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Introduction

When one's scientific path and statistical eduaatitersects with the generalized linear model
(we will use the abbreviation GLM for generalizatebr models and LM for general linear
models following modern statistical conventionsppens many doors and provides for a more
holistic approach to analyzing data. Opening tliks®s comes at a price; however, because one
leaves the relatively safe confines of the LM, vehieterpretation and diagnostics are well
established, and steps onto ground that is lass fin addition to the usual issues of study
design, model building, model selection and diagossthere are also issues of overdispersion,
choice of the link term, and clustered data. Mahthese issues are more complicated with
GLMs than with LMs. Some of us who have used GliMsyears have struggled to find a firm
footing, i.e. find clear answers to the above issuEhis has not always been easy since the
literature does not always provide a clear guides paper is an attempt to find terra firma and
to bring our previous best to new heights.

Linear models have been applied to an almost unimahte range of problems in many different
fields. A linear model essentially assumes a limektionship between two or more variables
(e.g. as X increases so does Y). Most introdyatourses are taught, either explicitly or
implicitly, within the framework of the General lear Model (LM). Developed in the 1950s,
LMs unified many existing linear models (e.g. ttseANOVA, regression, ANCOVA) that
assume the error term (i.e. the residuals) is nilyrdsstributed and are calculated using the
method of least squares. Inthe 1970s, the Gerentd_inear Model (GLM) was introduced,
extending the LM to include models with non-norreabrs (e.g. binomial, Poisson). As with
LMs, the response variable is assumed to be indigmely distributed (although how one
determines independence is anyone’s guess). 8stshibclude log-linear models and logistic
regression and are calculated using Maximum LikelthEstimates (MLE). Quasi-likelihood,
developed in the mid-1970s, allowed for GLMs taused on a broader class of response
variables. In the late 1980s, Generalized Estimgaiquations (GEES) were developed which
allow for the analysis of non-normal, clusteredad@ g. repeated measures, Littel et al. 2002).
These models are usually concerned with populdé&eel inferences. Finally, Generalized
Linear Mixed Models (GLMMs) have been developed en@cently and extend GLMs to
include random-effects (Agresti 2002). In contnagh GEES, these models often have subject-
specific interpretations. This paper focuses prilpan GLMs (with special reference to
logistic regression) but GEEs are also discuss§aitier areas of statistics such as multivariate,
non-parametric, and Monte Carlo approaches, asasalther model families like Generalized
Additive Models (GAMSs) are beyond the scope of {raper.

We organized this document to reflect the procéssiitding, evaluating, and testing statistical
models which reflecgour understandingf an ecological system. Specifically, this is thsult
of a search to answer the following questions:



1) What are the criteria for building models? Wtyges of model selection criteria are available
and which is most appropriate?

2) What are appropriate diagnostics for the GLMtl{vgpecial reference to logistic regression)?
3) What is overdispersion, how is it detected, hod should it be dealt with?

4) What is clustered data and how it should béyaed?

This summary has involved a literature search ¢ Ipoimary and grey literature. In each
section, where possible/appropriate, we attemgefme the issue, describe how the issue should
be dealt with, and offer practical suggestiongiomw this is to be accomplished in R and SAS.
We have kept the style informal and where no résmiwas achieved on an issue, we leave the
guestion in the text with potential answers. Thiseant to be a working document.

We assume the reader has a basic understanding\d@d has taken Quantitative Methods in
Biology or an equivalent course. While the goallo$ paper has been to fitelra firmaand a
‘code of rules’ for GLM, remember:

"...the code is more what you'd call "guidelines” taatual rules™ Captain Barbossa

Model Selection Procedures

This section provides an overview of model selectipproaches with special emphasis on
information-theoretic criteria (i.e. AIC, BIC andhers). Selection among a suite of models has
become a common approach to interpretation of cexipiblogical systems. At some point

when using statistical inference, a biologist ndestide among the main approaches: frequentist
(hypothetico-deductive or information-theoretic)Bayesian; choosing the most appropriate
method to the task at hand. If one chooses a nsadiettion approach, be reminded that
“Although selection procedures are helpful explonatools, the model-building process should
utilize theory and common sense” (Agresti 2002 %¥). Beware of model dredging with too
manya priori models (Burnham and Anderson 2002; i.e. going fishing trip with model
selection procedures).

