THE IMBRICATION OF HUMAN AND ANIMAL PATHS: AN ARCTIC CASE STUDY

Peter Whitridge

Introduction

Humans endlessly make and follow trails. Laetoli — the oldest hominin trackway — is striking evidence of the character of an emerging bipedal adaptation, but also of path making and path following; the site is interpreted as the prints produced by a few *Australopithecus afarensis* walking in fresh volcanic ash, at least one of whom likely stepped in the prints made by another (Leakey and Hay 1979). The site also preserves trackways left by numerous other animals — from elephants to birds -- which reminds us that the fossil record of tracks actually extends back half a billion years, to the impressions left by Ediacaran fauna on the floors of Precambrian seas (Liu et al. 2016). Although the contemporary world, dissected and built over with tens of millions of miles of human roads and paths, might represent a sensible perspective from which to view the archaeological record of route making, and is the one usually adopted by archaeologists equipped with contemporary geomatic technologies (hence a focus in the literature on *roads* rather than *trails*), the animal world provides another, equally appropriate, point of view. We are, after all, animals.

Adopting an animal-oriented perspective, the novelty of human pathmaking immediately becomes suspect. Many animals produce trails, and deliberately utilize trails produced by other species, and although animal trail blazing may not, typically, be a self-conscious activity, neither is much traditional human trail making. Humans choose the most efficient paths through a landscape, subject to our spatial goals, which means that, like other animals, we readily follow preexisting trails. Since humans typically only enter landscapes that are already inhabited by the game we pursue, we are trail followers before we are trail blazers. A zoocentric archaeology of paths thus seems worth exploring, and particularly apt in the Arctic. For its enormous size, the North American Arctic has few developed paths and fewer roads, but is nonetheless thoroughly dissected by animal travel routes, some deeply incised by millennia of use, and many also travelled by human hunters. Human spatial practices are still caught up in the larger and more ancient web of animal spatial practices from which they emerged over five million years ago. Following brief discussions of human and animal travel, the overlapping trail networks of precontact northern Labrador are considered more closely. Ultimately, the traces of animal and human use in the Nunatsiavut landscape prove impossible to disentangle. Not only that, but the material and the immaterial also seem to be knotted together. Travel routes are sung, dreamt, cited, imagined, and remembered as much as they are trod.

Archaeological paths and roads

Paths and roads have traditionally received limited archaeological attention. Objects, buildings, and settlements are visible, tangible, and analytically tractable, but the routes that enmesh them are harder to envision. They are often difficult to discern on the ground, and are inevitably less productive of archaeologically interesting things. The most formally engineered roadways are relatively well studied, such as the widespread traces of the vast imperial road networks of Tawantinsuyu (Jenkins 2001) and Rome (van Tilburg 2007). The latter illustrates how transportation networks are optimal only with respect to a given set of spatial practices; although at the northwestern frontier of the empire, the Roman road network in Britain was well-constructed, vast, and rational, connecting settlements in radiating straight-line arrays. Nevertheless, much of it was quickly abandoned when Rome withdrew (Reynolds 1995:24); the logic of regional economies and relatively small polities made pointless an infrastructure designed to meet the idiosyncratic needs of an empire.

The roads produced by repetitive human traffic rather than deliberate design and construction efforts, such as the Anglo-Saxon routes that replaced the Roman ones, may be equally spectacular, especially where surviving holloways record the centuries or millennia of traffic required to incise a trail seven meters deep into the landscape. The Sweet Track of southwest England, a two-kilometer-long section of wooden boardwalk built over a marsh almost 6,000 years ago, illustrates a different situation, where a deliberately constructed variety of trail has survived under unusual taphonomic circumstances (Brunn ing et al. 2000; Coles and Coles 1986). Paths are not necessarily ephemeral, but such distinctive traces have not often been recognized and discussed archaeologically. In recent decades, however, satellite imagery revealing road and trail networks that are hard to detect on the ground has become widely available, and Geographic Information Systems (GIS) have come to provide the global mapping environment in which the spatial connections amongst settlements have become increasingly sensible (e.g., Dore and McElroy 2011). Field recording technologies have become more sophisticated in concert with GIS, and community-oriented archaeologies have drawn out local knowledges of trails and travel practices (Snead et al. [eds.] 2009). Traditional knowledge of the places connected by trails is the focus of the ethnographic inventories of
place names that have gained renewed attention from ethnographers and archaeologists (e.g., Müller-Wille [ed.] 1987).

