Identities of matrix-like algebras

Plamen Koshlukov

Department of Mathematics State University of Campinas, SP, Brazil

Polynomial Identities in Algebras. II St. John's, NL, September 2011

$\begin{array}{ll} M_2(K) & M_2(K), \mbox{ char} K = p \neq 2 \\ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	Applications	Graded <i>sl</i> 2 000000000	Jordan algebras
Outline			

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The fundamental example: The algebra $M_2(K)$
 - Characteristic zero case
 - Weak identities
 - The identities of sl₂
 - The identities of M₂
- 2 The identities of M_2 when char $K = p \neq 2$
 - Back to M₂
- Other applications of the method
 - Identities with involution
 - More (on) weak identities
- Graded identities for sl₂
 - Graded Lie identities
- 5 Graded identities for Jordan algebras
 - Graded Jordan identities

<i>M</i> ₂ (<i>K</i>) ●○○○○○○	$M_2(K)$, char $K = p \neq 2$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras
Outli	ine			
1	 The fundamental example Characteristic zero Weak identities The identities of <i>sl</i>₂ The identities of <i>M</i>₂ 	mple: The algel case	bra $M_2(K)$	
6	The identities of M w	bop obor K = p		

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Back to M₂
- 3 Other applications of the method
 - Identities with involution
 - More (on) weak identities
- Graded identities for sl₂
 - Graded Lie identities
- 5 Graded identities for Jordan algebras
 - Graded Jordan identities

$\begin{array}{l} M_2(K) & M_2(K), \mathrm{char} K = p \neq 2 \\ \bullet \bullet$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras
Step one (char $K = 0$)			

Consider the Lie algebra $sl_2 = sl_2(K)$. One has $M_2 = K \oplus sl_2$.

$\begin{array}{l} M_2(K) & M_2(K), \mathrm{char} K = p \neq 2 \\ \bullet \bullet$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras
Step one (char $K = 0$)			

Consider the Lie algebra $sl_2 = sl_2(K)$. One has $M_2 = K \oplus sl_2$. Moreover sl_2 has a symmetric, nondegenerate bilinear form:

 $u \circ v = (1/2)(uv + vu), u, v \in sl_2.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Consider the Lie algebra $s_{l_2} = s_{l_2}(K)$.

One has $M_2 = K \oplus sl_2$. Moreover sl_2 has a symmetric, nondegenerate bilinear form:

$$u \circ v = (1/2)(uv + vu), u, v \in sl_2.$$

Hence a fundamental identity in M_2 :

$$h_5 = [[x_1, x_2] \circ [x_3, x_4], x_5] = 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Consider the Lie algebra $sl_2 = sl_2(K)$. One has $M_2 = K \oplus sl_2$. Moreover sl_2 has a symmetric, nondegenerate bilinear form:

$$u \circ v = (1/2)(uv + vu), u, v \in sl_2.$$

Hence a fundamental identity in M_2 :

$$h_5 = [[x_1, x_2] \circ [x_3, x_4], x_5] = 0.$$

As dim $M_2 = 4$ one has the standard identity

$$s_4=\sum(-1)^{\sigma}x_{\sigma(1)}x_{\sigma(2)}x_{\sigma(3)}x_{\sigma(4)}=0.$$

▲ロト ▲園 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()・

$\begin{array}{l} M_2(K) & M_2(K), \mathrm{char} K = p \neq 2 \\ \bullet \bullet$	Applications	Graded <i>sl</i> 2 oooooooooo	Jordan algebras
Technical matters			

 $[[x_1, x_2]^2, x_1].$

$M_2(\Lambda) \qquad M_2(\Lambda), \text{ char} \Lambda = \rho \neq 2$	0000000	0000000000	
Technical matters			

$$[[x_1, x_2]^2, x_1].$$

Important relation in M_2 :

if $u, v, w \in sl_2$ then $(u \circ v)w \in sl_2$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

More precisely ($w = [x_1, x_2]$)

$$[[x_1, x_2]^2, x_1].$$

Important relation in M_2 :

if $u, v, w \in sl_2$ then $(u \circ v)w \in sl_2$.

