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Introduction 

Generalized linear models (GLMs) represent a class of regression models that allow us to 

generalize the linear regression approach to accommodate many types of response 

variables including count, binary, proportions and positive valued continuous 

distributions (Nelder and Wedderburn, 1972; Hilbe, 1994; Hoffman, 2004). Because of its 

flexibility in addressing a variety of statistical problems and the availability of software 

to fit the models, it is considered a valuable statistical tool and is widely used.  In fact, the 

generalized linear model has been referred to as the most significant advance in 

regression analysis in the past twenty years (Hoffman 2004).   

 

Generalized linear models include three components: 1) a random component which is 

the response and an associated probability distribution; 2) a systematic component, which 

includes explanatory variables and relationships among them (e.g., interaction terms): 

and 3) a link function, which specifies the relationship between the systematic component 

or linear predictor and the mean of the response.  It is the link function that allows 

generalization of the linear models for count, binomial and percent data thus ensuring 

linearity and constraining the predictions to be within a range of possible values (Guisan, 

2002).  This ability to handle a larger class of error distributions and data types is a key 

improvement of GLMs over linear models.  Stated formally, the three components of a 

GLM are: 

 

(1) g(µ)=µ, 
(2) and, µ=ß0 + ß iXi + ßi+1 Xi+1 … 

where, µ is the mean of the response. 
(3) g(µ) shows that the mean of the response is linked to the 

structural model, thus g(µ) is the link function, and η is the 
structural component, with Xi denoting explanatory variables, 
and βi the parameters to be estimated.  
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Assumptions and Diagnostics 

Similar to the linear model approach, there are key assumptions that must be met when 

computing a p-value using the GLM approach and violation of any of these assumptions 

may compromise the interpretation of model results by producing biased standard errors 

and thus unreliable p-values.  There are, however, disagreements in the literature on what 

constitutes key assumptions, decisions and checks for generalized linear modeling.  

Because the type I error (the p-value) on the improvement in fit with the GLM is 

calculated from the chi-square distribution which assumes homogenous, normal, and 

independent deviations centered on zero (Dobson, 2002), it follows that these are 

considered key assumptions for GLMs.  There is a general consensus that the 

assumptions of homogeneity and independence of residuals must be met (Breslow, 1996; 

Lindsey, 1997; Cameron and Trivedi, 1998; Dobson, 2002; Hoffman, 2004).  McCullogh 

and Nelder (1989), however, point out that the independence assumption can be relaxed 

to “at least uncorrelated”.  The importance of normality of residuals in GLMs, on the 

other hand, is debated.  Some authors (e.g., Lindsey, 1997; Dobson, 2002; Hoffman, 

2004) suggest that normality of the residuals must be met to correctly interpret the results 

while others (Gill, 2001) note that normally distributed errors are not a condition of GLM 

quality but simply a description of model behavior.  In addition to the assumptions of the 

chi-square distribution stated above, Breslow (1996) also considers the correct 

specification of the variance function (ν), the overdispersion factor (θ) and the link 

function (g) to be critical assumptions underlying GLMs.   

 

Homogeneity, normality and independence 

The chi-square distribution assumes that the error term for all combinations of the 

independent variable is homoscedastic (i.e., same scatter) (Dobson, 2002).  When faced 

with heteroscedastic errors, the standard errors of the coefficients are biased thus the 

significance tests are incorrect and the ability to make inferences from the model is 

compromised (Hoffman, 2004).  Graphically, a post-model scatterplot of the residual and 

fitted values can indicate homoscedasticity.  Often, the variability of the error term 

increases with larger values of the independent variables and this is shown by a cone or 
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fan in the residuals versus fitted values plot.  An hourglass pattern, when there is a large 

deviance of residuals from the line, at low and high extremes of the independent variable 

may also be evident.  These plots may also show outliers and inadequacy of the model 

(Seber, 1980).  Formal diagnostic tests are based on statistical hypothesis testing; the null 

hypothesis (variances are equal) is tested against the alternate hypothesis that they are 

not. We chose not to consider formal statistical tests of the assumptions, prior to the main 

statistical test, because this returns to methodologies which the GLM approach was 

designed to avoid – “rattling through an extensive toolbox full of distinct and separate 

tests” (Gill, 2001, p.90).  A description of several formal statistical tests for distribution 

assumptions and how to implement is provided in Greene (2000).    

 

The chi-square distribution also assumes that the residuals are normally distributed with 

mean=0.  As mentioned above, there is disagreement in the literature surrounding the 

importance of this assumption for GLMs.  Graphical analysis of normality is generally 

performed using normal probability plots and histograms of residuals (Lindsey, 1997; 

Dobson, 2002; Hoffman, 2004).  The points in the plot should lie on or near the straight 

line representing normality and systematic deviations or outlying observations indicate a 

departure from this distribution (Dobson, 2002). 

 

Another assumption of the chi-square distribution is that of statistical independence of the 

errors indicating observations are random and there is no relationship in space or time. 

This assumption is in doubt whenever there is a natural grouping or clustering of the data.  

In this course we focused on graphical representations for testing the assumptions of 

homoscedasticity and normality of residuals but we were not exposed to the evaluation of 

the independence assumption.  Graphical diagnosis of independent residuals is to plot 

each residual against a neighbouring value (e.g., using a lag plot).  Residuals should 

fluctuate randomly with no pattern and an upward or downward trend indicates that the 

residuals may be related (Dobson, 2002; Hoffman, 2004).  

 

Overdispersion and Link Functions 

The assumption that the variance is equal to the mean is restrictive for most biological 
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data (Van Hoef and Boveng, 2007).  Count data, in particular are often overdispersed, that 

is exhibiting more variation than given by the mean.  However, GLM models typically 

used for binary or count data, (e.g., a logistic regression or log-link with Poisson error 

distribution) do not have a separate dispersion term.  The variance is assumed equal to the 

mean. Because overdispersion is so common, models such as the quasi-poisson and 

negative binomial model have been developed for these data.  The quasi-poisson model 

specifies the variance by adding an over dispersion parameter (θ) (i.e., specifies the 

relationship between the variance and the mean) while the negative binomial model 

assumes that the variance is larger than the mean (Hoffman, 2004; Van Hoef and Boveng, 

2007).  Overdispersion may also result from poor choice of link function, missing terms 

or interactions in the linear predictor, or outliers in the data (Myers et al., 2002).  

Determining the cause of a poorly fit model may be more difficult as the symptoms of a 

poorly specified model are often the same as an overdispersed model (Myers et al., 

2002). In this paper, we calculate the dispersion as the ratio of the residual deviance over 

residual degrees of freedom.  If the variance is equal to the mean, dispersion should be 

one.    

 

Diagnosing Assumptions 

There are two approaches available to examine the assumptions of homoscedasticity, 

normality and independence, these being informal graphical methods and formal test 

methods.  Informal graphical methods involve visual inspections of residual plots.  If the 

above mentioned assumptions of the chi-square distribution are satisfied, residuals should 

be independent, have a distribution which is approximately normal with a mean of zero 

and have a constant variance (Dobson, 2002).  For each graphical plot of residuals, there 

is an associated formal statistical test which involves hypothesis testing (Seber, 1980).  