Even in the absence of a Gaussian spatial logic, places are always nested in landscapes through the connections enacted by trails and roads. Heidegger (1977:330) used the example of a bridge to talk about the way in which things act to assemble the world around them: “it brings stream and bank and land into each other’s neighbourhood. The bridge gathers the earth as landscape around the stream.” The landscape comes into existence through the effects that trails produce, channeling human movements in meaningful and redundant ways. These effects are fractal. Regions are knit together by the long distance circulation of people and things along roads and trails, and communities by the paths that link neighborhoods to each other. Dwellings in turn articulate with their neighborhoods by way of well-trodden lanes of movement that pass through doorways, encircle buildings, and connect with other features, both nearby and far out across the landscape. Within houses, habitual paths of movement and rest link entrance, tunnel, halls, rooms, furniture, and so on (Figure 12.1; see also Dawson [2002] on the intricate networks of loci constituted by Inuit dwellings). Even bodies, both human and animal, and inert things have topological structures that can be thought of in terms of places and paths, whether for the eye or the hand or the mind (Whitridge 2004a). Archaeologically, some of these routes are accessible as constructed roads and accretional trails, and the less tangible networks can be explored using spatial analytic techniques (Menzie and Ur 2012).

Animal tracks and trails

Animals, of course, generate and use patterned networks of paths themselves; Lefebvre (1991:118) noted that the “reticular patterns” of wild and domestic fauna resemble human paths of movement. These consist of both the visible traces of redundant movement through the landscape – tracks, trails, markings, spoor – and less humanly tangible features, such as the pheromonal scent trails by which many animals deliberately mark and negotiate their place within a larger faunal community. While some animal movement takes advantage of natural travel corridors, such as stream beds or beaches, animals frequently create paths by their own redundant route following. Muskoxen provide an extreme example of this; to conserve energy, bands will travel across the snow-covered winter landscape in single file, each animal carefully stepping in the prints left by the one ahead of it, like the Laetoli hominids. Game trails leading to water sources, or paths through rough or steep terrain, are characteristic features of many landscapes, and are often created and entrenched by multiple species. Just as animals pursue, or lie in wait for, each other along such paths, human hunters pursue game along them, and set snares, traps, and ambushes (see Gell [1996] for a marvelous discussion of the setups entailed in trapping animals along game trails, and Latour [1988] on the notion of the “setup”). The human relation to trails is thus dually animalistic. Like non-human animals, we produce durable trails in moving through and using the landscape in purposive, repetitive ways; but, like other carnivores, we often employ animals’ own trails in doing so, both tactically and out of convenience.

Animal trails are thus a logical starting point for an archaeology of paths and roads, and the Arctic a suitable place to begin. In many parts of the north, large numbers of a variety of trail-making and trail-using species still traverse the landscape along well-worn paths that have been (and continue to be) used by humans. Although it would be difficult to trace these very far back into the past for any great spatial extent, the persistence of such jointly utilized routes can sometimes be inferred. For example, near the site of Onion Portage in northwestern Alaska, the seasonal movements of the Western Arctic caribou herd bring thousands of animals to an area of shallow water crossings on the Kobuk River every fall. The enduring importance of this locale for caribou travel routes has resulted in a nearly 10,000-year-long cultural sequence of human settlement and harvesting (Anderson 1988). Here, as at game ambush sites in many times and places, humans took advantage of habitual and topographically constrained animal movements. Such movements are archetypically embodied in the paw or hoof print, perhaps because, with our attenuated sense of smell and hyper-developed sense of sight, such visual traces are particularly apt for prey monitoring. It is not surprising then that animal prints have
frequently been taken up symbolically (e.g., the bear paw print petroglyphs of the Columbia Plateau; Keyser 1992). The print is a kind of fundamental symbol, a miniature, static and stylized, but essentially unambiguous, token of a living thing. These signs are part of the sensory wake that animals produce as they move through the world, and that cumulatively manifests itself as a trail. Inuit existed in a world that was perpetually overwritten with the tracks of animals.

**Inuit and animal movements**

Like all hunter-gatherers, Inuit organized themselves spatially in coordination with the anticipated movements of animals (and maturing of plants) at different times of year. The traditional processualist notion of a subsistence-settlement system reflects precisely this tactical orchestration of human-resource co-presence at locations suitable for human harvesting. Game was acquired in a variety of landscape settings and using a variety of more or less distinct strategies, including chance encounter, deliberate stalking, passive trapping, and active driving. Most involved the intersection of human and animal paths along game trails.

