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The Generalized Linear Model Approach to Data Analysis 

Central Terms 

 

1. Taylor’s Power Law 
Definition: 
Taylor developed the idea that the variance to mean relationship conforms to a power of 

the mean.  In ecological systems this gives a robust method of relating the variance to the 

mean population size.  Taylor’s power law is S
2
 = a:b

, where a and b are constants, a is a 

sampling parameter while b is an index of aggregation characteristics of the species, s
2
 is 

the variance, : is the mean. 

 
Connection to the Generalized Linear Model: 
The generalized linear model is a statistical, linear model that generalizes the General 

Linear Model in the following ways: 

• It permits the usage of error distributions from the exponential family (Poisson, 

binomial, negative binomial, gamma, etc.), whereas the general linear model only 

allows the normal distribution to be utilized 

• The variance may depend on a known function of the mean (for example the binomial 

distribution).  The dependent variable values are predicted from a linear combination 

of predictor variables, which are ‘connected’ to the dependent variable via a link 

function. (http://www.statsoftinc.com/textbook/stglz.html) 

 

Values of Y or 1-1/2b obtained by fitting either the Box-Cox transformation or Taylors 

power law and their corresponding transformations. 

Power Law Transformation 

1 linear y=ax + b 

0.5 square root y = x
1/2

 

0 logarithmic 

-0.5 reciprocal square root 

-1 reciprocal y = 1/x 

 

Perry, J.N.  Taylor's Power Law for Dependence of Variance on Mean in Animal 

Populations.  Applied Statistics 30(3): 254-263. 

 

Power, J.H., and E.B. Moser.  1999.  Linear model analysis of net catch data using the 

negative binomial distribution.  Can. J. Fish. Aquat. Sci.  56.  191-200. (p192) 

 

Southwood, R. and P.A. Henderson.  2000.  Ecological Methods.  Chapter 2.  Blackwell 

Science Ltd. Malden, MA.  (Online pages 12-13). 

 

http://entomology.unl.edu/lgh/ent806/Lecture13_dispersion.htm 

http://en.wikipedia.org/wiki/Generalized_linear_model 



2. Scale Parameter, Dispersion Parameter, Variance Function. 
Scaled Residuals: The two basic types of residuals are the so-called Pearson residuals and 

deviance residuals. Pearson residuals are based on the difference between observed 

responses and the predicted values; deviance residuals are based on the contribution of 

the observed responses to the log-likelihood statistic.  It is possible to scale for the 

Pearson or the deviance residuals.   

 

Scaled Pearson residuals are the raw residuals (data minus fitted values) divided by the 

standard deviation of the data according to the model mean variance relationship and 

estimated scale parameter.  Pearson residuals are the raw residuals divided by the 

standard deviation of the data, and multiplied by the square root of the scale parameter.  

Pearson residuals are independent of the scale parameter.   

 

Scaled Pearson chi-square is the sum of the squared scaled residuals and the scaled 

deviance.  The formula to determine the Chi Square from Pearson residuals is: 

 
If the deviance is used as a measure of discrepancy of a generalized linear model, then 

each unit contributes a quantity to the deviance, so that 

 
 

These summed residuals, when divided by the df should equal close to 1.  If the goodness 

of fit value is high or low it is either over or underdispersed.  If the goodness of fit is 

under or overdispersed the standard error is either under or over estimated.  The error in 

estimation makes the confidence intervals and test statistics unusable.  Residuals are 

scaled to correct the standard error, making the confidence intervals and test statistics 

usable.   

 

The Pearson residual is computed as the raw residual (y-m), scaled by the estimated 

standard deviation of y. The Pearson residuals are just rescaled versions of the raw or 

response residuals and are defined as: 

 

 
The scaled versions of the Pearson and deviance residuals are defined as: 

 
 



The Ø is the calculated multiplier obtained to scale the Pearson or deviance residuals to 

one. 

 

 

Heinzl,H. and M. Mittlbock. 2003. Psuedo R-squared measures for Poisson 

 regression models with over- and under dispersed data. Computational

 Statistics and Data Analysis. 44:253-271 

 

Piegorsch, W., and A.J., Bailer. 2005.Analyzing Environmental Data. John Wiley and  

 Sons. pp. 112-3 
http://stat.ethz.ch/R-manual/R-patched/library/mgcv/html/residuals.gam.html 

http://mathstat.carleton.ca/~help/minitab/STREGRSN.pdf 

http://www.statsoft.com/textbook/stglz.html 

http://www.stats.ox.ac.uk/pub/bdr/IAUL/ModellingLecture5.pdf 

http://www.csc.fi/cschelp/sovellukset/stat/sas/sasdoc/sashtml/stat/chap29/sect20.htm#idxgmo0215 

http://www.cas.lancs.ac.uk/short_courses/notes/gen_models/session4.pdf 

 

Scale parameter:  
In probability theory and statistics, a scale parameter is a special kind of numerical 

parameter of a parametric family of probability distributions. The value of the scale 

parameter determines the scale of the probability distribution.  If the scale parameter is 

large, then the distribution will be more spread out; if the scale parameter is small then it 

will be more concentrated. 