Implicit in the approaches presented herein areldpment ofa priori models developed as
likely alternatives based on knowledge of the systef interest (Burnham and Anderson 2002,
Guthery et al. 2005). Development of ecologicalBugible models is based on expert insight of
the biological processes at work — this is the @ation of model selection. Kadane and Lazar
(2004) pose the following basic questions as aguM/hich measures are important to the
outcome? Which are not? Are there interactions éetwhe variables that need to be taken into
account?” In addition to considering ecologicalusiaility, data collection, parameter
estimation, and preliminary diagnostics are cruicialeveloping a suite of ‘potential’ models
among which one, or a few, best models may be teeléar inference.

An important point to remember concerning modeta@bn is that all of the procedures select
the ‘best’ fit models from tha priori options in a relative framework. Therefore, thisrao



assurance that the ‘best’ model is actually a gwedictor or explanation of the processes at
work. Additionally, one must remember that the @ehares presented here may not select a
single ‘best’ model. In this situation Faraway (2p@sks: 1) do the models have similar
gualitative consequences; 2) do they make simidiptions; 3) what is the cost of measuring
the predictors; and 4) which has the best diagrssati

Following is an overview of available methods fondel selection with insights to application.
We do not present full mechanics of implementakiere, as this information is readily available
elsewhere (e.g. Agresti 2002, Burnham and Ande28®2, Faraway 2002). We refer the reader
to Foster (2002), Burnham and Anderson (2002),Vaadd (2007) for more in depth coverage of
the field.

Stepwise Procedures

These procedures have been extensively used,doftan dissuaded for use in the selection
process based on being judgment oriented, notaigorand not criterion-based (e.g. Burnham
and Anderson 2002, Kadane and Lazar 2004, Whitamgét al. 2006). ‘Significance’ of
parameters should not be the only criterion folusion. These procedures are: Backward
Elimination (sequential deletion of terms until @l leads to “significantly” poorer fit),
Forward Inclusion (addition of terms until no “sificant” improvement in fit is detected), and
Stepwise Regression (iterative addition/deletioteans to include all terms that “significantly”
affect fit and none that do not).

Criterion-Based Procedures (non-information-theardétased)—

Predicted Residual Sum of Squares (PRESS):
This criterion selects the model with lowest sunsgdiared errors without inclusion of the
ith case. PRESS tends toward larger models.

Adjusted R:
This criterion functions to minimize variance. Boam and Anderson (2002) state that
adjusted Ris a useful measure of proportion of variatiort, tmt useful in model selection
as many models will be nearly equal.

Mallows’ C, Statistic:
Mallows’ C, is easy to compute, closely related to adjusted’ may be used to guide
the researcher in the process of model subsetisgle€hoosing the model that minimizes
C, and estimating parameters with least squaredits fea normal errors, homogenous
variance, but prone to bias and should be avoideddast other situations.



I nfor mation-Theoretic Procedur es

Information-theory developed in the 1950s and wamntjfied in statistics with Akaike
Information Criterion in the 1970s. No attempt viié made to detail the theory or procedures
here. An extensive summary of information theoretiteria involving model parsimony and the
practical use of model inference can be found iingeet al. (2002) and Burnham and
Anderson (2002) respectively.

Akaike Information Criterion (AIC):
AIC is a valid procedure to compare non-nested risoddC is a better estimator of
predictive accuracy, whereas BIC (see below) isteebcriterion for determining process
(Foster 2002, Ward 2007). Detractors contend th@&ttands to over fit the data (e.g.
Kadane and Lazar 2004). Note if your model or dataseverely overdispered AIC will
result in biased outcomes and other model seleptiocedures are more appropriate.

AICc is a second-order AIC for small sample sizes. Tioslified criterion contains an
additional bias adjustment, which will tend towa&i€ in large samples. Algis
recommended over AIC any time (n/global K) < 46.(any time you have less than 40
observations per parameter; Burnham and Anders0g)20

QAIC(c) is a modified AIC for models containing an ovepdission parameter. This can be
computed in both large and small sample versiossrideed above. The objective of this
quasi-likelihood form is to balance over- and unfiléing of the models when
overdispersion is present (Anderson et al. 1994).

It is recommended that researchers present Al€@réificesAAIC) and Akaike weights

(wi) as the “raw” AIC value is meaningless outsid¢hef context of the other models under
consideration. Akaike weights function as eviderat@s for interpreting results of

multiple models. There is no advantage to bootpirgpmodels over using Akaike weights
(Burnham and Anderson 2002).

Models with AIC differences <2 should be considezgdivalent in strength of inference;
those >10 can be omitted from further considerag@iminate model with higher AIC
values and lower weight).

