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Over the past two decades, advances in statistical analysis provided by 

generalized linear models (GzLMs) have improved the ability of researchers 

to investigate ecological processes.  Relative to traditional general linear 

models (GLM), GzLMs provide greater flexibility due to their ability to 

analyze data with non-normal distributions.  Considering the limitations of 

the GLM, we review the specific rationale of applying the GzLM in several 

fields of ecological research, and the number papers applying GzLMs.  

Through this review we revealed that GzLM has great potential for 

application across many fields of ecological research, and that there are an 

increasing number of research papers in ecology presenting results from 

GzLMs.  We also analyze a series of exemplary ecological data sets using 

the GLM and GzLM, and used p-values to compare the relative sensitivity of 

the models.  Finally, we assess the benefits and difficulties of applying 

GzLMs to ecological data.  Because GzLMs allow for the specification of 

error structure, we found that GzLMs provided a much more appropriate fit 

to data sets with non-normal distributions, resulting in lower and more 

reliable p-values.  Since most ecological data is non-normal, GzLMs 

provide a more effective analytical method than traditional linear models. 
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Introduction 

Data and statistical models of data are used in empirical sciences in order to gain a better 

understanding of processes and parameters.  Statistical models provide a mathematical 

basis for the interpretation and examination of parameters and determine the roles and 

relative importance of different variables on a particular process1.  Statistical scientists 

have worked with ecologists for many years to improve the methods used to investigate, 

and thus better understand, ecological processes.  Consequently, there are many modeling 

techniques available to ecological researchers.  An important statistical development 

from the last 30 years is the introduction of the Generalized Linear Model (GzLM)2, and 

the advancement and application of analysis provided through the GzLM regime in 

ecological research3.  GzLMs are mathematical extensions of General Linear Models 

(GLM).  GLMs provide familiar linear modeling and analysis of variance (ANOVA) tests 

which rely on traditional estimation techniques such as the least squares algorithm.  The 

GzLM uses more flexible maximum likelihood parameter estimates; these estimates rely 

on an algorithm that iteratively uses a weighted version of least squares4.  GzLMs are 

based on an assumed relationship, called a link function, between a linear predictor 

function of the explanatory variables and the mean of the response variable.  Data are 

assumed to fall within one of several families of probability distributions, including 

normal, binomial, Poisson, negative binomial, or gamma2.  In comparison, GLMs are 

restricted to a normal error distribution and an identity link.  Although a powerful 

approach when appropriately applied, GLMs are limited by the assumptions that errors 

are identically, independently, and normally distributed.  Thus, the main improvements of 

GzLMs over GLMs are their ability to handle a larger class of error distributions, and 
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provide an efficient way of ensuring linearity and constraining the predictions to be 

within a range of possible values through the link function3.  Thus, GzLMs provide a 

unified theory of modeling that encompasses the most important models for dealing with 

non-normal error structures.  Since many of the data collected in ecological studies are 

poorly represented by normal distributions, GzLMs provide a flexible, suitable means for 

analyzing ecological relationships.  Consequently, this approach has been extensively 

applied in many fields of ecological research, as evidenced by the growing number of 

published papers incorporating GzLMs. 

 Here, we evaluate the rationale, capabilities, and benefits of applying GzLMs 

within several fields of ecological research.  We first present a literature review of the 

specific rationale for the use of GzLMs in various fields of ecological research, then 

proceed to evaluate the recent increase in usage of GzLMs across these fields.  We then 

analyze several sample data sets from each field using both the GLM and GzLM, and 

evaluate the performance of each of these methods.  We outline the advantages and 

disadvantages of these methods, and describe how the GzLM can be applied to optimize 

the analysis and maximize our understanding of ecological processes. 

 

 

Field Rationale 

The prevalence of GzLM in the existing literature is not evenly distributed across sub-

disciplines of ecology.  Reasons for the common use or paucity of GzLM in a particular 

sub-discipline may be dependent on a variety of factors including types of data or lack of 
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sophisticated analyses.  This section addresses the potential for using GzLM and 

intrinsic/extrinsic limitations within six sub-disciplines of ecology: 

 

Avian population monitoring 

Monitoring long-term population change in birds is an integral part of effective 

conservation-oriented research and management.  Since censuses of whole populations 

are often logistically impossible, population monitoring almost always relies on counts of 

subsets of a population.  However, count data is often highly variable and overdispersed 

as a result of varying effort, missing data, observer differences, and actual natural 

variation.  A number of analytical methods have been developed which attempt to deal 

with these complications, however, there is no consensus on which method is most 

suitable.  The GzLM approach offers some promising solutions to these problems. 

 

Boreal treeline dynamics 

Many boreal researchers are studying the migration of the treeline, or tree invasion into 

alpine and tundra habitats.  The GzLM, specifically logistic regression, is appropriate for 

this type of study.  Logistic regression is useful for testing presence/absence, spatial 

distribution, and dominance of a species group as a function of biological and physical 

variables5-7. In addition, presence/absence data is commonly encountered in the field of 

treeline ecology, due to the advance of remote sensing and aerial photogrammetric 

technology used for monitoring these climatically sensitive areas8.  
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Marine bacteria 

Bacteria are highly abundant in oceans, and function as a biological pump in mediating 

climate-active gases between ocean and atmosphere9, 10. Studies dealing with aquatic 

bacterial abundance are essential to evaluate bacterial roles in biogeographic processes. 

Therefore, plenty of research has been done from lab-scaled experiments to global-scaled 

surveys of aquatic bacterial abundance.  The overall understanding of these processes 

would be greatly increases with more sophisticated analysis. Most studies in this field use 

basic statistics, such as t-tests and Chi-square tests, to determine statistically significant 

effects.  Model based statistics were seldom applied in this field.  However, the more 

interesting question is which factors control the bacterial abundance and to which extent.  

Therefore, model based statistics will be much more useful, because it will report 

biological interest parameters, in addition to p-values.  

The choice of GLM and GzLM to analyze bacterial abundance data cannot be determined 

without first knowing the distribution of the data. Bacterial pathogens shouldn’t present 

in environment ubiquitously. Therefore, data collected about pathogen present and absent 

could be binomial distribution, which should be analyzed by GzLM. 

 

Conservation biology involving vegetation 

A primary focus in conservation biology, both floral and faunal, aims to determine the 

number of species in a given area. Whether the species of concern is a plant or whether 

the species distribution is conditional on a certain vegetation community, the use of GLM 

and GzLM are often used. It is therefore common that data of this nature is 

presence/absence or count data – both of which are most appropriately analyzed with 
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GzLM with an appropriate error structure. Estimates of survivorship, though under-

represented in the conservation literature, are of particular interest for population viability 

analyses and are arguably most appropriated analyzed using GzLM.  