 

Dispersion parameter: 
The dispersion parameter is the difference between the variance and the mean of the data.  

The dispersion parameter is introduced into the generalized linear model to lower the 

effect of overdispersion. 

 

Using PScale and Dscale: 
Using Pscale and Dscale affects the way in which the dispersion parameter is treated. If 

you specify DScale, the dispersion parameter is estimated by the deviance divided by its 

degrees of freedom. If you specify PScale, the dispersion parameter is estimated by 

Pearson's chi-square statistic divided by its degrees of freedom. 

 

Dscale and Pscale fix the scale parameter at the value 1 in the estimation procedure. After 

the parameter estimates are determined, the exponential family dispersion parameter is 

assumed to be given by Pearson's chi-square statistic (for Pscale) or deviance (for Dscale) 

divided by the degrees of freedom, and all statistics such as standard errors and likelihood 

ratio statistics are adjusted appropriately. 

 

Variance Function: 
The variance function describes the relationship between the mean and the variance of 

the dependent variable.  This allows the proper calculation of the variance (and 

everything that depends on it) under non-normal conditions. The variance function is 

used in generalized linear models to indicate the dependence of the variance of Y on 

location and scale parameters. 



 

Variance functions and dispersion parameters for generalized linear models 

Distribution Variance Function V(µ)  Dispersion Parameter Φ 

Normal 1 σ 
2
 

Gamma µ 
2
 1/α 

Inverse Gaussian µ 
3
 σ 

2
 

Poisson µ 1 

Binomial µ *(1- µ)/n 1 

 
http://stat.ethz.ch/R-manual/R-patched/library/mgcv/html/residuals.gam.html 

http://mathstat.carleton.ca/~help/minitab/STREGRSN.pdf 

http://www.statsoft.com/textbook/stglz.html 

http://www.stats.ox.ac.uk/pub/bdr/IAUL/ModellingLecture5.pdf 

http://www.csc.fi/cschelp/sovellukset/stat/sas/sasdoc/sashtml/stat/chap29/sect20.htm#idxgmo0215 

http://www.cas.lancs.ac.uk/short_courses/notes/gen_models/session4.pdf 

 

3. Binomial, poisson, and non-poisson count data 
Poisson data is often the starting point or benchmark for analysis and Poisson analysis is 

useful for real life count data (non-negative) that is unbounded.  It has the property of 

equidistance, that the mean and the variance must be equal.  Unfortunately Poisson data 

is often overdispersed or underdispersed.  This means that the variance is either larger 

than the mean or smaller than the mean. 

Cameron, A.C., and Trivedi, P.K. 1998 Regression Analysis of Count Data. 

Cambridge University Press. pp3-5,7. 

  

5 “postulates” of a Poisson model in spatial terms 
 

“1. Start with no event occurrences in the region. 

  2. Occurrences in disjoint spatial sub-regions are independent 

  3. The number of occurrences in different sub-spatial regions depends only upon each 

sub-region’s area. 

  4. Occurrence probability is proportional to spatial area of occurrence. 

  5. There are no exactly simultaneous occurrences.” 

Bailer, J., Piegorsch, W. 1997.  Statistics for Environmental Biology and 

Toxicology, CRC Press. pp 18-19 

 

Binomial count data depends the total number of observations and the probability of 

success.  This can be expressed as 1 or 0 or success or failure.  Binomial count data 

becomes symmetrical as the number of counts rise.  Binomial data with the same p will 

smooth itself out to a symmetrical curve as the count increases, thus becoming normal. 

D., Collett. 2002. Modelling Binary Data. CRC Press.chapter 2 

 

Non-Poisson count data is better suited to analysis via other distributions such as negative 

binomial . 

 



Negative binomial has a variance that is greater than the mean.  The more that the 

variance differs from the mean the greater the dispersion, making Poisson less 

appropriate.   

White, G.C. and R.E. Bennets. 1996. Analysis of frequency count data using the 

negative binomial distribution. Ecology. 77(8):2549-2557. 

 

4. Odds and Odds Ratios 
Odds  

� The probability of success (p) divided by the probability of failure (1-p). 

Odds Ratio (OR) 
� Ratio of 2 odds and summary of the relationship between 2 variables 

� Large OR, then large G, therefore larger difference in proportions 

� OR 0-1 success less likely 

� OR>1 success more likely 

� The greater the OR the greater the association between variables, for example, the 

number of insects increase 4 times with every metre away from snowmelt. 

� With OR only one link, since can only use binomial distribution.  Logit link allow 

for useful interpretation of OR, with an exponential relationship the odd ratio 

increases multiplicatively with every unit increase 

� OR are interchangeable, doesn’t matter which side of the equation the response 

variable is on, the OR will be the same. 