The main disadvantage of using a formal test is that sample size can largely affect the 

decision of whether the model fits the data or not (Cameron and Trivedi, 1998).  For 

smaller sample sizes, formal tests lack power.  With a large dataset, even mild deviations 

from non-normality may be detected, but there would be little reason to abandon the 

model because the effects of non-normality are mitigated.  Cameron and Trivedi (1998) 

liken formal tests to black boxes which provide a single number compared to a critical 
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value.  Furthermore, interpretation of the p-value does not indicate what action to take.   

 

Graphical methods are considered more informative and, further, that formal tests are 

unnecessary (Seber, 1980; Cameron and Trivedi, 1998; Gill, 2001; Dobson, 2002; 

Hoffman, 2004).  Residual plots are relatively easy to construct and appropriate graphical 

tools exist in most statistical software (Feder, 1974; Carrol and Spiegelmann, 1992). 

Visual analysis of residuals can potentially detect violations, ways they can be corrected, 

as well as provide a feel for the effect of the violation (Cameron and Trivedi, 1998).  

Some skill is needed, however, to interpret graphical representations of residuals.  For 

example, patterns are often overlooked in plots of residuals from large sample sizes 

(Seber, 1980).  We chose to focus on graphical methods for evaluating model fit because 

these methods will provide the maximum amount of information from the residuals such 

as the nature of the misspecification, thus also aiding in identifying the appropriate ways 

to correct it.  However, because we do not yet have a feel for the implications of violating 

the assumptions of chi-square distributions, we compared p-values based on chi-square 

distributions with those generated by randomization. 

 

Randomization 

Resampling methods can take on many forms in modern statistical analyses including 

randomization, bootstrap, jackknife, and Monte Carlo. Randomization (or permutation) 

tests involve reordering observed data values (i.e. reshuffling). Bootstrapping differs only 

with regard to replacement in the sampling procedure (Potvin and Roff 1993, Manly 

2007). Monte Carlo methods are a more generalized approach within while the previous 

methods may be considered mode specific approaches (Crowley 1992, Manly 2007). 

Jackknife sampling involves iteratively removing a sample of observations, a technique 

which is relatively easy to compute, but crude and laden with more assumptions 

(Crowley 1992). Each of these methods has attributes best suited to specific applications 

(see Crowley [1992], Edgington [1995], and Manly [2007] for detailed coverage of 

random resampling methods). We employed permutation tests as a means to calculate 

distribution-free p-values for each dataset under consideration.  This is the simplest 

method randomization, with the fewest assumptions, when explanatory variables are 
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fixed.  

 

Randomization carries relatively few assumptions providing more power and accurate p-

values compared with model-based methods (Crowley 1992, Manly 2007). The p-values 

from randomization should equal those of a model when assumptions are reasonable 

(Petraitis et al. 2001, Manly 2007). Edgington (1995) recommends computing a test 

statistic from the experimental data, then repeatedly randomizing outcomes and 

computing the statistic for comparison. This is recognized as the simplest method 

available. Alternatives, which may be more reliable, involve randomizing residuals, but 

are typically “not much better than the use of the t- and F-distributions” (Manly 2007, 

p.201). We randomized response values and calculated the G-statistic (likelihood-ratio χ2) 

for GLMs. A minimum of 1000 permutations were computed for all datasets, as 

recommended by Manly (2007), with a significance level of 5%. 

 

Methods 

In this paper, we conducted GLM analyses on multiple datasets.  Initial choice of link 

functions and error distributions were based on knowledge of the data set and error 

distributions. We evaluated the models using the dispersion parameters, and graphical 

methods to identify violations of assumptions of homogeneity of variance, normality of 

residuals, and independence of both explanatory variables and residuals. We evaluated 

the efficacy of various methods of evaluating assumptions for computing the Type I error 

using randomization. Brief descriptions, verbal models and variable definitions for the 

data sets used are detailed in Appendix A.  

 

The open-source statistical package R, with ‘MASS’ and ‘car’ packages for GLM 

confidence intervals and diagnostics, was used to implement and evaluate the models 

(Venables and Ripley 2002; Fox, 2007; RTeam, 2007). Generic code is presented in 

Appendix B. We checked for linear correlations among continuous explanatory variables 

prior to running the analyses.  Where linear correlations were found, we chose one of the 

explanatory variables (e.g., dataset 13, Table 1).  After running the analyses, we examined 

plots of residuals versus fitted values for the assumptions of homogeneity of variance and 

 6 



where appropriate, if the straight line assumption was met.  We looked for well scattered 

plot with no cones or fans for homogeneity of variance. The same plot was examined for 

diagnostic arches or bowls, which would indicate that the straight line assumption was 

not met. To check for normality we used a qqplot, looking to see if residuals fell along the 

1:1 line.  The lag plot was used to examine independence of the residuals versus the 

lagged residuals. We looked for plots which contained no trends. Dispersion and the link 

function were checked with quick calculations instead of graphical methods. We checked 

the quality of the model fit by plotting the linear link function and considering whether 

the slope of the line is below 1, the linear link underfit cases larger observed values (Gill, 

2001). Conversely, slopes greater than 1, overfit smaller observed values.  Gill (2001), 

however, does not provide guidance on what indicates an inappropriate linear link.  

Decisions made by analysts based on our examination of residuals are detailed in results 

section. 

 

Results 

A variety of datasets were analyzed using both GLMs and randomizations.  Calculated p-

values from these analyses were compared.  This exercise focused on the importance of 

meeting various assumptions of GLMs.  Datasets analysed, using various GLMs, 

commonly violated assumptions during the process.  One way of checking to see whether 

the model chosen is accurate is to run a randomization.  If randomizations are used, there 

must be enough iterations run to detect the result (i.e. 5000 randomizations when α = 

0.05, 10000 randomizations when α = 0.01). 

 

 The purpose of this report was to determine whether failure of key assumptions skewed 

resulting p-values.  If p-values differed markedly between randomization and model 

fitting, we returned to the list of assumptions to determine where the violations occurred.  

 

When comparing the two methods for determining p-values, any large deviations, which 

significantly affected results were flagged by highlighting them in green (Table 1).  This 

indicated model analyses must not have produce accurate results and interpretation of 
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model results may lead to the wrong conclusion.  Each model assumed certain criteria 

(e.g., normality, homogeneity, independence of explanatory variables).    

Out of a total of 141 p-value comparisons across 16 different data sets, 39 comparisons 

had large deviations between the model results and the randomization results.  

Assumptions most commonly violated were homogeneity, normality and dispersion, 

respectively (Table 2). 

 

Results for individual datasets 

Dataset 1 

I initially tried the Gaussian error structure, as that is one of the first things to look at with 

count data. Most assumptions were not met, due to the skewing of the data (this tends to 

occur with percentage data). The dispersion of the data, however, was close to zero, 

which is to be expected with Gaussian error. The next step was to change the error 

structure to Poisson (also suggested when using percentage data). Again, most of the 

assumptions were not met, probably again due to the skew of the data. The data was 

severely underdispersed. Changing the error structure again, this time to a Gamma 

structure, the assumptions were met. Dispersion was improved (1.03). Randomized p-

values agreed with the chi-square distribution values. 