 

Marine and freshwater fish populations 

Both marine and freshwater fish population studies often attempt to link species presence 

or abundance with specific environmental variables, such as water depth, temperature, or 

stream order.  However, analyses of such data can often be difficult, due to the nature of 

sampling or the distribution of the fish population in question.  

 Marine studies rely heavily on trawl surveys to determine population 

distributions, which often produce a high number of zeroes in the dataset11, 12 due to the 

nature of schooling or aggregated fish13, 14.  Freshwater fish population studies typically 

use mark/recapture or electrofishing techniques, which can also give biased results. Fish 

captured in mark/recapture studies often show differing capture probabilities with time 

since being marked15 and electrofishing can produce significantly different counts of fish 

based on the methods used, such as the number of passes made16. These problems make 

analyzing data using the GLM difficult, as datasets are often highly skewed and non-

normal; by using the GzLM, these issues can typically be resolved17. Using binomial 

distributions, researchers can predict the probability of occurrence of fish in relation to 

environmental factors through the use of presence/absence response variables12, 14, 18-35. 

The binomial approach can often be the better way to look at fish distribution, since it 

gives probability of capture15, 36.  This provides an idea of not just the amount of fish, but 

the magnitude or proportion of fish.  The GzLM can also be used to estimate abundance 
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from count data by using Poisson 37, 38 or gamma39 error distributions, which account for 

the non-normal structure typical of fish count data.  In the incidence of over-

dispersersion, a negative binomial distribution can be used to explain abundance13, 37, 40.  

Some studies also use an integrated approach with GzLM’s, by modeling probability of 

presence and abundance if present20, 41, 42. 

 

 

Field specific literature reviews for GzLM usage 

Ecology is a broad field that encompasses many sub-disciplines of research, ranging from 

the study of microbes to entire ecosystems. In order to investigate the frequency of usage 

and specific applications of the GzLM in ecological studies, we therefore felt it was 

necessary to do literature reviews which were limited to several specific fields of ecology 

(conservational ecology, freshwater and marine fish population dynamics, avian 

population monitoring, boreal treeline expansion, and aquatic bacterial abundance). This 

method provided results that demonstrate the flexibility provided by the error structure in 

the GzLM and its ability to evaluate various types of biological data, along with the 

increasing frequency of usage of GzLMs in recent years. 

All literature searches were carried out in the databases Web of Science and 

Biological Abstracts, using a pre-determined set of statistical query terms, along with 

ecological terms specific to each field (Table 1). It was possible that a greater number of 

references could have been found using further refined queries, but for the purposes of 

comparability across fields we chose to only use the pre-determined set of search terms.  

Search results were reviewed to determine if the GzLM was implemented, and if so, what 
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type of data was being analyzed and what error structure was used (binomial, negative 

binomial, Poisson, Gamma). Articles in which the error structure was not stated were 

recorded as “Other” or on the basis of the extension used (Table 2). The total number of 

articles found per year was used to evaluate the frequency of GzLM usage over the past 

two decades (Fig. 1).  

Of the six fields searched, the only one which did not produce any results was 

aquatic bacterial abundance. Within the articles found for conservational ecology, 

freshwater and marine fish population dynamics, and boreal treeline expansion, the most 

common error structure used was binomial, as presence/absence response variables were 

frequently analyzed; within these four fields, there was also some usage of the Poisson 

error structure, where response variables were count data (Table 2). The literature search 

within avian population trends, however, did not find any articles using binomial error – 

the majority of results in this field used Poisson (Table 2), as bird population trends are 

typically determined based on count data. Articles were also found which used negative 

binomial and Gamma error structures, but these were not as prevalent as binomial and 

Poisson (Table 2).  

The literature reviews showed that GzLM usage has increased over the past two 

decades in all six fields searched (Fig. 1). The general trend produced when all results 

were totaled showed that GzLM usage was relatively low in the early 1990’s, but 

increased steadily from the mid 1990’s onward (Fig.1,a).  Though this literature review 

only examined six fields of ecology, this trend appeared to occur across the five which 

produced results (Fig.1,b). If further refined searches were conducted and a larger 

number of fields surveyed, a more comprehensive picture of GzLM usage in ecology 
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would be obtained. However, the literature review of conservational ecology was fairly 

broad and produced a high number of results (131) which included a range of types of 

studies (Table 2), possibly indicating the trend for GzLM use in ecology in general. 

 
 
 
Table 1. Query terms input into Web of Science and Biological Abstracts for GzLM 
literature searches 

Field specific query terms 

Conservational ecology of vegetation Conservation, Ecology, Vegetation 

Freshwater fish population dynamics 
Stream, Fish, Salmonid, Abundance, Distribution, 
Population 

Marine fish population dynamics Demersal/Marine Fish Habitat, Abundance, Distribution 

Avian population monitoring 
Birds, Aves, Population, Trends, Monitoring, Plots, 
Counts 

Treeline expansion Boreal, Treeline, Expansion 

Aquatic bacterial abundance Aquatic, Bacteria, Abundance 

Statistical query terms 

Generalized and Generalised Linear Model(s), Generalized and Generalised Additive Model(s), 
Generalized and Generalised Estimating Equation, Logistic Regression, Poisson, Binomial, 
Gamma 
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Table 2. Summary of field-specific usage of the GzLM 

Field 
Data 
Type 

Error Structure
a 
/ 

Extension
b References 

Conservational 
Ecology of 
Vegetation 

Presence/
Absence 

 

Binomial 

 

31, 43-88,89-119,23, 120-152
 

Count Poisson 
43, 153-164

 

?? GAM 
154, 165-167

   

Mixed Other 
168, 169

 

Presence 
/ Absence 

Binomial 
15, 22-29, 33, 35, 36, 39, 41, 42, 76, 125, 170-176

 

Poisson 
39, 41

 

Freshwater 
Fish Population 
Dynamics 

Count 

GAM 
177

 

Binomial 
12, 14, 18, 20, 21, 37, 176, 178

 
Presence 
/ Absence 

Gamma 
20

 

Poisson 
37, 179

 

Negative Binomial 
13, 40

 

Marine Fish 

Count 

GAM 
19, 180

 

Poisson 
181-191

 

Negative Binomial 
58

 

GAM 
192-194

 

Avian 
Population 
Monitoring 

Count 

Other 
184

 

Presence 
/ Absence 

Binomial 
5-7, 195-199

 

Poisson 
198

 
Boreal Treeline 
Expansion 

Count 

Other 
200

 

a
 normal, binomial, Poisson, negative binomial, or gamma distributions 

b
 GAM, GzAM (Generalized Additive Model), GEE, GzAM (Generalized Estimating Equation) 
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Figure 1. Frequency of GzLM usage resulting from literature searches of five ecological fields. (a) 
Frequency of usage in each field (b) Total incidence of usage, pooled from all searches. 