� Should fall within confidence limits, if limits include value of 1 then not a useful 

predictor because that means it is possible there is no change in odds (Agresti 

1996; Cohen et al.2003; Garson 2005). 

 

Agresti, A.  1996.  An Introduction to Categorical Data Analysis.  Wiley Series in 

Probability and Statistics.  John Wiley and Sons, Inc., Toronto.  Pages 22, 23, 107. 

 

Cohen, J., S.G. West, L. Aiken and P. Cohen.  2003.  Applied multiple 

regression/correlation analysis for the behavioural sciences.  Lawrence Erlbaum 

Associates, Inc. Publishers. Mahwah, New Jersey.  (online p. 490-492) 

http://www2.chass.ncsu.edu/garson/pa765/logistic.htm 

 

Garson, D.  Logistic Regression from PA 765:  Stat Notes: An online textbook.   

Quantitative Research in Public Administration.  NC State University. 

http://www2.chass.ncsu.edu/garson/pa765/logistic.htm 

 

Examples: 

http://www.cmh.edu/stats/definitions/or.htm 

http://www.ats.ucla.edu/stat/sas/faq/oratio.htm 

 

 

 

 

 



5. Overdispersion 
Definition: 
Overdispersion is when the variance of the data is greater than the expected variance.  

Specifically, with the Poisson model; when the variance exceeds the mean the variance is 

considered to be overdispersed (http://planetmath.org/encyclopedia/Overdispersion.html) 

 

Sources: 
Sources of overdispersion are highly random counts.  Count data, such as 

0,0,1,0,1,0,0,0,25,2,0,1 would cause overdispersion.  The high value of the 25 would 

increase the variance and cause overdispersion. 

 

Why it matters: 
While parameter estimates are not altered by overdispersion, standard error is smaller.  

The smaller standard error creates errors in the confidence intervals and test statistics, 

making them unusable. 

 

How Diagnosed: 
Overdispersion is measured by the goodness of fit.  The goodness of fit value is based 

upon how well the actual goodness of fit matches the df divided by the χ2
 with � = 0.5.  

For example, if there are 30 df  the experimental goodness of fit should be close to 

1.02263. 
DF Probability 0.5 X2 DF/X2 

1 0.5 0.455 2.19811 

2 0.5 1.386 1.4427 

3 0.5 2.366 1.26798 

4 0.5 3.357 1.19165 

5 0.5 4.351 1.14904 

6 0.5 5.348 1.12189 

7 0.5 6.346 1.10309 

8 0.5 7.344 1.08931 

9 0.5 8.343 1.07877 

10 0.5 9.342 1.07046 

20 0.5 19.337 1.03426 

30 0.5 29.336 1.02263 

40 0.5 39.335 1.0169 

50 0.5 49.335 1.01348 

60 0.5 59.335 1.01121 

70 0.5 69.334 1.0096 

80 0.5 79.334 1.00839 

90 0.5 89.334 1.00745 

100 0.5 99.334 1.0067 

110 0.5 109.334 1.00609 

120 0.5 119.334 1.00558 

 

 



How Addressed: 
Overdispersion can be addressed in a couple of ways.  First, if appropriate, negative 

binomial can be used instead.  It automatically scales down the overdispersion, as the 

variance is larger than the mean with negative binomial.  The second method is scaling 

the overdispersion so it equals 1.  Depending on df either the Pearson chi-square or the G-

statistic can be scaled to 1.  This corrects the small standard error and makes the 

confidence intervals and test statistics valid. 

 

Heinzl,H. and M. Mittlbock. 2003. Psuedo R-squared measures for Poisson 

 regression models with over- and under dispersed data. Computational

 Statistics and Data Analysis. 44:253-271. 

 

http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap29/sect27.htm#idxgm

o0392 

http://www.ats.ucla.edu/stat/sas/library/genmod.pdf 

http://www.statsoft.com/textbook/gloso.html 

http://www.uky.edu/ComputingCenter/SSTARS/P_NB_3.htm 

 

 

6. Loglinear Models 
Loglinear models are used for Poisson count data in the GzLM.  An example of a 

loglinear model is Ln(Fij) = m + li
A 

+ lj
B
 + lij

AB
.  Loglinear models are used for categorical 

data. 

 

Ln(Fij) = is the log of the expected cell frequency of the cases for cell ij in the  

contingency table. 

µ =  is the overall mean of the natural log of the expected frequencies 

λ = terms each represent “effects” which the variables have on the cell frequencies 

A and B = the variables 

i and j = refer to the categories within the variables 

  

Therefore: 

λi
A
 = the main effect for variable A  

λj
B
 = the main effect for variable B 

λij
AB

 = the interaction effect for variables A and B 

 

This is a saturated model because all of the one-way and two way effects are included.   