Schwarz or Bayesian Information Criterion (BIC):
Tends to smaller models than AIC (due to an ext¢raafty for parameters wher7.4)
Kadane and Lazar (2004), proponents of BIC stdtegé&neral, models chosen by BIC will
be more parsimonious than those chosen by AIC.1&\tetractors contend that BIC



underfits the data and introduces bias in the fofimverestimating precision (e.g.
Burnham and Anderson 2002).

The following are less commonly used informaticeethktic criteria that the reader may
encounter in literature.

Deviance Information Criterion (DIC):
DIC was proposed as an equivalent Bayesian meth8dld. Beware that many questions
are still unanswered regarding its use (Ward 2007).

Takeuchi’s Information Criterion (TIC):
TIC is more generalized than AIC (AIC is a specide) by containing a more general
bias adjustment term. Burnham and Anderson (20@2ysarize that matrix error
estimation can cause instability with this proceg@athough it is useful for large sample
sizes with good estimates of matrix elements incdse of poor approximating models.

Focused Information Criterion (FIC), Network Infaatron Criterion (NIC), and Risk Inflation
Criterion (RIC) are included among other alternegivf information-theoretic model selection
criteria that have not gained popular use in bidlalgscience.

Summary

AIC and other information-theoretic approaches Havgely replaced p-value based procedures
in some fields of biology (Johnson and Omland 200¥prmation-theory in general has been
commonly promoted as a means to further scierkifmwvledge over hypothetico-deductive
approaches (see review by Anderson et al. 2000)le\iths may not always be the best method
of inference, we present a summary of the metheds, las they are now part of mainstream
ecological literature (Hobbs and Hilborn 2006). Hwer like null hypothesis testing, with which
information-theoretic approaches are contrastédynmation-theoretic model selection criteria
can be sloppily applied (see Guthery et. al 20@batations thereafter).

Model Evaluation and Diagnostics

After you run a model, but before interpreting feswou will want to assess it. How well does
your simplification of reality (your model) explaihe ecological phenomena? There are two
types of diagnostics: those that are used to etealadel fit and those that identify where
(which data points) the model fits poorly. Modelrgflects whether the appropriate link function
and structural model (i.e., relevant predictorsiactuded, predictors are not correlated and
irrelevant predictors are excluded) have been 8pddisee Littel et al. 2002; Agresti 2002,



2007; Crawley 2002). Problems in the data can pestyoutliers and influential data points, but
also aspects of the data set that affect modebpeence, such as sparse data and zero cell
counts (Menard 1995). Because methods of evalukigigtic regression models are limited,
special attentions should be paid to the effectdath problems’. Menard (1995) cautions that
if statistical assumptions are violated, you mgysfistematically over- or under-estimate
coefficients, (2) have large standard errors, phé&e inaccurate statistical significance.

One of the reasons for choosing a GLM, insteadld¥lais to account for the error structure. By
selecting an appropriate link function varianceldtidoe homogeneous and deviance residuals
normal. Thus, by using the appropriate link, assionp about the error structure are like that
for LM. To visually assess the link function filppthe linear predictor against the estimated link
function — the plot should be linear. For exampie, code for evaluating the Poisson distribution
in SAS is:

Code box 1:
plot (y*=xbeta+(y-pred)/pred) v xbeta

where y is the response variable and pred is pextialues, and xbeta is the estimate of the
link function. All are available through OBSTAT® $AS. To assess whether a logit link i$
appropriate, plot the natural log of the odgsI( p/(1-p))) versus each of the predictors.

To test homogeneity of variance assumption, pletstiandardized residuals against fitted values:
this serves the same purpose as LM. This grapld codicate poor model choice or a poor link
function (Littelet al. 2002). Note that there seem to be variations isrtiieme — some
recommend plotting deviance or Chi-square residudiss. For a general discussion of
diagnostic plots see McCullagh and Nelder (1988)elet al. (2002) provide examples for
Poisson distributions. This should apply to aflestdistributions except binomial and beta-
binomial. For binomial distributions, diagnostiofs of residuals do not seem useful; the 2-line
residual plot is difficult to interpret. InsteadeBibon (1981) and Menard (1995) concentrate on
diagnostics that identify where the model fits ppor

Overdispersion is an issue that commonly aris&Lil model fitting and is a relatively
complicated and contentious issue. We therefove davoted a whole section to why and when
it occurs and ways of handling it when it doesea(see below).