 

(b) 

(a) 
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Statistical analysis and summary of ecological data sets 

GLMs and GzLMs were computed in the statistical programs SAS (9.1), R (2.6) and 

Minitab (13).   

 As seen in Table 3, one data set (B) could not be analyzed using the GLM, 

therefore this analysis is not included in the comparison of model results. From the 

remaining data sets, 13 of 21 parameters were significant when the GzLM was applied. 

Of these 13 parameters, 8 showed a decrease in p value from the GLM – 2 of which had 

not been significant until the application of the GzLM. The remaining 6 significant 

parameters had p values less than 0.001 and were not evaluated for change. Of the 8 non-

significant parameters, 5 showed a decrease upon the application of the GzLM. 
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Table 3. Comparison of GLM and GzLM data analysis results (see 
Appendices A-K for detailed results)  

    GLM GzLM 

Study 

(Appendix) Parameters F(df) P G(df) p 

     error: Negative binomial 

Gull 36.9(1) 2.00E-06 64.35(1)    1.63E-08 

Species 25.34(1) 3.01E-05 32.43(1)    1.60E-08 
Auklet Counts (A) 

Gull*Species 0.24(1) 0.63 29.61(1)       0.093 

      error: Binomial 

Wetted Width n/a  10.21(2)     0.006 

Depth n/a  10.17(1) 0.85 

% Rifle n/a  6.19(1)    0.046 

Width*Depth n/a  4.33(2)     0.40 

Width*Rifle n/a   2.34(2)       0.37 

Atlantic Salmon 

Distribution (B) 

Depth*Rifle n/a  2.30(1)   0.84 

      error: Negative binomial Greenland Cod 

Counts (C) Eelgrass 3.37(2) 0.037 7.54(2)  0.023 

      error: Binomial 

Geology 42.72(7) <0.0001 319.43(7) <0.0001 
Juvenile Fish 

Distribution (D) 
Time 17.73(1) <0.0001 17.89(1)  <0.0001 

      error: Negative binimial 

Species 18.11(4) 9.27E-11 53.14(4) 1.77E-10 
Seed Removal by 

Red Ant (E) 
Mound 2.17(1)   0.14 0.74(1) 0.39 

      error: Begative binomial 

Fire 1.22(1) 0.29 201.01(1) 0.069 

Basal Area 3.19(1) 0.093 136.80(1) 0.0002 
Red Oak 

Recruitment (F) 
Down Woody 

Debris 0.49(1) 0.50 123.01(1) 0.089 

      error: Binomial 

groundcover 

126.33 

(2) 0.008 14.06(2) 0.0009 

Seedling 

herbivory (G) 

pesticide 90.75 (1) 0.011 5.29(1) 0.022 

      error: Negative binomial 

groundcover 11.04 (2) 0.083 27.80(2) <0.0001 
Seed predation 

(H) 
pesticide 2.29 (1) 0.27 1.63(1) 0.20 

      error: Negative binomial Common Murre 

plot counts (I) Year 23 (326)    2.00E-06 19.13 (1)   1.22E-05 

      error: Negative binomial Thick-billed 

murre plot counts 

(I) Year 

284.56 

(676)   <2.2e-16 236.03 (1)   2.88E-53 

      error: Gamma 

water masses 19.57(1) 4.00E-05 13.69(1) 2.09E-07 
Bacterial 

abundance (J) 
pH 0.11(1) 0.74 0.24(1)  0.44 

      error:  Poisson 

dishes 1.36(1)        0.25 1.21(1) 0.27 Colony counts (K) 

quadratic 1.55(1)        0.22 1.37(1) 0.25 

 



 15 

 

Advantages and disadvantages to applying the GzLM 

Over the duration of the Biology 7932 graduate course, we developed our understanding 

of the generalized linear model and how to apply it to data with a non-normal error 

distribution.  From our analyses, we have discovered some general problems that arise 

when using the GzLM, some of them particular to our exemplary data sets.  Here, we 

discuss advantages and disadvantages inherent to applying the GzLM to data with 

Poisson, negative binomial, binomial and gamma distributions.  Some were problems 

directly encountered during the analysis of the exemplary data sets, and some are more 

general limitations drawn from various ecological studies.    

 

Poisson and negative binomial distributions 

The generalized linear model can be applied to data with both the Poisson and negative 

binomial distribution.  The Poisson distribution is usually linked to count data, which 

commonly appears in ecological literature; count data are generated through studies that 

gather model information through mark-recapture experiments170, site-specific captures 

such as trawls13 and plot counts, a common method of evaluating seabird populations172, 

181. 

Population monitoring of birds almost always relies on surveys of a sample 

population 201.  This is because it is not feasible to census the entire population of most 

birds.  Consequently, censuses of large colonies are usually based on sub-samples of the 

population202.  In this section we review the analysis of long-term count data from census 

plots at Cape St. Mary’s, Newfoundland, 1980-2006 (Appendix I).     
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 The analysis of count data is often complicated due to the subjective nature of 

trend estimation and high inherent variation.  There are many statistical techniques that 

may be employed to analyze count data, however, there is little consensus regarding the 

most suitable method 201.  Linear regression is one of the oldest statistical technique, and 

has been long been used in ecological research to test trends.  When a linear regression 

model was fit to the Cape St. Mary’s common murre plot data, we found that it 

preformed poorly, exhibiting non-normal, non-independent and heterogeneous residuals.   

A second option is to run a GzLM with a Poisson distribution (Poisson 

regression).  Poisson regression is a frequently used method for count data.  A key feature 

of Poisson distribution is that it assumes that as the mean increases, the variance 

increases – which is a frequent characteristic of count data4.  Nevertheless, it appears that 

the murre count observations exceeded the amount of variation predicted by Poisson, 

whereby the estimated overdispersion parameter (φ [Null deviance/df]) was much greater 

than 1 (φ = 8.9).  The Poisson distribution may have fit the data poorly since it is 

designed to be used for counts of events that occur randomly over time or space203.  The 

murre plot count data are neither temporally or spatially independent since counts are 

conducted at the same time for all plots and the same plots are monitored across years. 

The negative binomial is a distribution related to Poisson, however it includes an 

extra parameter (dispersion parameter) which allows the variance to exceed the mean204.  

Counts of populations are often fitted well by the negative binomial distribution205.  

White and Bennetts206 suggest that ecological count data likely exhibit a negative 

binomial distribution more frequently than Poisson or normal distributions.  When a 
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GzLM with a negative binomial distribution was fitted to the murre plot data, the 

overdispersion parameter was much closer to 1 (φ = 1.1).    