If the model was rewritten, Ln(Fij) = m + li
A 

+ lj
B
, we are assuming that the effects of the 

A and B are independent.  This is called an independent model.   

 

To test for fit of the loglinear model, the Pearson Chi-Squared and the log likelihood-

ratio statistic are computed for goodness of fit.  They compare the cell fitted values 

against the observed counts. 

 

The larger the G
2
 and the χ2

 and the smaller p-value, indicating a poor goodness of fit. 

 



Example (http://www.socialresearchmethods.net/tutorial/Cho/logistic.htm ) 

For instance, we are interested in the relationship between smoking and lung cancer. The 

explanatory variable is whether to smoke (smoking or nonsmoking group), and the 

response variable is whether to have lung cancer. In this case, we have the 2 * 2 case-

control design, because we have two levels in explanatory variables (smoking / 

nonsmoking) and two responses in response variables (cancer / no cancer). If we are also 

interested in the role of age, we can add "age" as continuous or categorical data. It will be 

easier to start with the data matrix we can have in either case. 

If the age is the continuous explanatory variable, the data matrix looks like the following 

table. It is an ungrouped data set.  

Age  

(Continuous) 

Smoking  

(Yes=1/ No=0) 

Cancer  

(Yes=1/ No=0) 

36 1 0 

47 0 1 

49 1 0 

29 1 1 

60 0 1 

55 1 1 

65 1 0 

38 1 1 

56 0 1 

On the other hand, if the age variable is categorized into three age groups, under 40, 41-

60, over 61, we have three age group and the age variable is the categorical variable. In 

this case, it is possible to count the number of people in each cell of the contingency 

table. The following table summarizes the results of all three categorical variables. It is a 

grouped data set. 

 

 

 

 

 

 



  Lung Cancer 

Age Group Smoking Yes  No 

Under 40 Smoking  15 4 

41~60 Smoking 30 7 

Over 60 Smoking 26 6 

Under 40 No Smoking 8 2 

41~60 No Smoking 14 2 

Over 60 No Smoking 15 3 

We call it the 2(Smoking)* 2(Lung Cancer)* 3(Age Groups) contingency table, because 

we have two levels of smoking, two levels of cancer, and three levels of age groups.  

The logistic regression model tests whether smoking has an effect on lung cancer and 

whether the age effect on lung cancer exists and whether there is an interaction between 

smoking and age group and tries to find the best model which can predict the chance of 

lung cancer with the smoking and age variables.  

 In short, the logistic regression model is useful when the study is interested in the 

relationship between the categorical response variable and the categorical and/or 

continuous explanatory variables.  

Agresti, A. 1996. An Introduction to Categorical Data Analysis. John Wiley, New 

 York.pp 145-55. 

 

Jeansonne, A. 2002. Loglinear Models. 

(http://userwww.sfsu.edu/~efc/classes/biol710/loglinear/Log%20Linear%20Models.htm) 

http://www.math.yorku.ca/SCS/Courses/grcat/grc8.html 

http://www2.chass.ncsu.edu/garson/pa765/logit.htm 

 

7. Saturated Model 
 

A model with as many parameters as it has observations, giving the models perfect fit.  

The model has the maximum number of parameters possible.  Such a model is sometimes 

useful as it serves as a benchmark to quantify how well a simpler model (one with fewer 

parameters) fits the data.  A saturated model by itself isn't biologically very useful; the 

whole intent of a "model" is to achieve some synthetic simplification of set of 

observations (data points), whereas a saturated model isn't a simplification and provides 

no greater interpretability than just looking at the raw data points themselves. 

 

Agresti, A.  1996.  An Introduction to Categorical Data Analysis.  Wiley Series in 

Probability and Statistics.  John Wiley and Sons, Inc., Toronto.  Pages 22, 23, 107. 

 

Dobson, A.J.  2002.  An Introduction to Generalised Linear Models.  Chapman and 

Hall/CRC Press.  (Online book) 

 



Elston, R.C., J.M. Olson and L. Palmer.  2002.  Biostatistical Genetics and Genetic 

Epidemiology.  John Wiley and Sons Canada Ltd.  Etobicoke, ON.  (Online pages 315) 

 

Lindsey, J.K.  Applying Generalized Linear Models.  Springer-Verlag, New York.  P.23-

24 (online book) 

 

http://tecfa.unige.ch/~lemay/thesis/THX-Doctorat/node236.html 

http://www.warnercnr.colostate.edu/~gwhite/mark/markhelp/saturatedmodel.htm 

http://planetmath.org/encyclopedia/SaturatedModel.html 

http://www.absc.usgs.gov/staff/WTEB/jschmutz/joel/snowfall_saturated.htm 

http://www2.chass.ncsu.edu/garson/pa765/semAMOS1.htm 

http://www.reference.com/browse/wiki/Saturated_model 

 

8. Goodness of Fit 

The Pearson chi-squared test is described by this formula: 

 

 
where O is observed frequency and E is expected frequency.  If the expected chi-square, 

(eg. χ2
= 2.5), is lower than the χ2

 obtained from the table based on the df and α, then the 

fit was good. 