Key assumptions related to the structural modetlaatall relevant predictors are included,
irrelevant ones excluded and that the predictasat correlated. Choice of which predictors to
include is based on theory, your understandingp@feicological system, and available resources.
Menard (1995) stated that bias from excluding r@ewariables is more important than
inefficiency from including irrelevant ones. We cliss approaches for determining which
predictors to include in the model selection sectbthis document. Here we will focus on
identifying correlation among predictors.



Lack of correlation among predictors is one ofkbg assumptions of both LM and GLM.
Ideally, one would check for association among joteds prior to building a model, using a
contingency table approach for categorical varsbled correlation for continuous variables.
Menard (1995) recommends (re)considering correiatadlinearity among predictors, if the
model is significant but parameters are not, tiefstandard errors of the coefficient are very
high. High standard errors could also be the retathkh problems, such as zero cell counts or
outliers, described below.

Zero cell counts, having no observations for allewthin a categorical predictor, leads to
inefficient estimation of parameters (super-highar@ates and whopper-sized standard errors).
These should not affect overall model fit becabssé cell contain little information and,
therefore are given little weight in the model Rbr categorical predictors, another consideration
is the number of cases per level. Agresti (2002)iena distinction betweerandn, where c is

the number of cases (i.e., df = c-1), for langhe G approximates Chi-squared distribution but
usually poor when the n/c<5. Thus, with categonmaldictors guidelines for the number of
explanatory variables are based on the numbedofiduals per case — not sample sizes. Agresti
(2007) states that even with sample sizes of 1i@80ccessful outcomes are rare, the number of
explanatory variables should be limited to ~3 drthare only 30 times the result in one outcome
(either successes or failure).

Menard (1995) suggests checking for coding errdrenwyou find extreme values because they
may skew regression estimates. However, if aftertisizing extreme data points, there are no
coding errors or other justifications for removihg data points, they must remain. This may
indicate a missing explanatory variable. For exanplenard (1995) did not remove outliers

from his ‘pot-smoking teenagers example’ — those Wad delinquent friends but did not inhale

— after scrutinizing the extreme values he foune@mors or reasons to exclude those values from
the model. There were likely some attributes (K€)y.of the anomalous teens that Menard (1995)
was not including in his model.

Influence measures compare models with and witeetieme values to assess whether or not
those values were driving the result or how muatral deviance in the model is attributable to
those extreme values. Venables and Ripley (200ghesi using the R function
‘influence.measures.’



Software box 1

Normality of Deviance ResidualBeviance residuals should be normally distribut@@ice and Schafer 1986)
this is produced in Software:

R: Remdr provides a panel of 4 diagnostic ploteett model assumptions. Diagnostics can be eaddgd to
the data set and new graphs generated. The conpian(@lm) is useful for plotting four typical molde
diagnostic plots.

The printout from R-help files states:

Plot(glm) produces four plots. The first is theklanife deviance residuals against the fitted valu€he second
is a normal QQ plot of the standardized devians&ltals. The dotted line is the expected lineéf th
standardized residuals are normally distributed,iti.is the line with intercept 0 and slope 1.eTimal two
panels are plots of the Cook statistics. On theided plot of the Cook statistics against the dtadized
leverages. In general there will be two dotteddina this plot. The horizontal line is at 8/(n-2yjere n is the
number of observations and p is the number of patens estimated. Points above this line may betpaiith
high influence on the model. The vertical linetip/(n-2p) and points to the right of this lineveaigh
leverage compared to the variance of the raw rasihthat point. If all points are below the horital line or
to the left of the vertical line then the line istshown. The final plot again shows the Cookigtiatthis time
plotted against case number enabling us to finatkvbbservations are influential. (R-help files)”
(http://stat.ethz.ch/R-manual/R-patched/libraryffiaionl/glm.diag.plots.html)

Most of these are easy to get in Remdr by addiegéiduals to the data set.

SAS: provides all of the examples from Littel et(@002) quite easily (it is after all from a SAGnual)

There are high quality graphics available in SAStigh the ODS -
http://www.ats.ucla.edu/stat/SAS/faq/sas9_statsgitir see this site for PROC REG diagnostics. Howeve
these only seem to be available for a limited nunatd€ROCs - it's a bit annoying but indicates tbahsensus
on diagnostics is not as concrete as it is foraggjons. One could probably produce the diagnpkiis by
requesting residuals and graphing them but it s¢erhe hard in SAS.