As apparent from the analysis of the Cape St. Mary’s murre plot trend data, one of 

the main advantages of GzLMs over GLMs is that they do not force data into unnatural 

scales by allowing for non-consistent variance structures in the data.  Linear regression 

models are limited by the assumptions that the errors are identical, independently, and 

normally distributed.  In the case of the murre count data, the GzLM model allowed for 

the selection of different distributions such as Poisson or negative binomial, which better 

suited the data.  Within the options available in the GzLM, the negative binomial 

distribution appeared to best suit the data.  The dispersion parameter accounted for the 

extra variance which exceeded the assumptions in the Poisson regression.   

The main disadvantage of the Poisson distribution is that the scope of data that 

can be analyzed using this distribution is limited by the assumption that the mean 

increases with the variance.  The Poisson distribution do not account for any extra 

variation in the data, thus in such cases, a negative binomial distribution may be more 

appropriate.  The primary disadvantage of using negative binomial regression is that there 

are fewer programs that are capable of building a GzLM with a negative binomial 

distribution.  Another disadvantage of the negative binomial distribution is the inclusion 

of the dispersion parameter.  With an increase in parameters, there is a decrease in 

precision and one may run the risk of overfitting the data, thus less weight should be 

placed on models with a higher number of parameters136.  One general disadvantage of 

the GzLM is the lack of diagnostic plots available to assess the model.  One specific 

problem relating to the count data is in the estimation and assessment of the 
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overdispersion parameter – there appears to be no standard method of calculation, or a 

definition of how much the estimate needs to deviate from 1 for the data to be considered 

overdispersed. 

 

Binomial distributions 

Binomial data is common in ecological modelling.  It often appears as presence / absence 

or risk data, which is binary in nature, so unlike other non-normal distributions, it is 

usually relatively easy to determine when to apply the GzLM with a binomial 

distribution.  When the data are binary and the distribution is accepted as non-Gaussian, 

the data are usually analysed using logistic regression.  Logistic regression is a GzLM 

analysis that is often used in ecological research; it has been applied for evaluating 

habitat207, assessing risk208, and predicting the distribution of species and vegetation 

groups6, 209. 

The seedling herbivory data collected in the Mealy Mountains during the summer 

of 2007 (See Appendix G for details) demonstrate a clear example of a binomial response 

variable (in this case, herbivory occurs or does not occur for each seedling).  The purpose 

of the study was to determine whether the odds of herbivory were influenced by a variety 

of environmental factors; since the response variable is binary, we assumed a binomial 

distribution and applied a logistic regression model.    

A limitation of the GzLM was encountered when analysing the binomial seedling 

herbivory data; here, we review the difficulty in performing a prospective power analysis 

for a logistic regression model.  A prospective power analysis is used to help the 

researcher design their study, ensuring that the effect size, sample size, and level of 
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precision are all sufficiently large to generate an experiment with sufficient statistical 

power210. A prospective power analysis was performed using the SAS macro UnifyPow 

on the herbivory logistic regression model in order to determine the increase in sample 

size needed to maintain the power of the study through a second experimental season; 

since seedlings were being removed through herbivory, the sample size (and thus the 

power) was decreasing over time.  However, according to the power analysis, the power 

of the study remained equal regardless of any increases in the initial population size.  The 

problems of prospective power analyses and their application to binomial GzLMs are not 

well documented in the ecological literature.  Power analyses for logistic regression 

models are generally used in medical studies211 , but these cannot be easily compared to 

ecological studies.   

In general, there are some limitations to the application of the GzLM for 

analysing binary data generated by ecological studies.  In ecology and conservation 

biology, logistic regression models are relatively common, and often used for modelling 

spatial species distributions under different environmental conditions6, 199.  However, 

these models must assume that the species is in a state of pseudo-equilibrium with the 

environment; therefore, logistic regression models cannot effectively identify 

environmental factors responsible for distribution when a species is not in equilibrium, or 

still expanding its range3.  Furthermore, GzLMs and GAMs are usually based on 

empirical data collected from a particular region, thus incorporating the biotic 

interactions and random effects that are characteristic to the area.  This means that 

predictive GzLMs designed for one region usually cannot be applied on a wider scale; the 

predictive power over a broad spatial scale is usually low3, 212. Another general 
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disadvantage of logistic regression analysis is the tendency of the model to strongly 

underestimate the probability of rare events213. 

 

Gamma distributions 

The gamma distribution also occurs in ecological studies, though much less frequently 

than binomial and Poisson according to our literature search.  Thus, there is less 

information available about its application to ecological data.  The gamma distribution is 

a 2-parameter frequency distribution given by the equation: 

0,0;
)(

1
)( /1 >>

Γ
= −− γβ

γβ
βγ

γ

xexxf  

Gamma distribution has a zero lower bound and is unlimited on the right.  It is positively 

skewed, with the amount of skew depending inversely on the shape factor γ .  The 

gamma distribution is closely related to the Chi-square distribution, for 2/2χ is a gamma 

variate214.  

In biological ecology, data distributions are highly variable; as we have observed, 

most data are not normally distributed.  The general linear model is usually applied when 

the distribution is gamma; this occurs partially because basic linear statistics (based on 

the normal distribution) have been traditionally and widely taught.  The major advantage 

of using the gamma distribution is that it simplifies the interpretation of the model; if you 

force the model to fit the normal distribution where gamma is applicable, the variables 

need to be transformed, which complicates the biological interpretation of the parameters.  

Gamma distribution helps expand the capacity of data analysis without using 

transformation.  The major disadvantage of using the gamma distribution is common to 

many applications of the generalized linear model; in order to analyse a model using 
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gamma distribution, you need a powerful statistical software package and also relatively 

advanced knowledge of statistics.   

 

 

Conclusions 

The GzLM has become increasingly common in ecological studies over the past two 

decades. This is largely due to the flexibility of the GzLM when compared to the GLM, 

in that it does not assume normal distributions. The nature of ecological data often 

produces data which is highly varied, has counts with many zeros, is over dispersed, 

skewed, or more suited to analysis of presence versus absence. The specification of the 

error structure in the GzLM allows ecological researchers to create models which can 

account for the nature of these datasets and provide more meaningful statistical analysis.  

Despite these advantages of GzLMs, their use has not become widespread until recently. 

It is likely that as the acceptance and discussion of the GzLM increases, its role as the 

most appropriate model for ecological data analysis will be recognized in the field. 
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 Appendix A 
 

Auklet Count Data 

Christina Bourne 

 
Research Question: Do least auklets (Aethia pusilla) and crested auklet (Aethia 

cristatella) surface counts increase with time since predator disturbance? 
 
Data: Surface counts of auklets on a 10x10m plot, Buldir Island, Alaska. 4 hours of 
observations per day with counts made every 15 minutes, time of all predator 
disturbances recorded. Total of 25 days used in analysis; 375 counts per species. 
All data collected on Buldir Island, Alaska during the summer of 2004 by Christina 
Bourne. 
 