 

The Pearson chi-squared test is best used when the there is a larger sample size (n>9), 

three of more classes and all expected values are larger than 0.25. 

Lee, C. F. 1998. Statistics for Business and Financial Economics, 2nd Ed World 

 Scientific pp. 509-510. 

http://www.statsdirect.com/help/chi_square_tests/chi_good.htm 

 

The log likelihood ratio (G – Statistic) is calculated by this formula: 

 

 
 

The G – Statistic (also called the deviance) is a better fit than the χ2 
when the sample 

sizes are smaller.  Again, the G-statistic is used to test whether the data fits the error 

distribution (Poisson, negative binomial). 

B. Gerstman. 2003. Epidemiology Kept Simple. Wiley. pp344-6. 

 

The Wald statistic is  z = β/ASE.  The z value is compared to the β = 0, where 0 is 

standard normal.  The second use squares the z value.  This squared z can be compared to 

χ2
 table with a df = 1.  The Wald statistics are widely used because it is easy to compute 

but there is evidence that they are not as reliable as the Pearson chi-squared or G-statistic. 

Agresti, A. 1996. An Introduction to Categorical Data Analysis. John Wiley, New 

York.  pp. 88-89. 



MacKinnon, J.G., and  R. Davidson. 2003. Econometric Theory and Methods. 

Oxford  University Press. p. 422. 

 

http://www.ats.ucla.edu/stat/sas/library/genmod.pdf 

http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap29/sect27.htm 

http://en.wikipedia.org/wiki/Goodness_of_fit 

http://www.personal.rdg.ac.uk/~snscolet/MScGLMs/Lecture5.pdf 

http://www.uky.edu/ComputingCenter/SSTARS/P_NB_3.htm 

 

9. Analysis of Deviance 
For generalized linear models the terms in the model will in general no longer be 

orthogonal and also, sums of squares will for non-Normal distribution no longer 

appropriate measures of the contribution of a term to the total discrepancy.  The analysis 

of deviance (AnoDev) table shows the deviance of the data from the model, for a 

sequence of models. It also shows the change in deviance (∆G improvement in fit) due to 

each term in the model.  

The Analysis of Deviance table summarizes information about the sources of variation in 

the response for the set of data. The ANODEV reports change in fit due to each model 

term.  The G statistic is the fit of the model to the intercept, and replaces the sequential 

sums of squares seen in ANOVA.  The ∆G is the change in fit associated with each term 

in the model.   

 

 

Example of an ANODEV table: 

 

LR Statistics For Type 1 Analysis 

        Source                         2*LogLikelihood  (G)       DF   Chi-Square(∆G)   Pr > ChiSq 

        Intercept                               557.5548 

        YEAR                                  561.7104                      5               4.16             0.5272 

        SURVEY                             562.8268                      5               1.12             0.9526 

        TRANSECT                        746.1630                    15           183.34            <.0001 

        YEAR*SURVEY                769.0660                      8             22.90            0.0035 

        YEAR*TRANSECT          1152.0339                    71          382.97            <.0001 

        SURVEY*TRANSECT     1353.5831                   66           201.55            <.0001 

 
http://www.csc.fi/cschelp/sovellukset/stat/sas/sasdoc/sashtml/insight/chap39/sect23.htm#idxfit0465 

http://www.warnercnr.colostate.edu/~gwhite/mark/markhelp/anodev.htm 

http://www.csc.fi/cschelp/sovellukset/stat/sas/sasdoc/sashtml/insight/chap16/sect4.htm#idxlog0030 

 

10.  Maximum Likelihood 
� Estimates what the sample should likely be (likelihood) or as typical as possible 

given the observed values.   

� Likelihood is calculated repeatedly as iterations until the iterations no longer 

differ greatly (or the algorithm converges).   

� Predicts how likely the observed values of the response variable can be predicted 

from the observed values of the explanatory variables (Agresti 1996; Cohen et 
al.2003; Garson 2005; Johnston 2005). 



 

Maximum Likelihood Method.  

� The method of maximum likelihood (the term first used by Fisher, 1922a) is a general 

method of estimating parameters of a population by values that maximize the 

likelihood (L) of a sample. The likelihood L of a sample of n observations x1, x2, ..., 

xn, is the joint probability function p(x1, x2, ..., xn) when x1, x2, ..., xn are discrete 

random variables. If x1, x2, ..., xn are continuous random variables, then the 

likelihood L of a sample of n observations, x1, x2, ..., xn, is the joint density function 

f(x1, x2, ..., xn).  

� Let L be the likelihood of a sample, where L is a function of the parameters 1, 2, 

... k. Then the maximum likelihood estimators of 1, 2, ... k are the values of 

1, 2, ... k that maximize L.  