Overdispersion

What isoverdispersion

The following paraphrases from the various citddrences in an attempt to summarize the
available literature, rather than attempting taevan original paper. As a warning, that this is a
difficult section. The concept of overdispersiomansidered, even by statisticians, easy to state
but difficult to mitigate. There is little or nasghgreement over the definition of overdispersion,
the archetypical definition articulated by Craw[@902) who defines overdispersion simply as
the case where the residual deviance is greateittigaresidual degrees of freedom. In
otherwords, ifp (ratio of deviance and df) > 1 one speaks of agpetsion because the data
have larger variance than expected under the asgxmgd the chosen binomial distribution
(Hgjsgaard and Halekoh). Crawley (2002) goes atidouss overdispersion as the polite
statistician’s version of Murphy’s Law. Overdispi®n tends to arise because ‘you’ have not
measured one or more of the factors that turnedooog important. It may also occur if you
specify an incorrect error distribution. This medmat the probability you are attempting to
model is not constant within each cell, but behdkesa random variable. This in turn results in
an inflated residual deviance.

Thus, by not accounting for overdispersion you mnayease your type | error.



In the worst case, all the predictor variables lgaue measured may turn out to be unimportant
so that you have no information at all on any ef genuinely important predictors. In this case
the minimal adequate model is just the overall maad all your ‘explanatory’ variables provide
no extra information. Young et al. (1999) agree:

“Overdispersion should be accounted for in a [Glavlysis. Failure to do so in the presence of
overdispersion results in type | error rates wiethae the nominal ones. When overdispersion is
not present, the test for treatment effects iegiatively affected by considering
overdispersion.”

When isoverdispersion a problem and how doesit arise?

There are no clear cut decision rules, when todgeitiat there is sufficient overdispersion to be
problematic in analyses. As mentioned previouslgre are no adverse consequences of
explicating considering overdispersion in analydlestefore, if there is any semblance of
inflated deviance, the investigator should deflgiteccount for overdispersion (see subsequent
sections for techniques on how to implement this).

Two completely different reasons can underlie thenmmenon of a Pearson statigfiérom a
fitted logistic model to be larger than expecté&itst, systematic deficiencies of the model (see
GLM diagnostics). Second, unexplained random vandt.e. overdispersion). These two
explanations have different implications for the o$ the fitted model (Hgjsgaard and Halekoh).
Systematic deficiencies of the model may be dupéazification of the wrong link function,
missing covariate(s), failure to consider and impat transformations (e.g. the logarithm of a
covariate may be better then the covariate itsatf)l outlying observations (Hgjsgaard and
Halekoh 2005). Overdispersion does not exist éndicumstances where the dependent variable
is a Bernoulli [0, 1] variable (e.g. happens foample in logistic regression with continuous
covariates), or when the largest model under cenaimn is equal to the saturated model.

If even after investigating these potential pifale variance is larger than explicable by the
[binomial] assumption (which forces the dispergpamameter to be 1), there are some extra
sources of variation, which must be addressed.€Taer two different causes for overdispersion
which have the same statistical implications; rand@riation in response probabilities, and
interaction (correlation) between [binary] respané®ee Hgjsgaard and Halekoh 2005).

How much overdispersion is too much? How do yoovkmvhen you really must account for
overdispersion in your model? The following areesal opinions. First, if the ratio of the
Pearson-statistic to its degrees of freedom istabou larger. McCullagh and Nelder (1989,
p.125) argue that unless there are good reasomslyang on the [binomial assumption], it
seems to be wise to be cautious and to assumewvbatispersion is present. Second, Crawley
(2002) suggests testing (using quasi-likelihood Ewg. Chi-sq tests) for the affect of
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overdispersion anytime the ratio of residual desato residual degrees of freedom is >1.
Similarly, McCullagh and Nelder (1989) indicatetthay level of dispersion >1 should be
considered and modeled to prevent magnificatioerar rates and skewed confidence intervals.
As a warning, overdispersion should be suspectecefeated counts but not frequencies
(Lindsey 1999).

According to Anderson et al. (1994), once one basd an adequate model structure,
overdispersion, values between one and three pigaty Sophisticated modeling of
overdispersion may well be unnecessary at thesdelosis Conversely, if overdispersion is as
big as 10 (and perhaps if it is as much as 5),aemimportant structural variation remains to be
extracted from the data (i.e., the model seledetwt structurally adequate; Anderson et al.
1994).