Model 1: General Linear Model; log transformed mean surface counts 
 
Formal Model: C = ß0 + ßG *G + ßS *S + ßG*S*G*S + res 
 
Table A1: ANOVA 

            Df  Sum Sq  Mean Sq     F value     Pr(>F)     
Gull         1  4.2747   4.2747      36.9793  1.998e-06  

Sp           1  2.9289   2.9289      25.3375  3.075e-05  

Gull:Sp     1  0.0278   0.0278       0.2409     0.6277     

Residuals  26  3.0055   0.1156                   

 
Model 2: Generalized Linear Model; error = Negative Binomial     

 
Table A2: GzLM summary 

              Estimate  Std. Error  z value   Pr(>|z|)     
(Intercept)   3.92610     0.82073    4.784   1.72e-06  

Gull          0.02816     0.08261    0.341   0.733176     

Sp            -2.23221     0.60250   -3.705   0.000211  

Gull:Sp       0.10009     0.05835    1.716   0.086249 .   
 
Table A3: GzLM Chi-square test 

          Df  Deviance  Resid.   Df Resid.  Dev P(>|Chi|) 
NULL                          29       96.240           

Gull       1    31.887         28       64.352   1.634e-08 

Sp         1   31.927         27       32.425   1.600e-08 

Gull:Sp   1     2.816         26       29.609      0.093 

 
 
Advantages of GzLM: 

• does not assume that model mean and variance are equal (for over dispersed count 
data they are not); uses additional parameter to adjust the variance independently 
of the mean (Hinz and Gurland, 1968). 

• can use actual count data (as opposed to transformed – done to stabilize the error 
variance) which potentially increases interpretive value of results 



 35 

• provides lower p values for the same data set than general linear model, indicating 
greater statistical power 

 
Disadvantages of GzLM 

• can be a more difficult model to implement in some statistical programs 

• has an extra parameter 
 

 

Appendix B 

 

Salmon Habitat Distribution 

Christina Bourne 

 
Research Question: Is there a relationship between stream characteristics (width, depth, 
rifle) and Atlantic salmon (Salmo salar) distribution? 
 
Data: 53 salmon counts from electrofishing of 12 streams in Terra Nova National Park, 
NL, in the summers of 2005 and 2006. Average wetted width, average depth and 
estimated percent rifle for each site was recorded. 
* Data provided by Dr. Dave Cote, aquatic ecologist, Terra Nova National Park 
 
Model 1: General Linear Model 
 
Formal Model: C = ß0 + ßw *W + ßD *D + ßR *R + ßW*D*W*D + ßW*R*W*R + ßD*R*D*R 
+ res 
 
This model did not meet the assumptions for the general linear model when counts, mean 
counts and log transformed counts (Fig. B1) were used as response variables. 
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Fig B1. Residuals vs fits plot and qq plot for log transformed salmon counts 

 
Model 2: Generalized Linear Model; error = binomial 
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Formal Model: C = ß0 + ßw *W + ßD *D + ßR *R + ßW*D*W*D + ßW*R*W*R + ßD*R*D*R 
+ res 
 

Table B2: GzLM summary 

Estimate  Std. Error  z value  Pr(>|z|) 
(Intercept)           -0.63011     1.12128   -0.562     0.574 

Width4m               -0.02326     1.46152   -0.016     0.987 

Width6m               .23668     1.42126    0.870     0.384 

Depth20cm            -0.12742     1.45440   -0.088     0.930 

Rifle100%             0.54515     1.51172    0.361     0.718 

Width4m:Depth20cm    -1.36015     1.90017   -0.716    0.474 
Width6m:Depth20cm     1.06101     1.70333    0.623     0.533 

Width4m:Rifle100%     2.07279     1.95559    1.060     0.289 

Width6m:Rifle100%    -0.27718     1.70744   -0.162     0.871 

Depth20cm:Rifle100%   0.29735     1.47303    0.202     0.840 

 

 
Table B3: GzLM Chi-square test 

Df  Deviance  Resid. Df  Resid. Dev  P(>|Chi|) 

NULL                              11      20.5339           

Width         2   10.3252          9      10.2087     0.0057 

Depth         1    0.0338          8      10.1748     0.8540 

Rifle         1    3.9872          7       6.1876      0.0458 
Width:Depth   2    1.8577          5       4.3299      0.3950 

Width:Rifle   2    1.9925          3       2.3374      0.3693 

Depth:Rifle   1    0.0406          2       2.2968     0.8404 

 
 
Advantages of GzLM: 

• Not necessary to have a linear relationship, normality or equal variance among 
groups 

• Can model binomial data, good for this data sets because counts vary greatly and 
are not likely representative of the population (presence/absence more 
informative) 

• Provides probabilities of incidence which can be used to infer distribution 
 
Disadvantages of GzLM 

• Does not reflect the actual numbers of fish obtained by sampling 

• Cannot easily evaluate model with residual plots, as with GLM – diagnostic 
investigations have to rely on other methods (Venables and Dichmont, 2004). 
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Appendix C 
 

Age 1 Greenland Cod Counts 

Suzanne Thompson 

 
Research Question:   Does the number of Greenland Cod (Gadus ogac) depend on 
amount of eelgrass at the site of sampling? 
 
Data:  Counts of Age 1 Greenland Cod from beach seine tows at several sites conducted 
at Newman Sound, Terra Nova National Park.  Seine tows were taken bi-weekly during 
from 2006 field season from May till November.  Data was collected by the MUN Cod 
research group, and was retrieved from Bob Gregory at Department of Fisheries and 
Oceans. 
 
Model 1: General Linear Model 
 
Formal Model: N = ß0 + ßE*E + res 
 
Table C1: ANOVA 

 
            Sum Sq     Df  F value    Pr(>F)   

E              336.2       2   3.3667   0.03724  

Residuals    7189.0   144                   

 
Model 2: Generalized Linear Model; error = Negative Binomial 

 
Table C2: LR statistics for Type 1 Analysis 

 

Source  DF F-Value  Chi-Square Pr>Chi-sq  
    

E  2 2.75  5.50  0.0640 

 

 Table C3: LR statistics for Type 2 Analysis 

 

Source     DF F-Value    Chi-Square  Pr>Chi-Sq 
 

E    2   0.00        7.54        0.0231 

 

 
Advantages of GzLM: 

• Negative Binomial distribution can deal with very over-dispersed abundance data, 
such is the case here, by adding an extra parameter. 

• Shows slightly more sensitive test by giving a lower p-value for Type 2 analysis. 

 

Disadvantages of GzLM: 

• Extra parameter (dispersion) makes it difficult to interpret diagnostic tests (not 
shown) such as normal probability tests, and homogeneity. 
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Appendix D 
 

Juvenile Fish Counts 

Suzanne Thompson 

 
Research Question:   Does the number of juvenile fish depend on geology configuration 
of sea bed and time of day? 
 