More precisely ($w = [x_1, x_2]$)

$$(u \circ v)w = (1/8)([x_1, u, v, x_2] + [x_1, v, u, x_2] -[x_2, u, x_1, v] - [x_2, v, x_1, u]).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇◇◇

$$[[x_1, x_2]^2, x_1].$$

Important relation in M_2 :

if $u, v, w \in sl_2$ then $(u \circ v)w \in sl_2$.

More precisely ($w = [x_1, x_2]$)

$$(u \circ v)w = (1/8)([x_1, u, v, x_2] + [x_1, v, u, x_2] -[x_2, u, x_1, v] - [x_2, v, x_1, u]).$$

The latter is not so technical...

$\begin{array}{ll} M_2(K) & M_2(K), \mathrm{char} K = p \neq 2 \\ \circ \circ \circ \bullet \circ \circ$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras
Outline			
The fundamental example	nple: The algel	ora $M_2(K)$	

• Characteristic zero case

Weak identities

- The identities of sl₂
- The identities of *M*₂
- 2 The identities of M₂ when charK = p ≠ 2
 Back to M₂
- 3 Other applications of the method
 - Identities with involution
 - More (on) weak identities
- Graded identities for sl₂
 - Graded Lie identities
- 5 Graded identities for Jordan algebras
 - Graded Jordan identities

Weak (Lie) identities

Let *L* be a Lie algebra and *A* an associative envelope of *A*. We denote K(X) the free associative algebra and by L(X) the free Lie algebra, $L(X) \subseteq K(X)^-$.

Weak (Lie) identities

Let *L* be a Lie algebra and *A* an associative envelope of *A*. We denote K(X) the free associative algebra and by L(X) the free Lie algebra, $L(X) \subseteq K(X)^-$.

Definition

1. A polynomial $f \in K(X)$ is a weak identity for the pair (A, L) if f = 0 when evaluated on L.

2. $T(A, L) = \{f \in K(X) \mid f \text{ is a weak identity for } (A, L)\}.$

Clearly T(A, L) is an ideal; it is closed under Lie substitutions.

Weak identities (cont'd)

One may consider weak identities in a more general setting. Suppose A is an algebra and V a vector subspace of A such that V generates A as an algebra.

Definition

The polynomial $f(x_1, ..., x_n)$ is a weak identity for the pair (A, V) if $f(v_1, ..., v_n) = 0$ for all $v_i \in V$.

(日) (日) (日) (日) (日) (日) (日)

Weak identities (cont'd)

One may consider weak identities in a more general setting. Suppose A is an algebra and V a vector subspace of A such that V generates A as an algebra.

Definition

The polynomial $f(x_1, ..., x_n)$ is a weak identity for the pair (A, V) if $f(v_1, ..., v_n) = 0$ for all $v_i \in V$.

Clearly the set T(A, V) of all weak identities for (A, V) is an ideal. It is closed under linear substitutions of the variables.

Weak identities (cont'd)

One may consider weak identities in a more general setting. Suppose A is an algebra and V a vector subspace of A such that V generates A as an algebra.

Definition

The polynomial $f(x_1, ..., x_n)$ is a weak identity for the pair (A, V) if $f(v_1, ..., v_n) = 0$ for all $v_i \in V$.

Clearly the set T(A, V) of all weak identities for (A, V) is an ideal. It is closed under linear substitutions of the variables. Depending on the properties of A and of V one defines rules for taking consequences and thus different types of weak identities.

Weak identities (cont'd)

Assume $P \subseteq K(X)$ is a (nonempty) set of polynomials such that $p(v_1, \ldots, v_n) \in V$ for every $p \in P$ and $v_i \in V$.

Definition

The polynomial *g* is a *P*-consequence of $f \in T(A, V)$ if *g* lies in the ideal generated by all $f(p_1, \ldots, p_n)$, $p_i \in P$.

Weak identities (cont'd)

Assume $P \subseteq K(X)$ is a (nonempty) set of polynomials such that $p(v_1, \ldots, v_n) \in V$ for every $p \in P$ and $v_i \in V$.