In summary, if there is large overdispersion (3u probably missed something and need to
add it to the model. If there is overdispersioagant but its low (<5), check the structure of the
model. If it seems OK, then try to remedy ovesrtispn (see below).

How to deal with overdispersion, assuming that the structural model is acceptable?

There are several typical techniques employed wivendispersion is present to account for
inflated deviance. It is important to note thatdé techniques do not rid the model of
overdispersion, but rather embrace and accourt fothe model structure. The first general
technique is to take a quasi-likelihood approastthis technique one uses the same error
distribution (i.e. Poisson, binomial) but adjuste standard errors and test statistics.
Specifically, hypothesis testing with an F-testéasl of Chi-squared is recommended. In other
words, model overdispersion by letting the actwlance equal the assumed variance multiplied
by an additional scale parameter that adjust ferdikcrepancy between assumed and actual
(Littel et al. 2002). Another way of thinking ofighis that using the F-test vs. Chi-squared (or
any other ‘solution’) does not make overdispergioraway but simply takes it into account in
our hypothesis testing.

The quasibinomial and quasipoisson families inallitkethe R stats package are quite simple.
Following McCullagh & Nelder, the quasibinomial neydeeps the same structure, except that
“the variance is inflated by an unknown factéf™(p. 126). The estimates of the b are not
changed, but the estimates of the standard emrershanged. McCullagh & Nelder (1989)
observe that the covariance matrix of the paranestitmates is inflated according to the
estimated value of the dispersion coefficient.”(G&M

It is comforting to know that the quasi-likelihoagproach is quite robust as stated in the
passage below:
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“When you want something as good as a “sum ofreguaodel” or a maximum likelihood
model, but you don’t have the tools for eitherréhis an alternative that is “almost as good, i.e.
the quasi-liklihood approach.”(GLM3)

Generally, quasi-likelihood adjustments (i.e., ab& > 1) are made only if some distinct lack
of fit has been found (for example, if the obsersegphificance level B 0.15 or 0.25) and the
goodness-of-fit degrees of freedeniO, as rough guidelines (Anderson and Burnham 2002

Selected quote on overdispersion:

“...and then the magical part of quasi-lielihood bees apparent. When you want something as
good as “sum of squares models” or a maximum liceld model, but you don’t have the tools
for either, there is an alternative that is “almastyood” [quasi-likelihood].

- From Johnson (2006)

What arethe costs of overdispersion, i.e. what doesit cost to correct for it and what does it
cost not to correct for it? e.g. why not just use quasibinomial?

The impact of estimating the dispersion parametehe parameter estimates and the estimated
variances are given in the following list:

* parameter estimates: they are unchanged,

* estimated (co)variances: multiplied lay ™

* Log-likelihood, scaled deviance divided lay, ~

» Wald-Cl-intervals: width of the interval sgpttimes larger (Hgjsgaard and Halekoh 2005).

Ultimately, the cost of incorporating overdispers&stimates into your model is trivial
compared to the cost of not incorporating when ngally should have. Specifically, if you do
not correct for overdispersion, the estimates efdtandard errors are too small which leads to
biased inferences, i.e. you will observer smallgajues than you should and thus make more
Type | errors. As a result, confidence intervalll also be incorrect (Oregon stats).

Model Validation

Once one has completed the above steps and ghtisfimselves that their chosen model is the
‘best’, testing of the model with independent da@aomes tantamount. Ground-truthing the
predictive capability of the model should therefbeeaddressed and results reported (Burnham
and Anderson 2002, Guthery et al. 2005). Variouthous of model testing exist dependent on
model objectives and available data (e.g. bootptrgp randomization, prospective sampling).
More robust estimates of prediction error will bepded by using independent data. Fielding
and Bell (2002) provide a thorough summary of aldé methods for testing models with binary
data (i.e. logistic regression and others) andtrengths and weakness of summary statistics of
predictive power resulting from these validatiooqedures.
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Softwar e box 2:

R: specify the family (e.g. quasipoisson) (see ®&dor simple examples)

SAS: Use the dscale/pscale options in the modidratnt. This causes all standard errors and sg#ttgis to be
corrected for a scale parameter estimated usinddti@nce. No advice on which is better. Approerticized as
simplistic - a different distribution is likely lidboer (Littel et al. 2002).

Do dscale and pscale represent the estimatorsl @esiance function/df) and (Pearsogfgdf)? If so, Young et al.
(1999) and Williams (1988b in Engel and Brake 139&h recommend use of Pearsof’'sis a better estimator.
In SPlus, you correct for overdispersion with codaa or proportion data very simply,

by stating test="F" instead of test ="Chi” in theava function. See pp 518, 545, etc.