� Let  be an element of . If   is an open interval, and if L( ) is differentiable and 

assumes a maximum on W, then the MLE will be a solution of the following 

equation: (dL( ))/d  = 0 (http://www.statsoft.com/textbook/stathome.html click on 

generalized linear model: Maximum Likelihood method. 

 

Agresti, A.  1996.  An Introduction to Categorical Data Analysis.  Wiley Series in 

Probability and Statistics.  John Wiley and Sons, Inc., Toronto.  Pages 8-10, 96. 

 

Garson, D.  Logistic Regression from PA 765:  Stat Notes: An online textbook.   

Quantitative Research in Public Administration.  NC State University. 

http://www2.chass.ncsu.edu/garson/pa765/logistic.htm 

 

Cohen, J., S.G. West, L. Aiken and P. Cohen.  2003.  Applied multiple 

regression/correlation analysis for the behavioural sciences.  Lawrence Erlbaum 

Associates, Inc. Publishers. Mahwah, New Jersey.  (online p. 498) 

 

Johnston, G. SAS Software to Fit the Generalized Linear Model.  SAS Institute Inc., 

Cary, NC  http://www.ats.ucla.edu/stat/sas/library/genmod.pdf pages 1-8 

 

 

11. Scaled Residuals 
The two basic types of residuals are the so-called Pearson residuals and deviance 

residuals. Pearson residuals are based on the difference between observed responses and 

the predicted values; deviance residuals are based on the contribution of the observed 

responses to the log-likelihood statistic.  It is possible to scale for the Pearson or the 

deviance residuals.   

 

Scaled Pearson chi-square is the sum of the squared scaled residuals and the scaled 

deviance.  The formula to determine the Chi Square from Pearson residuals is: 

 
If the deviance is used as a measure of discrepancy of a generalized linear model, then 

each unit contributes a quantity to the deviance, so that 



 
 

These summed residuals, when divided by the df should equal close to 1.  If the goodness 

of fit value is high or low it is either over or underdispersed.  If the goodness of fit is 

under or overdispersed the standard error is either under or over estimated.  The error in 

estimation makes the confidence intervals and test statistics unusable.  Residuals are 

scaled to correct the standard error, making the confidence intervals and test statistics 

usable.   

 

The Pearson residual is computed as the raw residual (y-m), scaled by the estimated 

standard deviation of y. The Pearson residuals are just rescaled versions of the raw or 

response residuals and are defined as: 

 

 
The scaled versions of the Pearson and deviance residuals are defined as: 

 
 

The Ø is the calculated multiplier obtained to scale the Pearson or deviance residuals to 

one. 

 

 

Heinzl,H. and M. Mittlbock. 2003. Psuedo R-squared measures for Poisson 

 regression models with over- and under dispersed data. Computational

 Statistics and Data Analysis. 44:253-271 

 

Piegorsch, W., and A.J., Bailer. 2005.Analyzing Environmental Data. John Wiley and  

 Sons. pp. 112-3 

 

http://stat.ethz.ch/R-manual/R-patched/library/mgcv/html/residuals.gam.html 

http://mathstat.carleton.ca/~help/minitab/STREGRSN.pdf 

http://www.statsoft.com/textbook/stglz.html 

http://www.stats.ox.ac.uk/pub/bdr/IAUL/ModellingLecture5.pdf 

http://www.csc.fi/cschelp/sovellukset/stat/sas/sasdoc/sashtml/stat/chap29/sect20.htm#idx

gmo0215 

http://www.cas.lancs.ac.uk/short_courses/notes/gen_models/session4.pdf 

 

12. Link 



The link function in generalized linear models specifies a nonlinear transformation of the 

predicted values so that the distribution of predicted values is one of several special 

members of the exponential family of distributions (e.g., gamma, Possion, binomial, etc.). 

The link function is therefore used to model responses when a dependent variable is 

assumed to be nonlinearly related to the predictors.  The link function serves to link the 

random or stochastic component of the model, the probability distribution of the response 

variable, to the systematic component of the model (the linear predictor). 

 

Formulas for common link functions 

Link Formula 

Identity Μ 

Log log µ 

Inverse 1/  

Square Root √ µ 

Logit Log µ/1- µ 

Probit Φ 
–1

(µ) 

Complementary log-log Log(-log(1- µ)) 

Power µk
 

Arcsine Sin-1(2 µ-1) 

0 < µ < 1  

Box-Cox (µλ-1)/λ 

Each distribution has a most commonly used link, called the canonical link. 