Data:  Counts of juvenile fish (mostly Haddock) from two 5 km transect lines on Western 
Bank of the Eastern Scotian Shelf.  This data was collected by Tow Cam, a video camera 
which is towed from the back of a ship.  Side scan sonar data was also collected of the 
sea bed configuration, classified in several categories, and matched up with camera data.  
Data was collected by Department of Fisheries and Oceans, and was retrieved from Bob 
Gregory. 
 
 
Model 1: General Linear Model 
 
Formal Model: N = ß0 + ßGeol*Geol + ßTime*Time +  res 
 
Table D1: ANOVA 

               
Source  DF Type III SS Mean Square F Value  Pr>F 
 

Geol  7 48.4773   6.9253  42.72  <0.0001 

Time   1  2.8739   2.8739  17.73  <0.0001 

 
Model 2: Generalized Linear Model; error = Binomial 

 
Table D2: LR statistics for Type 1 Analysis 

 

Source  Deviance DF Chi-Square Pr>ChiSq 
 

Intercept  6180.1816     

Geol  5860.7547 7   319.43  <0.0001 

Time  5842.8680 1   17.89  <0.0001 

 

Table D3: LR statistics for Type 2 Analysis 

 
Source     DF Chi-Square Pr>Chi-Square 

 

Geol    7   308.19    <0.0001 

Time    1     17.89   <0.0001 

 

 
Advantages of GzLM: 

• Because the data has many zeros, analysis can focus less on the abundance, and 
more on the probability of occurrence. 

• Gives a good idea of the magnitude of the differences, because it is based on odds 
ratios and not on abundance data. 
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Appendix E 
Seed Removal Data 

Andrew Trant 

 

Research Question: Does seed removal by introduced red fire ant (Solenopsis invicta 
Burren) differ within or between plant species? 
 
Data: These data were collected in South Carolina, 1998. The study area was an 
abandoned field which had natural populations of the red fire ant. Cages were set up to 
exclude all known seed predators other than the red fire ant. At each ant mount, six cages 
were established with seeds placed within cages on platforms. The number of seeds 
removed was recorded every week for a total of six weeks. The following analysis uses 
the sums of seed removed over this entire period. These data were published by Seaman 
and Marino (2003). 
 
Model 1: General Linear Model; log transformed mean counts of seeds removed 
 
Formal  Model: C = ß0 + ßS *S + ßM *M + res 

 

 
Table E1: ANOVA 

Df  Sum Sq        Mean Sq          F-value       Pr(>F)     
Species    4            32343             8086             18.111          9.273e-11  

Mound                                1             971                 971                2.1746         0.1440     

Residuals                           84            37501            446                       

 

Table E2: General Linear Model 
 
                                 Estimate       Std. Error       t-value             Pr(>|t|)     

(Intercept)                   1.182            0.336             3.522          0.000696  

SpeciesAmbrosia        0.649            0.372             1.746          0.084425 .   

SpeciesChenopod     -0.289             0.372            -0.778         0.438469     

SpeciesPoa                -1.145            0.372             -3.081         0.002788   

SpeciesSolidago         0.403            0.372              1.084         0.281360     
Mound                      -0.007             0.022            -0.318          0.751622 

 

 
 
Model 2: Generalized Linear Model; error = Negative Binomial    
 
Table E3: GzLM summary 

 

                                   Estimate            Std. Error           t-value        Pr(>|t|)     
(Intercept)                   2.796                   0.227              12.317            < 2e-16  

SpeciesAmbrosia        1.277                  0.248               5.154           1.66e-06  

SpeciesChenopod       0.287                   0.251               1.145               0.255     

SpeciesPoa                -0.271                   0.254              -1.064              0.290     

SpeciesSolidago         0.727                   0.249                2.921             0.004   

Mound                        0.012                    0.014                0.835             0.406     
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Table E4: GzLM Chi-square test 
                       Df          Deviance        Resid.Df      ResidDev        P(>|Chi|) 

NULL                                                      89             192.926           

Species            4             53.141              85             139.786          1.774e-10 

Mound             1              0.763               84             139.023          0.390 

 

Advantages of GzLM: 

• do not need to transform response variable to fit assumptions of normality  

• unlike Poisson models that require and mean to variance ratio of 1, negative binomials models do 

not 

• greater sensitive to p-values compared to similar analysis with general linear model 

 

Disadvantages of GzLM 

• not ideal for small sample sizes 

• requires estimate of additional parameter (theta) 

 

 

 

Appendix F 

Oak Recruitment Data 

Andrew Trant 

 

Research Question: Does the occurrence of fire and other measures of forest structure 
influence of the distribution of Red Oak (Quercus rubra)? 
   
Data: These data were collected November 2007 by Andrew Trant, Ian Morrison and 
Krista Chin in Kejimkujik National Park, NS as part of a study looking at the role of fire 
in regeneration and maintenance of Red Oak (Quercus rubra) stands. 20 plots were 
established within the boundary of Kejimkujik National Park in areas that with a known 
fire history. In each plot, demography and structural data were collected. These data are 
unpublished.  
 
Model 1: General Linear Model; log transformed mean seedling counts 
 
Formal  Model: C = ß0 + ßF *F + ßBA *BA + ßDWD *DWD + res 

 

Table F1: ANOVA  

 

                      Df       Sum Sq       Mean Sq       F-value       Pr(>F)   

fire                  1          4.025           4.025          1.2219       0.2853   
basal.area       1         10.512          10.512        3.1911       0.0930 . 

dwdall            1           1.606           1.606         0.4876       0.4950    

Residuals       16        52.709          3.294 

 

Model 2: Generalized Linear Model; error = Negative Binomial    
 
Table F2: GzLM summary 
 

                      Estimate       Std. Error      t-value       Pr(>|t|)    

(Intercept)       -7.287            3.140         -2.320        0.034   
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fire                   3.789             1.058          3.581        0.002  

basal.area        0.270              0.081          3.313        0.004  

dwdall            -0.037             0.018         -2.085        0.053 . 
 

 

Table F3: GzLM Chi-square test 

 

                        Df      Deviance Resid.     Df        Resid Dev     P(>|Chi|) 

NULL                                                       19           216.835           
fire                    1              15.823             18            201.011      0.069 

basal.area         1               64.206            17            136.805       0.0002476 

dwdall              1               13.803            16            123.002       0.089 

 

Advantages of GzLM: 

• do not need to transform response variable to fit assumptions of normality  

• unlike Poisson models that require and mean to variance ratio of 1, negative binomials models do 

not 

• greater sensitive to p-values compared to similar analysis with general linear model 

 

Disadvantages of GzLM 

• not ideal for small sample sizes 

• requires estimate of additional parameter (theta) 

 

 

Appendix G 

Seedling Herbivory 

Julia Wheeler 

 

Research question:  Does black spruce seedling herbivory differ on different 

groundcovers and with different levels of slug protection? 