“Proc GENMOD fits generalized linear models (GLMjdahandles modelling of overdispersed Poisson ukitey
quasi-likelihood (e.g. SCALE=P) or the negativedmmal distribution (DIST=NEGBIN), but not genera linear
mixed models (GLMM). In R a GLM is fitted usingetlylm function, and specifying family=quasipois$ethe
equivalent of SCALE=P in SAS.

In contrast to the quasi-likelihood approach, omld assume a new distribution that does a betbeajmodelling
variance (GLM3) - if Poisson, use Negative Binomifdbinomial, use beta-binomial (Lindsey 1999)ndrmal, use
gamma (DCS pers. comm.). The negative binomial isalsendled either by the negative.binomial farfulyction
(when the shape parameter is known) or the glnunbtion (if you want to estimate the shape by Migth
negative.binomial and gim.nb are found in Venabled Ripley's MASS package.” http://www.mail-archoam/r-
help@stat.math.ethz.ch/msg17801.html

Clustered Data: mixed effects models and GEEs

What is clustered data?

Clustered data is data that is correlated in s@slkidn. Common examples are:

-Longitudinal or repeated measures (same treatmany times on one subject). Note: some
people distinguish between longitudinal and repkateasures|-don’t understand why

...maybe repeated measured are a subsectiongifudimal studies

-Cross-over (several treatments on one subjectpagypatient gets several types of drugs over
the study period).

-clustered (correlated data - e.g. offspring frames litter, patients from same clinic, plants on
the same plot)

Each of these examples clearly violate the statisissumption of independence (of the errors)!!

What isthe problem for ecological research?

As with logistic regression, the medical peoplensée be way ahead of ecologists on this one.
The standard medical experiment would be a cogtalp and treatment group. A proportion of
each group respond positively. Site effects eitimar't exist or are pooled (either explicitly or
naively, i.e. ignored). Note: traditionally, prapions or counts were analyzed with a one- or
two-way G-test. Once you reach 3 EVs, it becanmater of self preservation to use a
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computer and do a GLM (i.e. logistic regressio®Y.course, GLM can now easily be used for
any number of EVs.

However, more modern medical experiments are ofegrconducted in this fashion. Consider
the following medical example. A study is conddcts the health of children in 16
communities. Half of the communities are conthallf are treatment (depending on the
guestion, it may not be possible to apply the imeait randomly to children - this is a community
level question). One thousand kids are monitomesbich community. Does n = 16 or 16,000.
A pseudo-replication purist would probably sugdhat n = 16. If the purist is correct, there is
little advantage in this case to have 1000 subgets£ommunity - 10 might work just as well as
long as the mean is well estimated (of course tméidence intervals would be much smaller for
the 1000 subject approach). However, running aaivtiere n = 16,000, while it takes
advantage of all of the information, is clearlyppeopriate and is referred to as naive pooling (I
suspect that these types of data were often ettplpmoled or analyzed with LM).

Now consider common ecological experiments whewmtsoor proportions are measured on a
per plot basis (e.g alive v. dead on multiple plof3oes one take the pseudo-replication
approach or the naive pooling approach? A padrtpthorny problem for ecologists is that we
must consider how many plots are needed and how maasurements to make within the plot
(no solution on this yet). Analyzing these typéslata is not straightforward (nor is conducting
a power analysis on them). Neither the psuedoeapin approach or the naive-pooling
approach offer much guidance. Is there a bettgPwées!

Recent advances allow the analysis of such dadlexible but valid manner. For an excellent
reference, (see Burton et al. 1998). Panageds(8088) demonstrate the need for clustering in
medicine. Ying and Liu (2006) do the same and stedevant code for SAS. Bogarts (2004)
shows a way to estimate sample sizes and gives/gyued slide show presentation.

Note: Beware of “Mason’s diffusion process” whegenew statistical techniques are touted as
panaceas by proponents and disparaged as “notawghy critics ('m quite guilty of this and
may be committing this error npw

Recognize clustering when you encountetinder developmeht

“Observations within a cluster tend to be moreatikan observations from a different cluster”
(Agresti 2007). I'm not sure how to extend thig tmant to avoid a psuedo-replicationist witch
hunt.

Understand why analysis needs to take clusteritagaocount or Why do correlated errors
matter?