 

Dataset 2 

I started with a Gaussian error structure with an identity link to make sure my data was 

not normally distributed. When running the model homogeneity, normality, and 

dispersion were violated. The over-dispersion was huge. I switched to a Poisson error 

structure with a log link, as data are counts. This violated homogeneity and dispersion. 

However, the normality plots looked much better.  The overdispersion was still huge. I 

then switched to a quasi-Poisson error structure with a log link to fix the over-dispersion. 

For this, all assumptions were met.  

 

I focused on the interaction terms because their p-values were highly significant and I 

wanted to determine whether these values changed. The quasi-Poisson error structure 

with log link deemed the best model for interpretation. Based on the chi-square 
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distribution p-values, interactions F1*F2 and F2*F3 were highly significant, while F1*F3 

was not significant. The randomized p-values show the same results. 

 

Dataset 3 

I started with a Gaussian error structure with an identity link to make sure my data was 

not normally distributed. Normality and dispersion were violated. Overdispersion was 

huge. I switched to a Poisson error structure with a log link because data are counts. All 

assumptions were met, but overdispersion was still a small issue. I then switched to a 

quasi-Poisson error structure with a log link to fix the over-dispersion. All assumptions 

were met.  

 

I focused on the interaction terms in the first analysis because their p-values were highly 

significant however when the error structure was changed, the interaction terms became 

non-significant and I could interpret the main effects. quasi-Poisson error structure with 

log link deemed the best model for interpretation. Based on the chi-square distribution p-

values, factors F1and X1 were highly significant, while factor F2 was not significant. The 

randomized p-values show the same results (factors F1 and X1 highly significant, F2 

not). 

 

Dataset 4 

Initially I used a Gaussian error structure with an identity link. The normality assumption 

was violated and was the data was overdispersed.  This violated normality and dispersion.  

The over-dispersion was huge. I then switched to a Poisson error structure with a log link 

because data are counts. The normality assumption was violated. I then switched to a 

quasi-Poisson error structure to see if the minor overdispersion problem was solved. 

Normality assumption was still violated and the overdispersion value remained the same. 

No improvement in assumptions, therefore Poisson error structure with log link is 

deemed the best model for interpretation.  
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There was only one explanatory variable here so I focused on whether this p-value 

changed. Based on the chi-square distribution p-values, factor F1 was highly significant. 

The randomized p-values show the same results (factor F1 highly significant). 

 

Dataset 5 

Because the response variables were counts, Poisson distribution with a log link was 

chosen first, and ‘concentration’ was treated as ratio scale. All the assumptions were met 

except the homogeneity and normality assumptions. When Gaussian distribution with an 

identity link was used, errors were heterogeneous, non-normal and overdispersed. Next, 

both of these two distributions were tried again when ‘concentration’ was considered as a 

categorical variable, and the assumptions were still not met. Among these models, the 

Poisson distribution with ‘concentration’ as a categorical scale seemed to be the most 

improved one. Although the homogeneity and normality assumption were violated, the 

model-computed p-values agreed with the p-values that calculated by randomization.  

 

Dataset 6 

I chose the Poisson error structure because data were counted survivals, which is discrete 

numbers. Except homogeneity, all the assumptions were met when ‘concentration’ was 

category; when it was continuous, overdispersion occurred. I then changed the 

distribution to Gaussian, which did not improve the agreement of the assumptions. 

Almost all assumptions were met when quasi-Poisson distribution was used and 

‘concentration’ was treated as a continuous variable. In the Poisson model, the types of 

compounds had a significant effect based on p-value calculated by model but no 

significant effect according to randomization p-value. By using the quasi-Poisson 

distribution, we obtained p-values which agreed with randomization p-values. 

 

Dataset 7 

Again, the Poisson distribution was chosen because the data were counted numbers. 

Errors were not homogeneous or normal, however the other assumptions were met. 

Among the seven p-values calculated by Poisson distribution, only two of them agreed 

with randomization p-values. For example, as for ‘species’, model-based p-value was 
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<0.0001, while randomization p-value was 0.996. Using quasi-Poisson, all the 

assumptions except homogeneity were met. The p-values calculated by quasi-Poisson 

distribution agreed with randomization p-values. 

 

Dataset 8 

Initially I chose a log-link model with Poisson error distribution because the response 

variables were counts. The model met most of the assumptions shown in plots. However, 

overdisperion was substantial, 16 times what the model assumes. Based on the chi-square 

distribution p-values, all explanatory variables appear significant. For this data set, this 

would mean that soak time and hook type significantly affect the number of tuna landed 

per longline set – if overdispersion is ignored. Randomized p-values, however, show 

none of the explanatory variables were significant. I re-ran the model using a negative 

binomial distribution to account for overdispersion. Only soak time was a significant 

predictor in this model. While the negative binomial error distribution corrected 

overdispersion, I was unable to run a randomization on this model. This may have been 

due to maximum likelihood estimation not coming to a single value (based on error 

messages provided by R). Unreasonably, wide confidence intervals indicated remaining 

problems with this model. 

 

Dataset 9 

I chose the Gaussian distribution for this dataset as the response is a continuous variable. 

All assumptions were met (independent errors, homogeneity, normal errors, appropriate 

link function) so Gaussian distribution was considered appropriate. The p-values obtained 

from randomization were very close to the Gaussian model p-values.   

 

Dataset 10  

I chose the Gaussian distribution for this dataset as the response is a continuous variable. 

All assumptions were met (independent errors, homogeneity, appropriate link function) 

except a few values on the normality plot were off the line so maybe applying a gamma 

distribution would straighten up my normality plot. 
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All assumptions were met using the gamma model (independent errors, homogeneity, 

appropriate link function) but the normality plot looked worse than with the Gaussian 

model.  The normality plot for the Gaussian model isn’t half bad but my sample size was 

small (n=35) and my p-values are close to the critical value (0.05) so I chose to 

randomize. I first did 1000 randomizations but my p-values were still close to 0.05, so I 

did 5000 and then 10,000 randomizations which still gave me p-values that were close to 

0.05. The p-values obtained from randomization were very close to the accompanying 

model p-values. The Gaussian model (including randomizations) indicated no 

significance for any terms (although the p-values for two terms (site and the interaction 

term between site and age) are close to 0.05) but the gamma model indicated significance 

of two terms: site and the interaction term between site and age but the p-value is close to 

0.05. The Gaussian model appears to be more appropriate as the normality plot is a little 

better than the gamma 

 

Dataset 11 

I chose the Poisson distribution for this dataset as the response variable is counts. 

Graphical analysis after conducting the Poisson model indicated heterogeneous errors, 

non-normal errors and overdispersion.  As well the link slope was 0.8 which is less than 

1.0.  The results of the Poisson model indicate that the three interaction terms are 

significant but randomization indicates no significance here so the Poisson model, based 

on assumption violation and overdispersion as well as comparison to randomization, is 

not an appropriate model. So, I tried a quasi-Poisson and the errors displayed 

heterogeneity, non-normality and the slope of the link was 0.8 (less than 1).  However, 

despite this, the p-values from the quasi poisson and the randomization were similar. 

Because the assumptions of homogeneous and normal errors were still not met with the 

quasi-Poisson, I moved on to a negative binomial model.  The assumptions here were all 

met but the slope link was 0.7 which is less than 1.   