Data:  Record of herbivory-induced mortality for black spruce seedlings planted on 

Cladina,   Pleurozium and simulated bear digs that were either protected from slug 

herbivory (pesticides) or unprotected.  Data are grouped by treatment type (groundcover 

+ level of slug protection) The data collected show the number of herbivory events out of 

300 seedlings planted above the treeline of the Mealy Mountains, central Labrador; all 

data were collected by in the summer of 2007 by Julia Wheeler.  

 

Model 1:  General linear model, percent herbivory per plot type      

Formal model:  Hseedling = β0 + βg* Xg + βs* Xs + residual 
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Table G1:  ANOVA 

Source     DF     Seq SS     Adj SS     Adj MS        F           P 

ground    2      0.050533   0.050533   0.025267  126.33  0.008 

slug        1      0.018150   0.018150   0.018150   90.75    0.011 

Error       2     0.000400   0.000400   0.000200 
Total       5     0.069083   

Model 2:  Generalized linear model; error = binomial 

Formal model:  Odds (Hseedling) =e 
(Bref)

 e 
(Bg) 

e
(Bs)

+ error 

Table G2:  GzLM summary    

         

              Standard  Wald 95% Confidence       Chi- 

  Parameter                                   DF    Estimate       Error            Limits              Square    P >ChiSq 

 
  Intercept                        1     -0.8350      0.2413     -1.3080     -0.3621       11.97        0.0005 

  Groundcover   L                  1     -0.7580      0.3193     -1.3838     -0.1323        5.64          0.0176 

  Groundcover   M                  1     -1.2063      0.3501     -1.8926     -0.5200       11.87        0.0006 

  Slug                 O            1      0.6239      0.2740      0.0868      1.1610        5.18          0.0228 

  Scale                             0      1.0000      0.0000      1.0000      1.0000 

 

Table G3:  GzLM Chi-square test 

 

Source            Deviance        DF     Square    Pr > ChiSq 

Intercept         19.5553 

Groundcover        5.4940          2         14.06        0.0009 
Slug                0.2048          1           5.29        0.0215 

 

Advantages of GzLM: 

• GzLM can consider interactive effects of groundcover and slug controls, while the 

GLM has insufficient degrees of freedom (analysis performed, but not shown; 

models above shows outputs when interactive effects are removed from both 

models) 

• Magnitude of the effect can be calculated using odds ratios derived from the 

GzLM; GLM can only demonstrate a significant difference between herbivory 

across treatments 

• Provides lower p-value for groundcover, the variable of highest interest, 

indicating a greater ability to detect an effect 

Disadvantages of GzLM: 

• Less sensitive than ANOVA for detecting effect for the second variable (level of 

slug control) 
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Appendix H 
 

Seed predation data 

Julia Wheeler 

Research question:  Is conifer seed predation affected by substrate types and presence of 

slug pesticides? 

Data:  Record of seed predation for black/white spruce seeds from 93 seed cards 

distributed across Cladina, Pleurozium and simulated bear digs plots that were either 

treated or untreated with slug pesticide.  Data are grouped by treatment type. The cards 

were collected and seed predation was determined by proportion of seeds removed (out 

of 10 per card).  Seed cards were distributed above the treeline of the Mealy Mountains in 

central Labrador; all data were collected by in the summer of 2007 by Julia Wheeler.  

Model 1:  General linear model, percent seed predation per treatment type      

Formal model:  Hseed = β0 + βgroundcover* Xgroundcover + βslug* Xslug + residual 

Table H1:  ANOVA 

Source     DF     Seq SS     Adj SS     Adj MS       F         P 
ground      2   0.041200   0.041200   0.020600   11.04     0.083 

slug           1   0.004267   0.004267   0.004267    2.29      0.270 

Error         2   0.003733   0.003733   0.001867 

Total         5   0.049200   

Model 2:  Generalized linear model; error = binomial 

Formal model:  Odds (Hseed) =e 
(Bref)

 e 
(Bgroundcover) 

e
(Bslug)

+ error 

Table H2:  GzLM summary    
         

 

                                           Standard     Wald 95% Confidence       Chi- 

  Parameter            DF    Estimate       Error            Limits             Square     Pr > ChiSq 

 

  Intercept                 1       0.5379      0.1162        0.3102      0.7656           21.43         <.0001 
  Groundcover    L    1     -0.5437      0.1622        -0.8616     -0.2257         11.23         0.0008 

  Groundcover    M   1     -0.8252      0.1650        -1.1486     -0.5017         25.00         <.0001 

  Slug                  O   1      0.1719      0.1347         -0.0921      0.4360           1.63         0.2018 

  Scale                       0      1.0000      0.0000         1.0000      1.0000 
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Table H3:  GzLM Chi-square test 
                               

                                     Chi- 

  Source            Deviance        DF     Square    Pr > ChiSq 

  Intercept          31.6419 

  Groundcover        3.8410           2        27.80        <.0001                                      

  Slug                  2.2092           1          1.63        0.2015 

 

Advantages of GzLM: 

• Again, GzLM can consider interactive effects of groundcover and slug controls, 

while the GLM has insufficient degrees of freedom 

• Detects an effect from the groundcover parameter, where p-value is non-

significant using ANOVA 

Disadvantages of GzLM: 

• Residual plots are difficult to interpret for overdispersion 

 

Appendix I 

Avian Population Monitoring 

Paul Regular 

 
Research question:  Do murre populations exhibit any long-term trends? 
 
Data:  The following long-term count data was collected from census plots of common 
murres (Uria aalge) at Cape St. Mary’s, Newfoundland, 1980-2006 (Regular unpublished 
data) and thick-billed murres (Uria lomvia) at Coats Island, Nunavut, 1985-2000215.  
Murres were monitored using similar methods to the Type II approach described by 
Birkhead and Nettleship202.  This technique has been adopted and routinely used to 
monitor common and thick-billed murre populations throughout the northern hemisphere.  
For the purposes of statistical analyses of these data, one may construct a GLM (linear 
regression) with the following formula: 
C = βo + βt*t + Normal error 

Where C is the total number of murres attending plots on a particular day of the year 
when counts were conducted (response variable), and t represents the explanatory 
variable year.   
 