Definition

The polynomial *g* is a *P*-consequence of $f \in T(A, V)$ if *g* lies in the ideal generated by all $f(p_1, \ldots, p_n), p_i \in P$.

Depending on the set P (and on the properties of A and V) we obtain different types of weak identities.

Weak identities: exam	ples		
$M_2(K) \qquad M_2(K), charK = p \neq 2$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras

• P = K(X) and A = V: the ordinary PI's for A together with the usual consequences.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Weak identities: examples

- P = K(X) and A = V: the ordinary PI's for A together with the usual consequences.
- P = L(X), the free Lie algebra $(L(X) \subseteq K(X))$. If $[V, V] \subseteq V$ one obtains the weak Lie identities for the pair (A, V).

Weak identities: examples

- P = K(X) and A = V: the ordinary PI's for A together with the usual consequences.
- P = L(X), the free Lie algebra $(L(X) \subseteq K(X))$. If $[V, V] \subseteq V$ one obtains the weak Lie identities for the pair (A, V).
- P = SJ(X), the free special Jordan algebra (SJ(X) ⊆ K(X)). If V ∘ V ⊆ V we have the weak Jordan identities.

Weak identities: examples

- P = K(X) and A = V: the ordinary PI's for A together with the usual consequences.
- P = L(X), the free Lie algebra $(L(X) \subseteq K(X))$. If $[V, V] \subseteq V$ one obtains the weak Lie identities for the pair (A, V).
- P = SJ(X), the free special Jordan algebra $(SJ(X) \subseteq K(X))$. If $V \circ V \subseteq V$ we have the weak Jordan identities.
- P = sp(X) If (A, V) is a pair "an associative algebra a vector space" then the ideal T(A, V) is *P*-closed. In this way we obtain the weakest PI's.

Graded sl₂ 0000000000

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Jordan algebras

Weak identities: examples

Let P = sp(X) and let GL = GL(P). Then GL acts on P and hence on the tensor algebra K(X) of P.

Weak identities: examples

Let P = sp(X) and let GL = GL(P). Then GL acts on P and hence on the tensor algebra K(X) of P. Thus T(A, V) is GL-invariant (that is we may substitute the variables of $f \in T(A, V)$ by linear combinations of these).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Weak identities: examples

Let P = sp(X) and let GL = GL(P). Then GL acts on P and hence on the tensor algebra K(X) of P. Thus T(A, V) is GL-invariant (that is we may substitute the variables of $f \in T(A, V)$ by linear combinations of these). That is why the latter (weakest) PI's are called sometimes GL-identities.

Weak identities: examples

Let P = sp(X) and let GL = GL(P). Then GL acts on P and hence on the tensor algebra K(X) of P.

Thus T(A, V) is *GL*-invariant (that is we may substitute the variables of $f \in T(A, V)$ by linear combinations of these). That is why the latter (weakest) PI's are called sometimes *GL*-identities.

One defines variety of pairs in the usual way.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Weak identities: examples

Let P = sp(X) and let GL = GL(P). Then GL acts on P and hence on the tensor algebra K(X) of P.

Thus T(A, V) is *GL*-invariant (that is we may substitute the variables of $f \in T(A, V)$ by linear combinations of these).

That is why the latter (weakest) PI's are called sometimes *GL*-identities.

One defines variety of pairs in the usual way.

Assuming K infinite then T(A, V) is generated by its

multihomogeneous elements; if char K = 0 then it is generated by its multilinear elements.

$M_2(K)$	$M_2(K),$	char <i>K</i>		
000000000000000000000000000000000000000	000000	20000	0000	

Graded sl2

Jordan algebras

Back to M₂ and sl₂

Fix
$$V = sl_2$$
, $A = M_2$, char $K = 0$.

Theorem (Razmyslov)

The weak Lie identities for (A, V) follow from

 $[x \circ y, z].$

$M_2(K)$	$M_2(K),$	char <i>K</i>		
000000000000000000000000000000000000000	000000	20000	0000	

Graded sl2

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Jordan algebras

Back to M_2 and sl_2

Fix
$$V = sl_2$$
, $A = M_2$, char $K = 0$.