 

With the negative binomial model for this dataset, the confidence intervals were 

unreasonably wide (e.g., for Bluebell Island 0.02 to 20,000 parasites).  Therefore, 

although dispersion is corrected, there is something wrong with the negative binomial 
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model for this dataset.  It should be noted because the link slope was 0.7 for this model, I 

changed the link to square root and identity, but R reported an error.  As well, when 

randomization was attempted on the negative binomial model with log link, R reported an 

error.  Therefore, choice of model for this dataset was inconclusive and more 

consideration is required.    

 

Dataset 12 

I started with Poisson error with canonical log link due to count nature of response 

variable. Only 2 assumptions were violated: strong reverse cone exemplifying 

heterogeneity and overdispersion by factor of 2.5. To better the model for both the 

heterogeneous residuals and overdispersion I moved to a negative binomial error with 

canonical log link. This fixed the overdispersion, but there was still a reverse cone and 

now a sigmoid curve in the qqplot for normality. The third attempt focussed solely on 

overdispersion by using quasi-Poisson error with canonical log link. Now the only 

violation was heterogeneous errors (reverse cone). Randomization shows that the quasi-

Poisson error model was the best of the 3, but still exhibited substantial differences in p-

values, especially the interaction term of primary interest 

 

Dataset 13 

I started with Poisson error with canonical log link due to count nature of response 

variable. The correlation plot showed the effects of carapace width and weight were 

nearly equal. I continued with the Poisson error with canonical log link after removing 

one correlated explanatory variable, followed Agresti’s choice of variable to drop. 3 

assumptions were violated with Poisson error: reverse cone in res v. fit plot, extensive tail 

away from normality in lower end of qqplot, overdispersed by factor of 3.3. Attempting 

to better model both the heterogeneous residuals and overdispersion I moved to a 

negative binomial error with canonical log link. This fixed the overdispersion, but there 

was still a reverse cone and now tails on both ends of the qqplot, plus the lines of 

residuals in the res v. fit plot are curving. The third attempt focussed solely on 

overdispersion by using quasi-Poisson error with canonical log link as this improved the 

first dataset model. 2 of the original 3 violations are still present, but randomization 
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 14 

shows that this model error structure predicts 2 of the explanatory variables extremely 

well, while the regression variable is off by a factor of 1. 

 

Dataset 14 

For this data set I chose the binomial model as the data is binary, and could be 

biologically described in odds or odds ratios. When running the model all assumptions 

were met. Data was dispersed close to 1. The slope of the line was 1, proving that it was 

an appropriate model. Randomized p-values agreed with the chi-square distribution 

values. 

 

Dataset 15 

I chose logistic regression initially because the response variable is binary, and because I 

wanted to express results as odds ratios. All assumptions were met, including dispersion. 

The ratio of residual deviance over residual df was 0.992, unexpectedly good for 

binomial data. Randomized p-values agreed with those based on the chi-square 

distribution. 

 

Dataset 16 

The model was rerun using a subset of data to see if the large sample size was behind the 

agreement between the two p-value calculations. Instead, I encountered a problem 

common in logistic regression with sparse data. Logistic regression was trying to estimate 

proportions yes or no for each level of categorical variables. Since it cannot estimate 

what happens between the categories, logistic regression will not work – it will produce 

inefficient parameter estimates – when there are too few instances in a category level 

(Menard, 1995). Agresti (2007) provides a guideline of at least 5 instances per level. 

Basically, I could not run a randomized logistic regression with the reduced data set but 

did not recognize the underlying problem from the ANODEV table. The problem was, 

however, evident in the confidence intervals, which were unreasonably wide.  



Table 1. Generalized linear model structure, error, evaluation of assumptions, and randomization.

Dataset Model Structure Error Structure Link Function df (residual) Deviance (residual) Model Term p (LR χ2) Assumptions Slope of Link No. Permutations p (randomized) Comments

1 μ = X1 + F1 + X1*F1 Gaussian identity 47 0.15579 X1 0.4418 0.983 1000 0.322 Violated Straight Line, Homogeneity

F1 <0.0001 <0.001  and Dispersion.

X1*F1 0.4957 0.436 Switched to a Poisson error structure

with a log link.

1 μ = X1 + F1 + X1*F1 Poisson log 47 7.7723 X1 0.9428 0.974 1000 0.945 Violated Independence, Homogeneity

F1 <0.0001 0.010 and Dispersion.

X1*F1 0.2501 0.298 Switched to a Gamma error structure

with a log link.

1 μ = X1 + F1 + X1*F1 Gamma log 47 48.5342 X1 0.7832 1.042 1000 0.753 All assumptions met.

F1 <0.0001 <0.001

X1*F1 0.3401 0.368

Considered Best Model!

2 μ = F1 + F2 + F3 + Gaussian identity 80 5589.9 F1*F2 0.0301 1.000 1000 0.034 Violated Homogeneity, Normality

F1*F2 + F1*F3 + F2*F3 F1*F3 0.3206 0.329 and Dispersion.

F2*F3 0 1440 0 154 Switched to a Poisson error

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

F2*F3 0.1440 0.154 Switched to a Poisson error

structure with a log link.

2 μ = F1 + F2 + F3 + Poisson log 80 459.64 F1*F2 <0.0001 1.012 1000 0.094 Violated Homogeneity and Dispersion.

F1*F2 + F1*F3 + F2*F3 F1*F3 0.0120 0.683 Switched to a Quasi‐poisson

F2*F3 <0.0001 0.185 error structure with a log link.

2 μ = F1 + F2 + F3 + Quasi‐poisson log 80 459.64 F1*F2 0.0162 1.012 1000 0.025 All assumptions met.

F1*F2 + F1*F3 + F2*F3 F1*F3 0.4965 0.551

F2*F3 0.0413 0.063

Considered Best Model!

3 μ = F1 + F2 + X1 + Gaussian identity 108 906.7 F1*F2 0.0482 1.000 1000 0.051 Violated Normality and Dispersion.

F1*F2 + F1*X1 + F2*X1 F1*X1 0.0039 0.001 Switched to a Poisson error

F2*X1 0.6957 0.662 structure with a log link.

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Independent

Homogenous

Normal Errors

Linear Link

Dispersion



Table 1. Generalized linear model structure, error, evaluation of assumptions, and randomization (continued).

Dataset Model Structure Error Structure Link Function df (residual) Deviance (residual) Model Term p (LR χ2) Assumptions Slope of Link No. Permutations p (randomized) Comments

3 μ = F1 + F2 + X1 + Poisson log 108 164.77 F1 <0.0001 0.996 1000 <0.001 All assumptions met.

F1*F2 + F1*X1 + F2*X1 F2 0.7978 0.957 Comparison with a Quasi‐poisson

X1 <0.0001 0.057 error structure with a log link.

3 μ = F1 + F2 + X1 + Quasi‐poisson log 108 164.77 F1 <0.0001 0.996 1000 <0.001 All assumptions met.

F1*F2 + F1*X1 + F2*X1 F2 0.8479 0.851

X1 0.0003 <0.001

Considered Best Model!

4 μ = F1 Gaussian identity 10 58 F1 0.0002 1.000 10000 0.011 Violated Normality and Dispersion.