Canonical link functions associated with common probability distributions 

Probability Distribution Canonical Link Function 

Normal Identity 

Binomial Logit 

Poisson Log 

Gamma Reciprocal 

 
http://www.stat.uiowa.edu/~luke/xls/glim/glim/node7.html 

http://userwww.sfsu.edu/~efc/classes/biol710/Glz/Generalized%20Linear%20Models.htm 

http://www.statsoft.com/textbook/glosl.html 

http://www.warnercnr.colostate.edu/~gwhite/mark/markhelp/linkfunctions.htm 

 

Atkinson, A. and Riani, M.  2000.  Robust Diagnositc Regression Analysis.  Springer, New 

York.  

 

 

13.  Error Distibutions 
The generalized linear model differs from the general linear model in two major aspects 

1. The distribution of the dependent (or response) variables can be (explicitly) non-

normal, and does not have to be continuous (ie may be binomial). 



2. The dependent variable values are predicted from a linear combination of 

predictor variables, which are ‘connected’ to the dependent variable via a link 

function. 

http://www.statsoftinc.com/textbook/stglz.html 

 

Distributions: Generalized linear models encompass the general linear model and enlarge 

the class of linear least-squares models in two ways: the distribution of Y for fixed x is 

merely assumed to be from the exponential family of distributions, which includes 

important distributions such as the binomial, Poisson, exponential, and gamma 

distributions, in addition to the normal distribution 

(http://userwww.sfsu.edu/~efc/classes/biol710/Glz/Generalized%20Linear%20Models.ht

m) 

 

1. Normal, Gamma and Poisson Distribution: 

 

 

Identity link f(z)=z 

 
 

Log link f(z) = log (z) 

 
 

Power link f(z) = z
a
, for a given a 



 
http://www.statsoftinc.com/textbook/stglz.html 

 

 

 

2. Binomial distribution:   

 

Logit link 

 
 

StatSoft, Inc.  1984-2003.  Electronic textbook Statsoft.  STATISTICA, StatSoft, Inc. 

http://www.statsoftinc.com/textbook/stglz.html 

 

Deviance: 

The table below displays deviance for each of the probability distributions available in 

PROC GENMOD, an estimate of the scaled deviance and Pearson's chi-square statistic 

which are then divided by the degrees of freedom for the model.  The deviance is used for 

the goodness of fit of the model. 

 

Distribution Deviance 

Normal 

 



Poisson 

 
Binomial 

 
Inverse Gaussian 

 
Gamma 

 
Multinomial 

 
Negative Binomial 

 
SAS Institute Inc., SAS OnlineDoc®, Version 8, Cary, NC: SAS Institute Inc., 1999.  

http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap29/sect27.htm 

 

Canonical Link: 

The link function serves to link the random or stochastic component of the model, the 

probability distribution of the response variable, to the systematic component of the 

model (the linear predictor): 

,                       (2) 

Where g(µ) is a non-linear link function that links the random component, E(Y), to the 

systematic component .  For traditional linear models in which 

the random component consists of the assumption that the response variable follows the 

Normal distribution, the canonical link function is the identity link. The identity link 

specifies that the expected mean of the response variable is identical to the linear 

predictor, rather than to a non-linear function of the linear predictor. The canonical link 

functions for a variety of probability distribution are given below. 

 

 

Probablility Distribution Type Canonical Link Function 

Normal Identity 

Poisson Log 

Binomial Logit 

Inverse Gaussian Power
-2

 

Gamma Power
-1

 

Negative Binomial Log 

Agresti, A.  1996.  An Introduction to Categorical Data Analysis.  John Wiley, 

New York. 

Johnston, G. SAS Software to Fit the Generalized Linear Model.  SAS Institute 

Inc., Cary, NC  http://www.ats.ucla.edu/stat/sas/library/genmod.pdf pages 1-8 

 



14.  Parameter Estimation 
OLS: Ordinary least squares parameters estimates are created with this equation: 

 

Yi = a0 + a1 X1i + a2 X2i + ... + ak Xki + ei, 

 

where Yi is related to each accompanying Xi variable.   

Ordinary least squares (OLS) parameter estimates are accurate and unbiased if the data 

follows these rules provides by Dr. D.J.C. Smant: 

 

1. There is no correlation between explanatory variables and residuals (no simultaneity), 

i.e. cov(Xji,ei) = 0.  Failure of this assumption results in biased estimates of the 

coefficients of explanatory variables. 

 

2. The expected or mean value of the residuals equals zero, i.e. E(ei) = 0. Failure of this 

assumption results in a biased estimate of the constant term. 

 

3. Residuals are homoskedastic (no heteroskedasticity = no cones), i.e. E(e i2) = s2 = 

constant.Failure of this assumption results in inefficient estimates and biased tests of 

hypotheses. 

 

4.Residuals are independently distributed (no serial correlation), i.e. E(eiej) = 0. 

Failure of this assumption results in inefficient estimates and biased tests of hypotheses. 

 

5. Explanatory variables are independent (no multicollinearity), i.e. cov(Xi,Xj) = 0. 

Failure of this assumption results in inefficient estimates and biased tests of hypotheses. 