Theorem (Razmyslov)

The weak Lie identities for (A, V) follow from

 $[x \circ y, z].$

The proof concerns multilinear polynomials only. Let

$$I = \langle [x \circ y, z] \rangle.$$

Graded sl2

Jordan algebras

Back to M_2 and sl_2

Fix
$$V = sl_2$$
, $A = M_2$, char $K = 0$.

Theorem (Razmyslov)

The weak Lie identities for (A, V) follow from

 $[x \circ y, z].$

The proof concerns multilinear polynomials only. Let

$$I = \langle [x \circ y, z] \rangle.$$

One shows that for each $f(x_1, \ldots, x_n) \in K(X)$

$$f(x_1,\ldots,x_n) - f(x_{\sigma(1)},\ldots,x_{\sigma(n)}) \in I, \sigma \in S_n.$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

$M_2(K) \qquad M_2(K), \text{ char} K = p \neq 2$	Applications	Graded <i>sl</i> 2 oooooooooo	Jordan algebras
Outline			

The fundamental example: The algebra $M_2(K)$

- Characteristic zero case
- Weak identities

• The identities of sl₂

- The identities of M₂
- The identities of M₂ when charK = p ≠ 2
 Back to M₂
- Other applications of the method
 - Identities with involution
 - More (on) weak identities
- Graded identities for sl₂
 - Graded Lie identities
- 5 Graded identities for Jordan algebras
 - Graded Jordan identities

The identities of *sl*₂

These are much trickier than the weak ones.

Theorem (Razmyslov)

Let char K = 0. The identities of sl_2 admit a finite basis.

Recall that Razmyslov proved the identities of sl_2 follow from those of small degree.

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

The identities of *sl*₂

These are much trickier than the weak ones.

Theorem (Razmyslov)

Let char K = 0. The identities of sl_2 admit a finite basis.

Recall that Razmyslov proved the identities of sl_2 follow from those of small degree.

Later on an analysis on the identities of degree up to 6 proved that:

The identities of *sl*₂

Corollary (Drensky)

The polynomials

$$f = \sum (-1)^{\sigma} [[x_{\sigma(1)}, x_1, x_1], [x_{\sigma(2)}, x_{\sigma(3)}]] \quad (3, 1, 1)$$

$$g = \sum (-1)^{\sigma} [x_1, x_{\sigma(1)}, x_{\sigma(2)}], [x_{\sigma(3)}, x_{\sigma(4)}]], \quad (2, 1, 1, 1)$$

$$\mathcal{G} = \sum_{\alpha} (-1) \mathcal{O} [\lambda_1, \lambda_{\sigma(1)}, \lambda_{\sigma(2)}], [\lambda_{\sigma(3)}, \lambda_{\sigma(4)}]], \quad (\mathbf{2}, \mathbf{3}) \in [\mathbf{1}, \mathbf{1}]$$

form a basis of the identities of sl_2 .

The linearizations of these polynomials generate irreducible S_5 -modules hence the above system is minimal.

The identities of *sl*₂

Corollary (Drensky)

The polynomials

$$f = \sum_{\sigma} (-1)^{\sigma} [[x_{\sigma(1)}, x_1, x_1], [x_{\sigma(2)}, x_{\sigma(3)}]] \qquad (3, 1, 1)$$

$$g = \sum (-1)\sigma[x_1, x_{\sigma(1)}, x_{\sigma(2)}], [x_{\sigma(3)}, x_{\sigma(4)}]], \quad (2, 1, 1, 1)$$

form a basis of the identities of sl_2 .

The linearizations of these polynomials generate irreducible S_5 -modules hence the above system is minimal.

Corollary (Filippov)

A basis of the identities of sl_2 is given by

$$v_5 = [x_2, x_3, [x_4, x_1], x_1] + [x_2, x_1, [x_3, x_1], x_4].$$
$M_2(K) \qquad M_2(K), \text{ char} K = p \neq 2$	Applications	Graded <i>sl</i> 2 oooooooooo	Jordan algebras
From sl_2 to M_2			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

One studies **proper** polynomials only; that is linear combinations of products of commutators = Lie elements.