Switched to a Poisson error

structure with a log link.

4 μ = F1 Poisson log 10 14.751 F1 <0.0001 1.000 10000 0.007 Violated Normality.

Comparison with a Quasi‐poisson

error structure with a log link

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

error structure with a log link.

Considered Best Model!

4 μ = F1 Quasi‐poisson log 10 14.751 F1 <0.0001 1.000 10000 0.007 Violated Normality.

5 μ = F1+F2+F3 Gaussian indentity 571 4419.6 F1 <0.0001 1.000 5000 <0.0001 Violated Homogeneity, Normality 

F2 0.0503 0.088 and Dispersion.

F3 0.5861 0.005

*P‐value for F2 near 0.05 

ran 5000 iterations.

5 μ = F1+F2+F3 Possion log 571 364.45 F1 <0.0001 1.000 1000 <0.0001 Violated Homogeneity and Normality

F2 0.3006 0.990 Change model structure

F3 0.9767 0.959 (X1 instead of F1).

Considered Best Model!

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion



Table 1. Generalized linear model structure, error, evaluation of assumptions, and randomization (continued).

Dataset Model Structure Error Structure Link Function df (residual) Deviance (residual) Model Term p (LR χ2) Assumptions Slope of Link No. Permutations p (randomized) Comments

5 μ =X1+F1+F2 Gaussian indentity 575 38831 X1 <0.0001 1.000 1000 <0.0001 Violated Homogeneity, Normality

F1 0.8965 0.016 and Dispersion.

F2 1.0000 0.001 Switched to a Poisson error structure

with a log link.

5 μ = X1+F1+F2 Possion log 575 369.74 X1 <0.0001 0.995 1000 <0.0001 Violated Homogeneity and Normality

F1 0.3006 0.454

F2 0.9767 0.288

6 μ = F1+F2+F1*F2 Gaussian indentity 72 64252 F1 <0.0001 1.000 1000 <0.0001 Violated Homogeneity, Normality

F2 0.0346 0.248 and Dispersion.

F1*F2 <0.0001 <0.0001 Switched to a Poisson error structure

with a log link.

6 μ = F1+F2+F1*F2 Possion log 72 167.71 F1 <0.0001 1.000 1000 <0.0001 Violated Homogeneity and slight

F2 0.0024 0.782 deviation in Normality plot.

F1*F2 <0 0001 0 109 Change model structure

Straight Line

Independent
Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent
Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

F1*F2 <0.0001 0.109 Change model structure

(X1 instead of F1).

6 μ = X1+F1+X1*F1 Gaussian indentity 84 2200881 X1 <0.0001 1.000 1000 <0.0001 Violated Homogeneity, Normality

F1 0.3917 0.202 and Dispersion.

X1*F1 0.8197 0.555 Switched to a Poisson error structure 

with a log link.

6 μ = X1+F1+X1*F1 Possion log 84 641.67 X1 <0.0001 0.985 1000 <0.0001 Violated Homogeneity and slight

F1 <0.0001 0.336 deviation in Normality plot

X1*F1 <0.0001 0.448 Switched to a Quasi‐poisson error

structure with a log link.

6 μ = X1+F1+X1*F1 Quasi‐poisson log 84 641.67 X1 <0.0001 0.985 1000 <0.0001 Violated Homogeneity and Normality.

F1 <0.0001 <0.0001

X1*F1 0.0015 0.004

Considered Best Model!

Straight Line

Independent
Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent
Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion



Table 1. Generalized linear model structure, error, evaluation of assumptions, and randomization (continued).

Dataset Model Structure Error Structure Link Function df (residual) Deviance (residual) Model Term p (LR χ2) Assumptions Slope of Link No. Permutations p (randomized) Comments

7 μ = F1+F1+F3+ Gaussian indentity 144 86556 F1 <0.0001 1.000 1000 <0.0001 Violated Homogeneity, Normality

F1*F2+F1*F3+F2*F3+ F2 0.0068 0.081 and Dispersion.

F1*F2*F3 F3 <0.0001 <0.0001 Switched to a Poisson error structure

F1*F2 <0.0001 <0.0001 with a log link.

F1*F3 <0.0001 <0.0001

F2*F3 0.6138 0.962

F1*F2*F3 <0.0001 <0.0001

7 μ = F1+F1+F3+ Possion log 144 251.87 F1 <0.0001 1.000 1000 <0.0001 Violated Homogeneity and Normality.

F1*F2+F1*F3+F2*F3+ F2 0.0024 <0.0001 Switched to a Quasi‐poisson error

F1*F2*F3 F3 <0.0001 0.996 structure with a log link.

F1*F2 <0.0001 0.706

F1*F3 <0.0001 0.526

F2*F3 0.6680 <0.0001

F1*F2*F3 <0.0001 0.826

7 μ = F1+F1+F3+ Quasi‐poisson log 144 251.87 F1 <0.0001 1.000 1000 <0.0001 Violated Homogeneity.

F1*F2+F1*F3+F2*F3+ F2 0.0340 0.188

F1*F2*F3 F3 <0.0001 <0.0001

F1*F2 <0.0001 <0.0001

F1*F3 <0.0001 <0.0001

F2*F3 0.7971 0.994 Considered Best Model!

F1*F2*F3 <0 0001 <0 0001

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

F1*F2*F3 <0.0001 <0.0001

8 μ = X1*F1 Poisson log 108 1788.6 X1 <0.0001 0.984 5000 0.244 Violated Normality and Dispersion

F1 <0.0001 0.331 Residuals increasing above the 

X1*F1 0.0004 0.545 Normality line to the right

8 μ = X1*F1 Negative log 108 101.54 X1 0.0190 0.944 1000 Failed Violated Independence

Binomial F1 0.0660 to  Increasing trend in lag plot

X1*F1 0.2860 compute

9 μ = F1 + F2 + X1 + Gaussian Identity 51 0.42 F1 0.2300 1.000 1000 0.210 All assumptions met.

F1*F2 + F1*X1 + F2*X1 F2 0.1600 0.170

X1 0.6200 0.620

F1*F2 0.9900 0.990

F1*X1 0.2200 0.210

X2*X1 0.1400 0.150

10 μ = F1 + F2 + X1 + Gaussian identity 25 0.0023 F1 0.0500 1.000 5000 0.070 Violated Normality.

F1*F2 + F1*X1 + F2*X1 F2 0.1700 0.190 Switched to a Gamma error structure

X1 0.0800 0.090 with an identity link.

F1*F2 0.8400 0.850

F1*X1 0.0600 0.070 Considered Best Model!

X2*X1 0.1600 0.170

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Straight Line

Independent

Homogenous

Normal Errors

Linear Link



Table 1. Generalized linear model structure, error, evaluation of assumptions, and randomization (continued).

Dataset Model Structure Error Structure Link Function df (residual) Deviance (residual) Model Term p (LR χ2) Assumptions Slope of Link No. Permutations p (randomized) Comments

10 μ = F1 + F2 + X1 + Gamma identity 25 0.21 F1 0.0290 0.960 5000 0.040 Violated Normality and Dispersion.