 

In addition to these well-known standard assumptions we also have: 

 

6. Residuals are normally distributed, i.e. e ~ N(0, s2) (combining assumptions 2 and 3 

and 5).  Failure of this assumption invalidates the use of the Student t-distribution in 

coefficient t-tests. 

 

7. Explanatory variables are measured without error (no errors in variables).  Failure of 

this assumption results in biased estimates of the coefficients. 

 

8. Variables that are time series must be stationary (no unit roots), i.e.well-defined mean 

andvariance. Failure of this assumption results in spurious regressions (except in the 

special case of cointegration). 

 

The narrow constraints of the OLS make it unsuitable for most biological situations. 

http://www.few.eur.nl/few/people/smant/econometrics/intro_pr_ectr_2.pdf 

http://econ.la.psu.edu/~hbierens/EasyRegTours/OLS.HTM 

 

WLS: Weighted Least Squares is a popular method for estimating parameters and has 

been around since the late 1700’s.  It deals with heteroskedasticity (cones) much better 



than OLS by weighting each variable.  It uses the same equation as the OLS but there is a 

wi beside each term deciding how much influence each variable should have: 

Yi = a0 + a1 wi(X1i) + a2 wi(X2i) + ... + ak wi(Xki) + ei, 
 

WLS is also not very useful for biological applications.  It is easy to put bias into the 

model from the weighting.   
 

http://www.utdallas.edu/~herve/Abdi-LeastSquares-pretty.pdf 

Schabenberger, O., and  F.J., Pierce. 2001. Contemporary Statistical Models for 

the Plant and Soil Sciences. CRC Press. pp. 592. 

 

Iteratively Reweighted Least Squares (IRLS): The OLS and WLS involves a variance as a 

function of the value of the observed data point. It also ties the weight to the variance of 

the observed data points. However, when a weighting scheme is applied to a series of 

data points, data points with very low values may be given more emphasis than is 

appropriate. An alternative weighting has been used to try to overcome this disadvantage. 

This method is the iteratively reweighted least squares method. Effectively, this is 

identical to the WLS except that observed data is replaced with calculated data. Thus, the 

weight is recalculated during each phase of the optimization process. Thus very low 

observed data points would not have the emphasis on the overall analysis. However, it is 

possible that the optimization may drive calculated values low, giving these points more 

emphasis and potentially distorting the final analysis. 

(http://www.boomer.org/c/p3/c13/c1306.html) 

 

Garthwaite, P.H., Jolliffe, I.T., and Jones. B. 2002. Statistical Inference.Oxford 

 University Press. p. 63. 

 

Gibbons, R.D. and D.E.Coleman. 2001 Statistical Methods for Detection and 

 Quantification of Environmental Contamination. Wiley. pp. 39-40. 

 

http://userwww.sfsu.edu/~efc/classes/biol710/Glz/Generalized%20Linear%20Models.ht

m 

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd432.htm 

 

15.  Model diagnosis 
� Residuals (error) are analyzed in linear modeling to identify poorly fitted values.  If 

there a large number of poorly fitted values exist then often the fit is determined to be 

inappropriate for the data.  Residuals are also used for:  looking for signs of 

nonlinearity, evaluating the effect of new explanatory variables, creating goodness of 

fit stats and evaluating leverage and influence for individual data points (Gill 2000) 

 

� If you are doing a regression the model does require linearity, ie. no bowls or arches 

in the residuals versus fits.  But if you are not using a regression then GzLM doesn’t 

require linear relationship (Garson 2005) 

 

� Even though the residuals in the GzLM we would like evenly distributed around zero 

(Gill 2000) 



 

� We look at the residuals plot to investigate potential outliers and other interesting 

behavior of the data in using that particular model.  Residual versus fits looking for 

striping to indicate zero’s in data, cones for model fit and homogeneity, bowls if 

using a regression analysis 

 

� We look at the deviance residuals to describe the stochastic behavior of the data 

relative to a constructed GzLM in a format that closely resembles the normal theory 

analysis of standard linear model residuals.  

 

Agresti, A.  1996.  An Introduction to Categorical Data Analysis.  Wiley Series in 

Probability and Statistics.  John Wiley and Sons, Inc., Toronto.  Pages 109, 88-91 

 

Garson, D.  Logistic Regression from PA 765:  Stat Notes: An online textbook.   

Quantitative Research in Public Administration.  NC State University. 

http://www2.chass.ncsu.edu/garson/pa765/logistic.htm 

 

Gill, J. 2000.  Generalized Linear Models: a unified approach.  Sage university Papers 

Series on Quantitative Applications in the Social Sciences.  07-134. Thousand Oaks, CA:  

Sage.  Pages 51-66. 

 

Johnston, G. SAS Software to Fit the Generalized Linear Model.  SAS Institute Inc., 

Cary, NC  http://www.ats.ucla.edu/stat/sas/library/genmod.pdf pages 1-8 

 

 

  

 