Any animal might be killed if it strayed into a person’s path, whether purely by accident or while a hunter was on a more deliberate tramp or paddle across land, ice, or water seeking such encounters. In many cases, this occurred along visible game trails, but the hunter might follow tracks, spoor, and other visual cues wherever they might lead. The use of dogs to detect animal scents was not only important for tracking on land but for locating seal breathing holes on the winter sea ice that would then be watched by a hunter (Boas 1964 [1888]; Jenness 1922; Rasmussen 1931). Traps could be bulky, such as the baited stone beehive constructions used to capture arctic fox, or spare, such as the fine baleen snare laid along the trails used by small mammals. Both of these are static, and dependent on the hunter’s having identified an active trail or frequent travel route. One of the most cunning involved the insertion of a bent, sharpened segment of baleen in a chunk of frozen blubber; when it warmed inside a wolf’s stomach it sprang straight, killing the animal at the end of its tracks (Mathiassen 1927). Animal trails, tracks, and breathing hole networks constituted the dispersed sites for the extraction of food and fuel using a massive inventory of harvesting equipment and learned skills.

Breathing hole sealing, in particular, depended on an exceedingly complex, Rube Goldberg-like setup of humans, non-human animals, and things: the hunter, dressed in multiple animal skin garments; a dog, sometimes harnessed in teams to a wood-and-whale-bone sled; an array of specialized gear, including a slender bone probe for detecting the location, size, and lie of a breathing hole, a muskox horn scoop for clearing the hole, a down indicator to warn of a seal exhaling in the hole, a composite toggling harpoon for securing a line to the prey, a stand on which to rest the harpoon, a stool for the waiting hunter; and sometimes multiple hunters so equipped to monitor several holes; and of course the seal itself, and its network of breathing holes painstakingly scratched out from beneath and then diligently maintained as the sea ice thickens over the course of the winter. The result is a complex, layered, and interwoven network of movement and communication that forms the basis of the Inuit’s ability to successfully harvest and utilize marine resources.

Paths of humans and animals include the coordinated movements of hunter and dog between camp and breathing hole, and the submarine rounds of the seal in its mirrored world. The hunter’s elaborate technological arsenal was necessary to fix the surface and subsurface worlds long enough that game could be extracted from the latter.

The notion that hunter, equipment, game, and path represented a particularly meaningful array is borne out by the figurative art produced by precontact Inuit, in which this arrangement figures repeatedly. The most common examples are simple stick figure scenes incised on everyday equipment (typically drill bows and the handles of men’s knives) that depict boatloads of hunters pursuing and harpooning bowhead whales, sometimes in concert with kayakers (e.g., Maxwell 1983; McCartney 1980). The hunting scenes represent a duty obsessive interest in a principal harvesting activity (at least in much of the precontact Central Arctic; McCartney [ed.] 1979; Savelle and McCartney 1994; Whittle 2002), and a particular concern with the moment at which the paths of all participants intersected (Whittle 2004b). Although a path is not explicitly indicated, a line frequently demarcates the surface of the water, which represents both the plane across which the hunter travels and the hinge between the human and cetacean worlds. More complex marine trails can be envisaged, however, such as the oceanic currents and blooms travelled by plankton, fish, and their mammalian predators, or the leads that predictably open between landfast ice and floe edge in spring, providing passage for marine mammals. Indeed, it was precisely the latter that recurrently brought bowheads to the principal whaling zones of the Central Arctic.

Rather than merely making passive use of recurrent trails (whether with ambushes or traps) hunters may also strategically interfere with animal travel routes through the deployment of fences, static decoys, deliberately set fires, and human drivers in concert with natural topographic features. Prey can be encouraged to shift its program of action, so as to better align it with human intentions. The bison drive systems and jumps used by Plains First Nations for millennia are the best known North American examples (e.g., Brink 2008), but analogous setups were used for other game (white-tailed deer, pronghorn, hare, etc.) in different regions. Inuit constructed elaborate features to channel the movements of various kinds of prey, especially stone weirs (saputin) spanning streams to pen anadromous char, and substantial stone-and-turf drive systems for harvesting migrating caribou (e.g., for the Eastern Arctic: Brink 2005; Gregson et al. 1983; McGhee 1972; Stewart et al. 2004; Taylor 1972). The latter were typically composed of stacked boulders, or inuksuit (sing. inuksuk, literally ‘acting in the capacity of a person’; Hallendy 1994), arranged in long converging lines, and sometimes fences constructed of stakes, brush, or stone (Brink 2005:20–24; Burch 1998:40–43). They were used in concert with drivers on land and hunters, the latter both in kayaks and stationed on land where the lines of caribou narrowed.