F1*F2 + F1*X1 + F2*X1 F2 0.1400 0.160

X1 0.0600 0.070

F1*F2 0.8300 0.830

F1*X1 0.0320 0.050 Considered Best Model!

X2*X1 0.1300 0.150

11 μ = F1 + F2 + X1 + Poisson log 58 357 F1 0.2100 0.800 1000 0.880 Violated Homogeneity, Normality,

F1*F2 + F1*X1 + F2*X1 F2 0.5700 0.870 Linear Link and Dispersion.

X1 0.8500 0.950 Slope was less than 1.0.

F1*F2 0.0000 0.440 Switched to a Quasi‐poisson error

F1*X1 0.0010 0.560 structure with a log link.

X2*X1 0.0080 0.420

11 μ = F1 + F2 + X1 + Quasi‐poisson log 58 357 F1 0.8200 0.800 1000 0.750 Violated Homogeneity, Normality

F1*F2 + F1*X1 + F2*X1 F2 0.8400 0.790 and Linear Link.

X1 0.9500 0.910 Slope was less than 1.0.

F1*F2 0.1900 0.190 Switched to a Negative Binomial with a

F1*X1 0.4400 0.360 log link.

X2*X1 0.3500 0.310

11 μ = F1 + F2 + X1 + Negative log 58 54 F1 0.2800 0.700 1000 Failed Violated Linear Link.

F1*F2 + F1*X1 + F2*X1 Binomial F2 0.3100 to  Slope was less than 1.0.

X 0 8700 compute

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Independent

Homogenous

Normal Errors

Linear Link

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

X1 0.8700 compute

F1*F2 0.0200

F1*X1 0.0500

X2*X1 0.0300

12 μ = F1 + F2 +F3 + F4+ F3*F4 Poisson log 58 149.7314 F1 0.0055 0.996 1000 0.196 Violated Homogeneity and Dispersion.

F2 0.0497 0.354 Switched to a Negative Binomial error

F3 0.3718 0.896 structure with a log link.

F4 <0.0001 0.003

F3*F4 <0.0001 0.680

12 μ = F1 + F2 +F3 + F4+ F3*F4 Negative log 58 86.19038 F1 0.0477 0.978 1000 0.092 Violated Homogeneity and Normality.

Binomial F2 0.1974 0.289 Switched to a Quasi‐poisson error 

F3 0.4515 0.703 structure with a log link.

F4 <0.0001 <0.001

F3*F4 0.0190 0.259

12 μ = F1 + F2 +F3 + F4+ F3*F4 Quasi‐poisson log 58 149.7314 F1 0.0765 0.996 1000 0.142 Violated Homogeneity

F2 0.2109 0.281

F3 0.7356 0.825

F4 0.0001 0.002

F3*F4 0.1298 0.334 Considered Best Model!

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Independent

Homogenous

Normal Errors

Linear Link

Straight Line

Independent

Homogenous

Normal Errors

Linear Link

Dispersion



Table 1. Generalized linear model structure, error, evaluation of assumptions, and randomization (continued).

Dataset Model Structure Error Structure Link Function df (residual) Deviance (residual) Model Term p (LR χ2) Assumptions Slope of Link No. Permutations p (randomized) Comments

13 μ = F1 + F2 +X1 + X2 Poisson log ‐ ‐ ‐ ‐ ‐ ‐ Failed colinearity: X1=X2

Removed X2.

13 μ = F1 + F2 +X1 Poisson log 166 558.6295 F1 0.0465 0.894 1000 0.551 Violated Homogeneity, Normality,

F2 0.6993 0.897 and Dispersion.

X1 <0.0001 <0.001 Switched to a Negative Binomial error

structure with a log link.

13 μ = F1 + F2 +X1 Negative log 166 196.2019 F1 0.4788 0.709 1000 0.334 Violated Straight Line, Homogeneity,  

Binomial F2 0.8798 0.834 Normality, and Linear Link.

X1 0.0004 <0.001 Switched to a Quasi‐poisson error

structure with a log link.

13 μ = F1 + F2 +X1 Quasi‐poisson log 166 558.6295 F1 0.4853 0.894 1000 0.485 Violated Homogeneity and Normality.

F2 0.8962 0.910

X1 0 0003 0 002

Independent

Normal Errors

Linear Link

Dispersion

Independent

Normal Errors

Linear Link

Dispersion

Independent

Normal Errors

Linear Link

Dispersion

Independent

Independent

Homogenous

Normal Errors

Linear Link

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Straight Line

Straight Line

Straight Line

Independent

X1 0.0003 0.002

14 μ = X1 + F1 + X1*F1 Binomial logit 31 48.78 X1 0.7337 1.018 1000 0.745 All assumptions met.

F1 0.9458 0.956

X1*F1 0.9942 0.999

Considered Best Model!

15 μ = X1+X2+F2 Binomial logit 212 254.64 X1 0.4640 0.985 1000 0.446 All assumptions met.

X2 0.0180 0.020

F1 0.0020 0.003

Considered Best Model!

16 μ = X1+X2+F2 Binomial logit 18 17.81 X1 0.0230 0.983 1000 Failed All assumptions met.

X2 0.6240 to 

F1 0.0530 compute

Considered Best Model!

Independent

Normal Errors

Linear Link

Dispersion

Independent

Normal Errors

Linear Link

Dispersion

Independent

Normal Errors

Linear Link

Dispersion

Independent

Independent

Homogenous

Normal Errors

Linear Link

Independent

Homogenous

Normal Errors

Linear Link

Dispersion

Independent

Homogenous

Normal Errors

Linear Link

Straight Line

Straight Line

Straight Line

Independent



Table 2. Summary of influence of assumption violations

No. of 
data set

No. of p‐value 
comparisons

No of p‐value 
deviations

(as a fraction)

Influence of assumption violations (as a fraction)

Straight line Independent Homogeneous Normal Linear link Dispersion Assuptions met

16 141 43/141 (30%) 0/2 (0%) 0/3 (0%) 17/24 (70.8%) 14/23 (60.9%) 1/5 (20%) 12/17 (70.6%) 1/7 (14.3)



Discussion 

 

Using randomization provided a stark illustration of the dangers of simply using p-values 

and not considering model assumptions. Results were markedly different between p-

values based on chi-square distributions and p-values based on randomization tests when 

assumptions were violated.  

 

In total, 141 p-values were compared using two methods: generalized linear models and 

randomizations.  The results of these comparisons are presented in Table 2.  Marked 

differences between p-value comparisons were found 43 of 141 times (30.5%; green 

highlights in Table 1).  Individual assumption violations were recorded to determine their 

influence on the p-value deviations.  This was recorded as a fraction representing the 

number of violations when the p-value was different over the total number of violations.   

Three assumptions (homogeneity of residuals, dispersion parameter of 1.0, and normality 

of residuals) were most commonly found to be violated when the p-value comparisons 

had large deviations.  Violations of the homogeneity of residuals assumption occurred 17 

out of 24 times when the p-values differed substantially (70.8%).  Extradispersion (i.e., 

dispersion parameter less than or greater than one) occurred in 12 out of 17 instances 

where the p-values were substantially different (70.6%).  Violations of the normality of 

residuals assumption occurred 14 out of 23 times when the p-values were substantially 

different (60.9%).  These results indicate that the assumptions of homogeneity of 

residuals, dispersion parameter of one and normality of residuals have heavier weights on 

the determination of the p-value, and when these assumptions are violated, the calculated 

p-value may be compromised.   