» The key outputs of regression analysis are

estimates of
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— &, variance of the errors, a key ingredient of heeful the model is, plus for predicting new
values

— SE), standard error of estimat@dwhich determines the p-value and width of the
confidence intervals

Failing to take clustered data into account malséisnated B, § SE(B) wrong; even in the best
case, 8, SE(B) will be too small......so this means a $enal and CI than correct (Kleinman and
Colegio 2007)

What to do about it? (Most of this is lifted fronuiBon et al. (1998) who give an excellent
example data situation and explore different,dsalbdels to analyze the same data).

1) Summarize data (data resolution) within clugtey. take the mean of repeated measures) -
one way to avoid the psuedo-replicationists.

2) Pretend there are no clusters, i.e. naive pgolirhis may work in some cases but you'll have
to defend it (at least to yourself). Probably aifilyou can justify that within cluster correlation
is really low!

3) Summary statistic or similar approach, i.e. @ait-test, random block (include site as a
blocking variable and pretend its fixed so you tbhave to do GLMMSs), repeated measures
ANOVA, MANOVA - limited to categorical predictorand normal errors. Doesn’t work well

for GLM unless you transform the data. For examipdeeasy to generate a Difference statistic
for a paired t-test, just take the difference betvihe paired measurements. But how does one
do this for a proportion??

KPL; Note that this approach may cause the modelash - happened for my PhD.

4) GEE: Generalized Estimating Equations are atewanalyze clustered data within the GLM
framework. These models are also called margimalels or population averaged models. The
treatment is modeled separately from the withist@ucorrelation, i.e. treatment effects are
averaged across clusters (Kuss no date).

Regression coefficients of a PA model describeatrexage population response curve. In PA,
one explicitly models the marginal expectationsl&zbhoosing a var/cov structure that
adequately describes the correlation pattern artftmgepeated measurements
(http://www.uoregon.edu/~robinh/gnmd13 _rm_qgee.ixt)

Note: The number of clusters is an issuig(//www.uoregon.edu/~robinh/gnmd13_rm_gee.txt)
but see Haloekoh et al. 2006 for a solution.
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Quote: “In general, | think of GEE as “taking acotwf the correlation, treating it as an
annoyance to be coped with en route to accurageein€e. (This is reflected in estimation of the
estimates.)’(REF?)

5) GLMM: GLMM (or random effects models or subjeecific (SS) models) treats the
heterogenity among clinics as something of inteifestt can be modeled by a probability
distribution (Kluss no date). In this case, ong/a interested in individual responses.
Regression coefficients of a SS model describe tieaaverage individuallesponse curve
looks like. In SS models, model individual hetenogiéy using subject-specific random effects
which partially determine the var/cov structure.

(http://www.uoregon.edu/~robinh/gnmd13 _rm_gee.ixt)

For a comparison of the results of these approamhdise same data, see Table 1 (actually just
the other attachment for now).

GEE v. GLMM - sectiorunderdevelopment
See Kluss (no date) for a good example of diffeesrizetween GLMM and GEE.
Variance and correlation are mathematically idetfbetween GEE and GLMM)!! But: with

GLMM, you can more easily get an estimate f the variance between clusters, as well as
estimated pwithin each cluster.

Table. Differences in the GEE and GLMM approach.

GEE GLMM
Variance A2 op2+G6°
Correlation A op’l(02+67)
Covariance a2 op2

Variance strucutre is

Correlation is a nuisance : :
interesting

Model assumptions (easier
Account for wrong variance | inference about variance, data
structure can be MAR, fewer clusters
OK

Missing data must be MCAR

Needs 20-40 clusters Assumptions must be true
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Softwar e box 2;

SAS: Use the REPEATED statement in PROC GENMODecB®pthe correlation matrix in the
options. The GEE approach is generally robustitagpecification of the correlation matrix (se
(http://www.uoregon.edu/~robinh/gnmd13_rm_gee ¢xtrheaning of the different correlation
matrixes). Bios 265 (no date) gives a good exampthe influence of different correlation
matrixes and what to do if you have lots of drogsqer cluster.

U

GLMM: Hallahan (2006) gives a good overview of hmimplement GLMMs in SAS PROC
GLIMMIX- it will not be considered further here.

R: Use package Geepack. This is probably better $#€5, especially for small cluster sizes,
because it uses the jackknife variance estimeiee Haloekoh et al. (2006) for complete detall
on how to implement.

T

Anoymous (no date) gives a good summary of SASRandde for clustered data.
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