respect to (wrt) its
      nearest neighbor.
    The frequency of either single
      crossover is proportional to the distance between loci,
              and increases with distance
      
       The frequency of a double
        crossover is the product
      of these frequencies:
                therefore a
      double-crossover is the rarest
      type:
     
     
        -----A----------B----------C-----
          -----A---\  /---B---\  /---C-----
                 
        X        
        X
       
-----a---/ 
        \---b---/  \---c-----
      -----a----------b----------c-----
      
      A double crossover will reverse the
          phase of the middle
        locus
        
       
        -----A----------B----------C----- => ABC
       
        -----A----------b----------C-----
        => AbC
      
       
        -----a----------B----------c-----
      => aBc
     
-----a----------b----------c-----
        => abc
        
           Thus, when you compare the
            most common types (
            the parental ABC & abc )
                       
            with the rarest (
            the double-recombinants
            AbC & aBc )
                          the cis /
                trans phase
              of the middle locus is reversed wrt both outside loci
                   Here: B is reversed wrt A & C (and b wrt a & c): B is the middle locus
            
          
    
        Experimental
      Consider three loci E, F
      & G, linked on a
      single chromosome, but in an
        unknown order
    
    The following cross is
      constructed:
        
        EEFFGG    x   eeffgg  (P) => EeFfGg
        x    eeffgg  (tester)  (F1)
      which produces the following counts among 1,000 F2 offspring.
      
             Use of a tester means the genotype
      of the offspring can be inferred directly from the phenotype
     
    
      
        
          | Genotype 
 | Phenotype 
 | Count 
 | Class 
 | 
        
          | E F G efg 
 | 'EFG' 
 | 370 
 | P 
 | 
        
          | E F g efg | 'EFg' 
 | 8 
 | D 
 | 
        
          | E f G efg | 'EfG' 
 | 37 
 | II 
 | 
        
          | E f g efg | 'Efg' 
 | 95 
 | I 
 | 
        
          | e F G efg | 'eFG' 
 | 85 
 | I 
 | 
        
          | e F g efg | 'eFg' 
 | 43 
 | II 
 | 
        
          | e f G efg | 'efG' 
 | 12 
 | D 
 | 
        
          | e f g efg | 'efg' 
 | 350 
 | P 
 | 
      
    
    
    (1) Identify the four pairs of phenotype
      classes:
        one parental (P) class, which is most
      frequent, and
                                            
which
shows
      the same phase relationships as the parents
        two  single recombinant (I & II) classes, between the middle locus and
      each outside locus
                
          one double
        recombinant (D)
      class, between the middle locus and both outside loci
                                            
As
this
      requires two events, this is the rarest class
      
          The two members of each recombinant pair should
      occur in approximately equal numbers,
               because each
      crossover produces two products
    
    (2) To determine gene locus
        order:
        Most common phenotypes EFG  &  efg are parental: no recombinants
         
        Rarest phenotype EFg & efG will be the double-recombinants:
                  Compare phases of [EFG efg] vs [EFg efG]
          
            *
        The G
        locus changes phase ("flips") wrt E & F, therefore G is in the middle *
      
           -----E-----G-----F-----
        
        (3) To determine the frequency
            of recombination between locus pairs,
                 count all  classes
          in which the phase changes from the parental types
               (i) for E
            & G
           
                EG
            & eg are parental types
           
                Eg
            & eG are recombinant
          types between E & G: (Class I):
                    count all classes
          with this type
                      # (EFg + efG + eFG + Efg) 
                     
             [(8    + 12)  + (95   + 85)]
          / 1000 = 0.20 = 20% = 20
            m.u. = 20 cM
          
               (ii) for G & F
                    GF & gf are parental
          types
                    Gf & gF are
          recombinant types between F & G (Class II):
                    # (EFg + efG + EfG + eFg)
                      
          [(8   +  12)  + (37   + 43)] / 1000 = 0.10 = 10% = 10 m.u. = 10 cM
          
              (iii) for E
            & F
                    EF & ef are parental
          types
                    Ef & eF are
          recombinant types between E & F
                    # (EfG + eFg + eFG + Efg)
                      
          [(37   + 43)  + (95   + 85)] / 1000 = 0.26 = 26% = 26m.u. = 26 cM
          
          (4)    Map data then look like this:
                        The distance
          between E & F is greatest, so these
          are on the outside 
          
             
              E--------20cM--------G---10cM---F
               
              E-----------26cM-----------F
          
                    but 0.26 < (0.20 + 0.10)    
          WHY?
                     
        
        In the double recombinants,
        
       
        --A----B----C--    ABC
        ABC
       
        --A----b----C--    AbC
        AbC
      
       
        --a----B----c--    aBc
 aBc
     
          --a----b----c--    abc
 abc
        
            so double
                recombinants resemble parental type
                     but each represents 2 cross-overs between
              outside ( E & F ) loci
              
              (3.iii') Then
              the corrected
                count of crossovers between E & F
                         [(37 +
              43) + (95 + 85) + (2)(8
                + 12)] = 0.3 = 30 m.u. = 30 cM
              
              (5) Interference occurs where one cross-over decreases the
              probability of others nearby:
                    Compare the
              observed vs expected #
              double-recombinants
    
                     Interference (I)
              = 1 - (observed # D) /
              (expected # D)
              = 1 - [(8 + 12) / (0.20)(0.10)(1000)]
                                                
              = 1 - f(Dobs) / f(Dexp)                              
              = 1 - [(0.008 + 0.012) / [(0.20))(0.10)]
                         
                  
                        In these
              data, I = 1 -
              (8+12)/(20) =  0
              :       # expected = # observed    no interference
  no interference
              
            
    
All text
        material © 2016 by Steven M. Carr