 

Violations of the straight line assumption, independence of residuals assumption, and the 

appropriate link assumption did not appear to substantially influence changes in the p-

value.  Respective fractions for these assumptions are: 0/2 (0%), 0/3 (0%), 1/5 (20%).  It 

is also noteworthy that substantially different p-values occurred in this report even when 

all assumptions were met.  This occurred one out of seven times (14.3%).  In these cases, 

there were particularly substantial differences found between the p-values from the 
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GLMs and the randomizations.  Regardless of meeting assumptions, the p-values were 

found to be very different.  In these cases, the randomization are considered the reliable 

method. 

 

It is also important to note that in some cases, a model was chosen to be the most 

appropriate for a data set, even though a substantial difference was observed in the 

calculated p-values (purple highlights in Table 1).  This is true of three models in the 

report.  This may be the a result of some violations of key assumptions, as it is sometimes 

common practice to accept a certain amount of violation as it is considered to be 

negligible on the result.  

 

We were unable to run randomizations for two models with negative binomial 

distributions and one logistic regression.  In each case, the reported confidence intervals 

were unreasonably wide thus indicating underlying problems in the models.  For the 

logistic regression analysis, there were not enough instances for logistic regression to 

produce estimates for levels of the categorical variable indicating that the model was not 

adequate for the dataset. Shifting the error distribution to negative binomial resolved the 

overdispersion problem originally identified in the Poisson model, but did not produce a 

‘best model’. Therefore, additional analyses and consideration of alternate models is 

required prior to interpretation of these results. 

 

Efficacy of current practices. 

In this course, the key methods used for evaluating analysis models were graphical; 

specifically the straight line, homogeneity of residuals and normality of residuals 

assumptions. In our results, the straight line assumption was not considered critical when 

evaluating deviations of the randomized p-value and the chi-squared p-value.  As 

previously discussed, when the randomized and chi-square p-values differed, there were 

often violations of the homogeneity of residuals assumption and the dispersion 

assumption (Table 2). These assumptions therefore had the greatest influence on the 

deviation of the p-values. From this, we can conclude that they are important assumptions 

when evaluating the efficacy of a model.  We also evaluated normality plots of the 
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residuals from our models.  Again, when the p-values differed substantially, the normality 

assumption was often violated. While not considered as critical as the assumptions of 

homogeneity of residuals or dispersion, normality seems to also be a key assumption in 

the evaluation of a model. 

 

Although it was not discussed in this course, we also evaluated the appropriateness of the 

linear link function. Within our models, this link was not found to be very efficient in our 

analysis, as a violation of this assumption often was not related to substantial differences 

in the p-values between GLMs and randomizations. The slope of the link approached one 

in all datasets with the exception of two where the models indicated a slope of less than 

one. In one case there was a failure to compute, however, in the other the randomized and 

chi-square p-values matched, but other assumptions were violated. Therefore, the slope 

has an influence on the analysis, even when the model computed p-values agree with the 

randomization p-values.   

 

In summary, several references revealed in the introduction bias the importance of some 

specific assumptions.  After reviewing the analysis performed in this report, conclusions 

about these assumptions are as follows:  violations of homogeneity, dispersion and 

normality are influential when calculating chi-square p-values.  Straight line, 

independence and linear link were not found to be as influential.  
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Appendix A 
 
Dataset 1 
 
Purpose: 
To determine the effects of population and total area of several US States on the percent of 
electoral votes they have. 
 
Verbal model: 
Do the population size and/or total area of land affect the percent of electoral votes given to each 
state? 
 
   Variable name  Symbol  Units  Scale 
Response Variable Votes   vote  count  continuous 
Explanatory Variables Population size (X1) pop  count  continuous 
   Total area (X2)  area  m3  continuous 
 
 
Dataset 2 
 
Purpose: 
To determine whether sampling date (3), cage treatment (3) and segregation of cores into layers 
(2) affects the number of species present in each core. 
 
Verbal model: 
Is total species number a function of sampling date, cage treatment and core layer? 
 
   Variable name  Symbol  Units  Scale 
Response Variable Total # of species Total  count  continuous 
Explanatory Variables Sampling Date (F1) Date  days  categorical 
   Cage Treatment (F2) Treat  -  categorical 
   Core Layer (F3)  Deplr  -  categorical 
 
 
Dataset 3 
 
Purpose:  
To determine whether sampling location (2), rock shape (3) and rock size affects the species 
richness on each rock. 
 
Verbal model: 
Is species richness a function of sampling location, rock shape and rock size? 
 
   Variable name  Symbol  Units  Scale 
Response Variable Species Richness Spri  count  continuous 
Explanatory Variables Sampling Location (F1) Loc  -  categorical 
   Rock Shape (F2) Shape  -  categorical 
   Rock Size (X1)  Size  cm  continuous 
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Dataset 4 
 
Purpose:  
To determine whether the type of bird call treatment (5) affects the number of Fork-Tailed Storm 
Petrels caught in a net. 
 
Verbal model: 
Is total species number a function of sampling date, cage treatment and core layer? 
 
   Variable name  Symbol  Units  Scale 
Response Variable Birds Caught  Birdnum count  continuous 
Explanatory Variables Treatment (F1)  Treat  -  categorical 
 
 
Dataset 5 
 
Purpose:  
To determine the effects of a chemical compound on the survival of green alga Enteromorpha 
linza (Chlorophyta) spores. There are 6 concentration gradients including the control, 5 repeated 
experiments, and 20 field of view selected randomly for observation.   
 
Verbal model: 
Is the survival of spores of Enteromorpha linza depend on compound concentration, control for 
repeat and field of view? 
 
   Variable name  Symbol  Units  Scale 
Response Variable Survival   Surv  count  continuous 
Explanatory Variables Concentration (F1) Con  mg/ml  categorical 
   Repeat (F2)      Rep  times  categorical 
   Field of view (F3) Fov  -  categorical 
 
 
Dataset 6 
 
Purpose: 
To determine the relationship between the survival of green alga Enteromorpha linza spores and 
three chemical compounds. There are 6 concentration gradients, and three types of chemical 
compounds. 
 
Verbal model: 
Does the survival of Enteromorpha linza spores depend on the concentration and types of 
compound? 
  
   Variable name  Symbol  Units  Scale 
Response Variable Survival  Surv  count  continuous 
Explanatory Variables Concentration (F1) Con  mg/ml  categorical 
   Compound (F2)  Com  -  categorical 
 
 
Dataset 7 
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Purpose: 
To determine the effect of three chemical compounds on the survival of two species of green 
algae spores:  Enteromorpha linza and Ulva fasciata. 
 
Verbal model: 
Does the survival of green algae spores depend on the species, the concentration and types of 
compound? 
 
   Variable name  Symbol  Units  Scale 
Response Variable Survival  Surv  count  continuous 
Explanatory Variables Concentration (F1) Con  mg/ml  categorical 
   Compound (F2)  Com  -  categorical 
   Species (F3)  Sp  -  categorical 
 
 
Dataset 8 
 
Purpose: 
To determine possible effects on landed value from pelagic longline sets, I modeled number of 
tuna landed as a function of the same fishing variables. 
 