Inuksuit systems deployed hunters’ understandings of general caribou behavior and local movement patterns, and strategically intervened to align the animals’ trails with humanly-devised ones. The nexus of hunters, trail, and caribou is depicted on
Human and animal paths in Labrador

It has become a conventional ethnographic trope to depict the movements of humans on a landscape two-dimensionally, as a series of superimposed loops and squiggles and patches on a topographic map. Inuit Land Use and Occupancy Project (Freeman [ed.] 1976), Our Footprints Are Everywhere (Brice-Bennett [ed.] 1977), and other traditional use studies of hunter’s recalled paths, and more recently GPS-based logs of electronically monitored paths, have fixed this image in the Arctic anthropologist’s imagination. This sort of depiction is homologous with the conventional, and similarly two-dimensional, representations of animal territories and paths, whether a summary distribution map or, like the GPS track, a precise record of radio- or satellite-tagged movements (Fancy et al. 1989). While this constitutes an improvement over the static geometric modeling of earlier generations of spatial analysis, the perspective has hardly changed: it is still remote, satellite, two-dimensional, that of a voyeur-god for de Certeau (1984:93), or the eye that “fucks the world” in Haraway’s (1991:189) memorable phrase. While this style of spatial representation is not ineffective — indeed, it seems archaeologically inescapable, given the collapsed, compressed, and nearly two-dimensional character of many archaeological traces — we do need to recognize that it embodies a distinctively situated perspective — that of the lofty outsider. Other perspectives, including those of animals (grounded insiders) are also interesting, and might even be analytically rewarding. This demands that we descend to ground level and look outwards, adopting the sort of democratic perspective represented on the Qaararaaqyuk knife handle, where caribou, hunter, and imuksuk (animal, human, and thing) are adjacent and similarly scaled. Recent cooperative research addressing Inuit, Iñupiat, and Yupik traditional knowledge (Aporta 2009; Gearheard et al. 2011; Krupnik et al. [eds.] 2010) is similarly grounded, adopting the perspectives of hunters as they travel over the land and sea ice.

Conducting fieldwork in the Arctic, the movements of animals in the land-, sea-, and ice-scenes are readily apparent. Not only are wild taxa abundant that are missing from many humanly modified ecosystems — cervids, wild canids, ursids — but the lack of trees and buildings makes their movements visible at a distance. A herd of harp seals swimming up the fjord or a polar bear walking alone along the shore can sometimes be observed from kilometers away, distinguished by their spatial setting and pattern of movement even when their bodies cannot be clearly discerned. Moreover, in the virtual absence of humans, beyond the odd hunter or scientist, the paths that animals utilize are frequently visible and distinct. What one might assume to be a trackless waste is in fact threaded with tracks and trails. Some of these are tiny. The trails produced by microtine rodents represent microcosms of the networks used by larger mammals (Figure 12.3a). Although these tiny trackways seem quaint, almost recreational, lemmings use them effectively to move incredibly quickly over uneven, boggy, or thickly vegetated terrain. They often lead to tunnels or other cover, to allow quick escape from raptors and mustelids. The latter produce tracks, but like the larger carnivores do not carve out their own rutted pathways.

Figure 12.2. End-slotted antler knife handle from the precontact Inuit site of Qaararaaqyuk (PAk-2), Nunavut. The incised design depicts a kayaker, caribou, archer, and imuksuk.

An end-slotted knife handle (Figure 12.2) from the site of Qaararaaqyuk (PAk-2) in the central Canadian Arctic (ca. 1200–1450 AD; Whitridge 1999). One side shows kayakers hunting what appear to be swimming caribou, and the other a kayaker, caribou, hunter with bow and arrow, and what appears to be an imuksuk (although actual precontact imuksuit exist throughout the Eastern Arctic [e.g., Brink 2005; Hallendy 2000; Savelle 1987], this seems to be the only reported depiction of its kind). The implied scenario is one that was repeated seasonally for centuries all across the Eastern Arctic: in concert with armed kayakers, caribou (perhaps guided first into a lake) have been channeled along the shore by imuksuit, to be dispatched by waiting archers. Imuksuit assumed a wide variety of functions (Hallendy 1994, 2000) but were principally a wayfinding technology, marking locations and travel routes in a way that could be read at a distance. The imuksuit tuktummiut (Hallendy 2000:48) that figured in caribou drive systems evoke an artificially managed itinerary, like that of the char funneled into the sapuqit’s central pen, that guaranteed the intersection of human and animal paths.