Model 1:  General linear model:  Murre plot count data 

 
 
 
 
 
 
 



 45 

Table I1:  ANOVA for Cape St. Mary’s plot counts 

 

Summary results 

  Estimate Standard error t-value P 

(Intercept)  -4271.8617 949.2923 -4.500 9.47e-06 

T  2.2902 0.4776 4.796 2.47e-06 

ANOVA table 

 df Sum of Squares Mean Sum of Squares F value P 

T 1 51711 51711 22.997 2.5e-06 

Residuals 326 733031 2249   

 

Table I2: ANOVA for Coats Island plot counts 

 

Summary results 

  Estimate Standard error t-value P 

(Intercept)  -72557.564 4398.959 -16.49 <2e-16 

T  37.229 2.207 16.87 <2e-16 

ANOVA table 

 df Sum of Squares Mean Sum of Squares F value P 

T 1 14319562 14319562 284.56 <2.2e-16 

Residuals 676 34017114 50321   

Model 2:  Generalized linear model; error = Poisson, negative binomial 

Table I3: GzLM summary and Chi-square test for Cape St. Mary’s plot counts (error = Poisson) 

 

Summary results 

  Estimate Standard error z-value P 

(Intercept)  -1.024e+01 1.169e+00 -8.756 <2e-16 

T  7.987e-03 5.883e-04 13.577 <2e-16 

Chi-square table 

 df Deviance Residual df Residual deviance P 

NULL   327 2921.83  

T 1 181.65 326 2740.18 2.116e-41 
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Table I4:  GzLM summary and Chi-square test Parameter for Coats Island plot counts (error = 

Poisson) 

 

Summary results 

  Estimate Standard error z-value P 

(Intercept)  -3.788e+01 4.863e-01 -77.90 <2e-16 

T  2.272e-02 2.439e-04 93.14 <2e-16 

Chi-square table 

 df Deviance Residual df Residual deviance P 

NULL   677 30659  

T 1 8720 676 21939 0 

 

Table I5:  GzLM summary and Chi-square test for Cape St. Mary’s plot counts (error = negative 

binomial) 

   

Summary results 

  Estimate Standard error z-value P 

(Intercept)  -9.378271 3.551322 -2.641 0.00827 

T  0.007553 0.001787 4.228 2.36e-05 

Chi-square table 

 df Deviance Residual df Residual deviance P 

NULL   327 353.04  

T 1 19.13 326 333.91 1.222e-05 

 

Table I6: GzLM summary and Chi-square test for Coats Island plot counts (error = negative 

binomial) 

 

Summary results 

  Estimate Standard error z-value P 

(Intercept)  -36.124955 2.885362 -12.52 <2e-16 

T  0.021838 0.001448 15.09 <2e-16 

Chi-square table 

 df Deviance Residual df Residual deviance P 

NULL   677 918.76  

T 1 236.03 676 682.73 2.884e-53 

 

Table I7: GzLM summary and Chi-square test for Cape St. Mary’s plot counts (GAM) 

  

Summary results 

 df n Deviance explained Chi-square P 

s(t) 3 328 16.9% 512 <2e-16 
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Table I8: GzLM summary and Chi-square test Parameter for Coats Island plot counts (GAM)  

 

Summary results 

 df n Deviance explained Chi-square P 

s(t) 3 678 35.6% 11091 <2e-16 

 

 

Advantages of GzLM: 

• GzLM model does not assume a normal distribution and allows for non-linearity 
and non-constant variance structures in the data 

• P-values generated by GzLM are lower, indicating stronger statistical power 
 
Disadvantages of GzLM 

• GzLMs and GAMs include extra parameters to facilitate model fitting; data may 
be overfitted 

 
 

Appendix J 
 
Bacterial abundance in ballast water and port water samples 

Bei Sun 

 
Research Question:  If bacterial abundance depends on the two different water masses 
and pH? 

 
Data:   Sample were collected from both ship ballast tanks and receiving ports in three 
locations: Great Lakes, East Coast and West Coast of Canada. 10 ships from Great Lakes 
and 30 ships from west coast and east coast of Canada each were sampled from April to 
November, 2007.  Several port samples were also collected in each location through the 
sampling season.  Epi-fluorescent microscope direct count was used to investigate 
prokaryotical abundance.  Physical parameters of those samples were recorded, named 
temperature, salinity and pH.  The preliminary analysis indicated temperature and salinity 
were correlated, so samples were divided into two water masses by salinity 15‰. 
 
Model 1: General Linear Model 
 

Formal model: εβββββ +•+•+•+= WpHpHWA pHWpHW0  

 
Table J1: ANOVA 

 

GLM Df Sum Sq Mean Sq F value Pr(>F) 

Water masses 1 2.3286e+19   2.3286e+19 19.568 3.996e-05  

pH 1 1.3086e+17 1.3086e+17 0.110 0.7413 

Interaction 62 7.3779e+19 1.1900e+18   
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Model 2: Generalized Linear Model; error = Gamma 

 
Table J2: GzLM Chi-square test 

 

GzLM  Df Deviance Resid. Df Resid. Dev F Pr(>F) 

NULL   64 36.261   

Water masses 1 13.693 63 22.568 34.0854 2.085e-07  

pH 1 0.242 62 22.326 0.6012 0.4411 

Interaction 0 0 62 22.326   

 

Advantages of GzLM: 
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Fig J1: Histogram of bacterial abundance  
 
 

Advantages of GzLM: 
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• Gamma can be applied to data with skewed distributions 

• Application of the GzLM satisfies the assumption that the fits vs. residuals must 
be homogenous, and the assumption that the error points must be distributed 
along a normal line 
 

Disadvantages of GzLM: 

• Requires strong knowledge about advanced statistics 
 

 

Appendix K 

 
Bacterial colonies formed on different quadratic regions of different Petri dishes 

Bei Sun 
 
Research Question:  Is the number of bacterial colonies different on different quadratic 
regions of a series of Petri dishes? 
 
Data:  We counted the number of bacteria colonies in 16 small quadratic regions of the 
same area in the central part of 5 different Petri dishes. 
 
Model 1: General Linear Model 
 
Formal Model: Two-way ANOVA 

εβββ +•+•+= RPC rP0  

 
Table K1: ANOVA 

 

GLM Df Sum Sq Mean Sq F value Pr(>F) 

Dishes 1 3.025 3.025 1.3580 0.2475 

Quadratic 1 3.442 3.442 1.5454 0.2176 

Residuals 77 171.520 2.228   

 
Model 2: Generalized Linear Model; error = Poisson 

 
Table K2: GzLM Chi-square test 

 

GzLM  Df Deviance Resid. Df Resid. Dev F Pr(>F) 

NULL 79 76.092     

Dishes 1 1.205 78 74.887 1.2048 0.2724 

Quadratic 1 1.371 77 73.516 1.3711 0.2416 

 
Advantages of GzLM: 

• GzLM generates more accurate p-values since it represents the true distribution of 
the data 

Disadvantages of GzLM: 

• Requires strong knowledge about advanced statistics 
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Data set 2 from P395-396 Exercise 8.6 
Chapter 8 The Poisson distribution. In Statistics with Applications in Biology and 
Geology. Preben Blasild, Jorgen Granfeldt (2003) Chapman & hall/CRC 

 
 

 