Verbal model: 
Is the number of tuna landed from each set a result of hook type used and soak time? Is there an 
interactive effect between the two explanatory variables?  
 
   Variable name  Symbol  Units  Scale 
Response Variable Tuna number  num_tun count  continuous 
Explanatory Variables Hook type (F1)  hookcd  -  categorical 
   Soak time (X1)  time  hours  continuous 
 
 
Dataset 9 
 
Purpose: 
To determine the effects of polychlorinated biphenyls (PCBs) on the activity of the hepatic phase 
II enzyme UDP-glucuronyltransferase in shorthorn sculpin (Myoxocephalus scorpius) at Saglek, 
Labrador.   
 
Verbal model: 
Is the activity of the hepatic phase II enzyme UDP-glucuronyltransferase in shorthorn sculpin 
related to PCB exposure, fish body mass or sex of the fish?  
 
   Variable name  Symbol  Units  Scale 
Response Variable Enzyme activity  Act nmol/min/mg protein     continuous  
Explanatory Variables Site (F1)   S1  -  categorical 
   Sex (F2)  X1  -  categorical 
   Body mass (X1) M1  grams  continuous 
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Dataset 10 
 
Purpose: 
To determine the effects of PCBs on bone mineral density (BMD) of Black guillemot (Cepphus 
grylle) nestlings at Saglek, Labrador.   
 
Verbal model: 
Is the bone mineral density in guillemot nestlings related to PCB exposure, sex or bird age?  
 

Variable name  Symbol  Units  Scale 
Response Variable Bone mineral density BMD  g/cm2  continuous 
Explanatory Variables Site (F1)   S1  -  categorical 
   Sex (F2)  X1  -  categorical 
   Age (X1)  A1  days  continuous 
 
 
Dataset 11 
 
Purpose: 
To determine the effects of PCB exposure on the abundance of gastrointestinal parasites in 
shorthorn sculpin at Saglek, Labrador.  In particular, I model the abundance of an 
acanthocephalan, Corynosema magdaleni as the response variable. 
 
Verbal model: 
Is the abundance of C. magdaleni in shothorn sculpin at Saglek related to PCB exposure, fish 
bodymass or sex of the fish? 
 

Variable name  Symbol  Units  Scale 
Response Variable C. magdaleni abundance  C1  count  continuous 
Explanatory Variables Site (F1)   S1  -  categorical 
   Sex (F2)  X1  -  categorical 
   Mass (X1)  M1  grams  continuous 
 
 
Dataset 12  
<data from Agresti 2002, Table 7.1> 
 
Purpose: 
Determine if there is selective feeding on the variety of available food items. 
 
Verbal Model: 
The number of alligators in 4 Florida lakes select among 5 classes of food. Tests are controlled 
for gender and size (≤ or > 2.3m) of the alligator. 
 
   Variable name Symbol   Units  Scale 
Response Variable: Alligators -   count  continuous 
Explanatory Variables: Gender  F1   -  categorical 
   Size  F2   -  categorical 
   Lake  F3   -  categorical 
   Food  F4   -  categorical 
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Dataset 13  
<data from Agresti 2002, Table 4.3> 
 
Purpose: 
Determine if there are physical attributes of female horseshoe crabs that make them more 
appealing to males during breeding. 
 
Verbal Model: 
The number of satellite male horseshoe crabs attending breeding females is dependent on colour, 
spine condition, weight and/or carapace width 
 
   Variable name  Symbol  Units  Scale 
Response Variable: Satellite males  -  count  continuous 
Explanatory Variables: Colour   F1  -  categorical 
   Spine condition  F2  -  categorical 
   Carapace width  X1  cm  continuous 
   Weight   X2  kg  continuous 
 
 
Dataset 14 
 
Purpose:  
To determine the effects of location and size on the presence or absence of decoration found on 
decorator crabs (Hyas araneus) found in Bay Bulls. 
 
Verbal model: 
Are the odds of decoration of decorator crabs a function of location and/or size? 
 
   Variable name  Symbol  Units  Scale 
Response Variable Decoration  dec  yes/no  categorical 
Explanatory Variables Location (F1)  loc  -  categorical 
   Size (X1)  size  mm  continuous 
 
 
Datasets 15 & 16 
 
Purpose: 
The purpose of these models (using datasets 15&16) is to determine the effects of fishing factors 
and fish length on whether or not a common bycatch species, longnose lancet fish (Alepisaurus 
ferox), survives the capture process to be released alive from pelagic longline fishing gear. 
 
Verbal model: 
Are the odds of survival of longnose lancetfish a function of hook type, soak time and fish 
length? 
 
   Variable name  Symbol  Units  Scale 
Response Variable Survival  surv  yes/no  categorical 
Explanatory Variables Hook type (F1)  hookcd  -  categorical 
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   Fish length (X1) flen  cm  continuous 
   Soak time (X2)  time  hours  continuous 
 
The difference between the two data sets is simply that the first contains lancetfish bycatch from 
the fisheries observer data collected between 2001 and 2004 (217 fish).  The second contains 23 
lancetfish observed in 2003. I used a subset to determine if sample size influenced the 
randomized p-values. 
 
  



Appendix B 
R_code - GLM Randomization 
 
data.name<-read.delim("filename.txt") 
names(data.name) 
library(car) 
pairs(with(data.name,cbind(var.1,var.2,var.3,var.4,...))) 
model.name<-with(data.name,glm(response.variable~var.1+var.2+var.3+var.4+...,family=family)) 
plot(fitted(model.name),resid(model.name)) 
lag.plot(resid(model.name),diag=FALSE,do.lines=FALSE) 
qqnorm(resid(model.name)) 
qqline(resid(model.name)) 
plot(fitted(model.name),with(data.name,response.variable)) 
abline(lm(with(data.name,response.variable)~fitted(model.name))) 
coef(lm(with(data.name,response.variable)~fitted(model.name))) 
deviance(model.name) 
df.residual(model.name) 
deviance(model.name)/df.residual(model.name) 
Anova(model.name,type="III") 
exp.chi<-data.frame(data.frame(Anova(model.name,type="III"))[,1]) 
rand.chi<-
data.frame(rbind(replicate(####,c(data.frame(with(data.name,Anova(glm(sample(response.variable,##,FALSE)~va
r.1+var.2+var.3+var.4+...,family=family),type="III")))[,1])))) 
summary(c(rand.chi[1,])>exp.chi[1,]) 
summary(c(rand.chi[2,])>exp.chi[2,]) 
summary(c(rand.chi[...,])>exp.chi[...,]) 
# NEGATIVE BINOMIAL VARIANT 
library(MASS) 
model.name<-with(data.name,glm.nb(response.variable~var.1+var.2+var.3+var.4+...,link=link)) 
rand.chi<-
data.frame(rbind(replicate(####,c(data.frame(with(data.name,Anova(glm.nb(sample(response.variable,##,FALSE)
~var.1+var.2+var.3+var.4+..., link=link),type="III")))[,1])))) 
# RANDOMIZED SELECTION OF AUTHORSHIP 
sample(c(1:6),6,FALSE) 
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