A final example of archaeologically discernable trails is the complex network of surviving footpaths that connected late summer-fall dwellings (qarnit) with a communal ceremonial structure (qargi) at the site of PAk-4 on southeast Somerset Island, not far from Qaararaaqyuk (Savelle and Wenzel 2003; these paths are presently visible at 72° 05’ 48” N, 94° 01’ 45” W on Google Maps and Google Earth). Long term traffic to and from the qargi, likely by members of whaling crews, tangled down regular footpaths and produced durable, clearly visible ruts that crosscut the sparsely vegetated gravel beach ridges, connecting houses and house clusters to the community’s focal structure. Animals of all kinds move redundantly across the landscape, whether out of necessity, convenience, familiarity, or safety.
Arctic carnivores seem to prefer to utilize their prey’s existing trails, or none at all (Figure 12.3b), whereas herbivores are the great trail makers. In some cases, this seems to be a mere byproduct of huge numbers of animals traversing the landscape. The George River caribou herd of northern Quebec and Labrador numbered around 800,000 in the late 1980s (Boudreau et al. 2003; Couturier et al. 1990), although now it is substantially smaller. In areas with a large summer population, the movements of such a vast number of animals easily result in dense networks of crisscrossing paths (Boudreau and Payette 2004). At the coastal margins of their distribution, however, smaller numbers of animals move across the landscape more selectively and redundantly, resulting in simple, if somewhat sporadic, trails. These trails are valuable archaeologically, since they may expose buried site deposits (Figure 12.3c; see also Thomson 1985). They also represent the easiest paths of movement across a landscape that is sometimes boggy and often covered with a nearly continuous layer of knee-high willow. Out of pure convenience, we regularly employed these trails in commutes from our field camp to the site of Nachvak Village (IGCX-3), a precontact Inuit winter settlement in northern Labrador (Fig. 12.3d), while conducting archaeological research there in the mid-2000s. Other animals sometimes used these trails as well. Polar bears and wolves were occasionally seen on them, and black bear and arctic fox occur in the area and almost certainly use them. Caribou, bears, wolves, and humans are sufficiently close in body size that a 20cm wide path broken through dense vegetation can present an equally attractive travel route to all, at least for a time.

Like Inuit elsewhere, northern Labrador groups traditionally utilized an array of sophisticated travel technologies where appropriate: crampon-like “ice creepers” for walking on ice, dogs to carry packs and pull sleds on land and ice, multi-person skin boats for ocean travel, and single-person kayaks for both freshwater and saltwater use. Most of these produce some durable trace (e.g., the ubiquitous sled shoes and dog trace buckles or the occasional kayak paddle tips). They also systematically utilized trails pioneered by game for a variety of purposes. These included pursuing the very game that produced the trails, and traveling tens of kilometers to specialized harvesting sites in the interior during the warm season. Trails, both short and long, were employed to avoid stormy headlands while traveling by kayak, and as shortcuts across a tortuous, deeply indented coastline. Indeed, a common style of rapid summer travel involved alternately paddling and portaging a light kayak (weighing as little as 15kg; Arna 1994:195). Maps of the Labrador coast produced by Moravian missionaries in the late eighteenth and nineteenth centuries are interesting collations of Inuit knowledge (mainly in the form of place names that indexed a mass of cultural information) and European style cartography, and often include dashed lines that represent the overland portions of extended travel routes.

Place names and itineraries that were discussed, taught, performed, visited, and travelled constituted the primary archive of geographical knowledge (Wheeler 1953), but Inuit produced physical maps where the situation demanded it. These were typically incised in snow or sand for the benefit of an Inuk traveler, but solid...
versions carved out of wood or ivory or drawn with pen and paper were collected by Euro-American explorers (Spencer 1959; Spink and Moodie 1972; Whitridge 2004a). Another genre of geographical discourse was the depiction of a location in figurative art. Only the inuksuk in the knife handle harvesting setup in Figure 12.2 is a durable landscape feature, and bowhead whaling scenes from the Canadian Arctic do not include shoreline. Occasionally, however, more concrete spatial information is provided, such as the tents, qarjait, and ground surface depicted in some precontact engravings (e.g., Maxwell 1983), or the base of a miniature soapstone pot from Nachvak Village incised with a representation of what appears to be a mountainous coastline (Figure 12.4; Whitridge 2012). The mountains resemble those visible from the site where the miniature was recovered, and evoke the seasonal round of movement between coastal villages and caribou hunting camps in the mountainous interior. Indeed, this object encapsulates a characteristic landscape setting in northern Labrador.

**Immaterial paths**

If the paths of humans and animals are to be considered symmetrically, it also seems appropriate to consider the movements of other things in the world. Clouds, wind, snow, rain, and changing light animate the atmosphere, while water flows and breaks in waves, rivulets, streams, rivers, and ocean currents, and freezes into sheets or vast sea ice platforms. Rock, sediment, and soil creep and boil imperceptibly, or collapse catastrophically. In the Inuit world, many of these phenomena were recognized as quasi-sentient agents in their own right. The site of Nachvak Village, for example, looks out across Nachvak Fjord to the sheer north face of Kuyauapak, a peak in the Torngat Mountains that marks the juncture of Tallek and Tsuuyak Arms with the main body of the fjord. The churning of ocean currents in winter gives rise to perpetually fractured and refrozen sea ice, and the early appearance of open water. The polynya is a magnet for seals, and accounts for the siting of a major winter village here. During fieldwork, the strong winds that funnel along the fjord arms and meet here were frequently observed to give rise to whirlwinds that became visible as they picked up spray and travelled for hundreds of meters up the fjord. The sun heating the rock face precipitated frequent massive rock falls, which sent dusty clouds of debris crashing 750 meters to the water below. The unusually animated quality of the atmosphere, land, and water here was likely a distinctive quality of the place for its occupants, and helped give rise to its reputation as a “big” place that was home to the dangerous deity Torngasok (Whitridge 2012).

Torngasok and other agentic entities — spirits or torngait — took weird, unnatural forms, and some creatures shifted between forms, like the shaman or angakok who might become a bear or fly through the air, or both. A man from Clyde River (Kangiqtugaapik) who showed me winter caribou hunting on Baffin Island in March 1991 recounted having seen a set of bear tracks that simply ended in the middle of the fjord ice, as if the creature had taken flight. Paths passed from one dimension to another and traversed enormous distances, as in the world-encompassing wanderings of the Inupiat culture hero Qayak (Oman 1995). The fundamental kinship of a wide array of sentient beings — caribou, wolf, bear, fox, human, torngak — is figured in their movement along the same trails. They take different forms, have different powers, pursue different interests but, for one reason or another, all need to make their way through the world, from place to place (Ingold 2009).

Tangible representations of otherworldly or immaterial paths occasionally occur in the Inuit record. A spectacular example from Alaska is illustrated by Hoffman (1895:223–24). An angakok, together with a helper playing a drum, conducts a shamanic séance inside a structure; a line issues from the angakok to a flying figure — probably the same person — who visits a bowhead whale. This appears to depict one of the customary roles of the angakok, who was hired to visit the whale ahead of the hunt and ensure its cooperation (Rainey 1947; Spencer 1959). The notion of immaterial power lines linking various agentic entities is widespread cross-culturally, and evokes networks of supernatural paths analogous to the trails.
Humans in turn map onto game trails, so human spatial practices are inseparable from those of non-human animals. In the roadless terrain of precontact northern Labrador, overland travel routes used by people were used initially, and simultaneously, by animals. The human-animal co-production of the landscape was a discursive hinge of much Inuit representational art, but this was less the case for subsequent Euro-Canadian occupants of the north. The spatial imagery employed by the political regimes of the last few centuries is diverse and expressive, but aims at an ever more precise and encompassing inorganic control of the landscape whose present culmination seems to be the GIS layered over satellite imagery. Even at its most technologically complex, in the form of an enormous cybernetic web of strategically situated cairns, Inuit negotiation of their relationship to the landscape represented a collaboration with animals: the inukshuk is simultaneously a wayfinding device and a technology for directing the movement of game.

The manufactured roadway is only one materialization of human route following. It leaves the most durable trace, and has acquired an archetypal inevitability, but other categories of path were more important to people in the past and continue to organize many aspects of our spatial existence. These include ephemeral traces (prints), durable tracks (both humanly created ones and co-opted game trails), sensory traces (visual, auditory, olfactory), conceptual routes (imagined, remembered, dreamt), and the representations (maps, models, illustrations) that guide the latter. All of these were important to Inuit in the past, and all were shared with animals in some fashion.

Archaeologically, the Arctic perhaps represents a peculiar case of human and animal paths, one in which the animal trails take clear precedence over the human ones. In other times and places, human road networks have been far more visible and more important to their users, and many places fall somewhere in between. Nevertheless, the homology between human and non-human trail use in the Arctic seems important. It reminds us of the underlying continuity between humans and other animals’ path-making and -using, and the ultimate priority of the latter. It suggests a useful approach to the archaeological and ethnographic records, focusing not only on the spatial distribution of sites, but also on the material representations of places, paths, and animals. It suggests a practical research tack on hunter-fisher-gatherer trail networks. In an area such as northern Labrador that has been progressively abandoned by Inuit hunters over the past century, there is enormous potential to explore the articulation of game trails and archaeological traces of Inuit use of the interior, particularly for late summer caribou hunting. It also encourages us to attend to the role of domestic animals – horses, yaks, llamas, dogs – in contributing to path production and maintenance in settings of denser human settlement. Non-human paths have been an integral part of human path use for ages, indeed since a time when we were non-human animals ourselves.¹

**Note**

¹ Many thanks to Christopher Watts for the invitation to expand on these thoughts and for suggestions that improved the text, and to James Flexner for inviting me to participate in the session “Archaeological Cartoerathes” at the 2011 Society for American
Archaeology meeting in Sacramento, where the ideas first took shape. Fieldwork in northern Labrador was supported by the Social Sciences and Humanities Research Council of Canada, Canadian Foundation for Innovation, Wenner–Gren Foundation for Anthropological Research, J. R. Smallwood Foundation and Institute for Social and Economic Research at Memorial University, and the Newfoundland and Labrador Provincial Archaeology Office (PAO). The Tomgášok Cultural Centre, PAO, and Parks Canada provided permission to conduct this research, and field assistants from Nain and Memorial University were instrumental in its success.

Bibliography


Miller-Wille, Ludger, 1987. *Gazetter of Inuit Place Names in Nunavik (Quebec, Canada)*. Avataq Cultural Institute, Inukjuak.


THE MAZE AND THE LABYRINTH: REFLECTIONS OF A FELLOW-TRAVELLER

Tim Ingold

Are we cast, in life, into the corridors of a maze, or are we destined to follow the threads of a labyrinth? Perhaps you will think that the difference between the maze and the labyrinth is of minor semantic import, or that it hinges on a technicality, namely that the labyrinth — regardless of how convoluted it might be — prescribes only one path, whereas the maze offers multiple choices, the majority of which lead to dead ends. I believe, however, that the difference is profound, and that it gives us as good a starting point as any to enter the tangle of issues surrounding the question of what it might mean to adopt a relational approach to understanding the world and human ways of living in it.

In many respects, the maze epitomizes the predicament of modern metropolitan life. Whether over- or underground, whether navigating the streets or the metro, the city dweller has to find his way through a maze of passages flanked by walls or high buildings. Any particular passage, once selected, is impossible not to follow, since it is walled in on either side. These walls, however, are not usually bare. Rather, they are replete with advertisements, window displays, and the like, which continually remind the traveller of possible side-tracks he might choose to take, as and when the opportunity arises, to satisfy his desires. Every time there is a fork in the way, a decision has to be taken: to go to the left, to the right, or possibly straight ahead. A journey through the maze may thus be represented as a stochastic sequence of moves punctuated by decision-points, such that every move is predicated upon the preceding decision. That is to say, it is an essentially game-like, strategic enterprise. This is not to deny, of course, the tactical manoeuvring that goes on as pedestrians and even drivers jostle with one another in making their ways through the throng of a busy street or subway. But negotiating a passage through the throng is one thing; finding a way through the maze quite another.

In the labyrinth, by contrast, the problem is to follow the path. Here, choice is not an issue. The labyrinth commands you to follow. You cannot but decide to
RELATIONAL ARCHAEOLOGIES

Humans, animals, things

Edited by
Christopher Watts