One studies proper polynomials only; that is linear combinations of products of commutators = Lie elements. Denote by *I* the ideal of identities in K(X) generated by

$$h_{5} = [[x_{1}, x_{2}] \circ [x_{3}, x_{4}], x_{5}]$$

$$s_{4} = \sum_{\sigma(1)} (-1)^{\sigma} x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} x_{\sigma(4)}$$

$$r_{6} = (u \circ v) w - (1/8) ([x_{1}, u, v, x_{2}] + [x_{1}, v, u, x_{2}] - [x_{2}, u, x_{1}, v] - [x_{2}, v, x_{1}, u])$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where u, v, w are commutators, $w = [x_1, x_2]$.

<i>M</i> ₂ (<i>K</i>) <i>M</i> ₂ (<i>K</i>), char <i>K</i> = <i>p</i> ≠ 2	Applications	Graded <i>sl</i> 2	Jordan algebras
000000000000000000000000000000000000		0000000000	00000000000000
Proper elements			

Let $f(x_1, \ldots, x_n)$ be a proper multilinear polynomial.

• Step one: f can be written, modulo I, as

$$f = \ell + p.$$

Here ℓ is a Lie element; *p* is a linear combination of

$$p_i \circ [x_i, x_1], 1 \leq i \leq n$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where p_i are commutators.

$M_2(K) \qquad M_2(K), charK = p \neq 2$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras
Proper elements			

Let $f(x_1, \ldots, x_n)$ be a proper multilinear polynomial.

• Step one: f can be written, modulo I, as

$$f = \ell + p.$$

Here ℓ is a Lie element; *p* is a linear combination of

$$p_i \circ [x_i, x_1], 1 \leq i \leq n$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where p_i are commutators.

 Step two: *f* is an identity for M₂ if and only if both *p* and *ℓ* are identities for M₂.

Graded sl₂ 0000000000

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Jordan algebras

Proper elements (cont'd)

Let $p = \sum a_i(c_i \circ [d_i, x_1])$ be multilinear. Here c_i , d_i are commutators, deg $c_i \ge 2$.

Graded sl₂ 0000000000 Jordan algebras

Proper elements (cont'd)

Let
$$p = \sum a_i(c_i \circ [d_i, x_1])$$
 be multilinear.
Here c_i , d_i are commutators, deg $c_i \ge 2$.

Corollary

The polynomial p is an identity for M_2 if and only if $\sum a_i[c_i, d_i]$ is an identity for sl_2 (and for M_2 as well).

▲ロト ▲園 ト ▲目 ト ▲目 ト ● ● ●

Graded sl₂ 0000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Jordan algebras

Proper elements (cont'd)

Let
$$p = \sum a_i(c_i \circ [d_i, x_1])$$
 be multilinear.
Here c_i , d_i are commutators, deg $c_i \ge 2$.

Corollary

The polynomial p is an identity for M_2 if and only if $\sum a_i[c_i, d_i]$ is an identity for sl_2 (and for M_2 as well).

Now add to the ideal I the basis of the identities of sl_2 .

$M_2(K) \qquad \qquad M_2(K), \text{ char} K = p \neq 2$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras
Outling			

The fundamental example: The algebra $M_2(K)$

- Characteristic zero case
- Weak identities
- The identities of *sl*₂
- The identities of M₂
- 2 The identities of M₂ when charK = p ≠ 2
 Back to M₂
- 3 Other applications of the method
 - Identities with involution
 - More (on) weak identities
- Graded identities for sl₂
 - Graded Lie identities
- 5 Graded identities for Jordan algebras
 - Graded Jordan identities

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The identities of M₂

Thus I is the T-ideal generated by

$$\begin{split} h_5 &= [[x_1, x_2] \circ [x_3, x_4], x_5] \\ s_4 &= \sum (-1)^\sigma x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} x_{\sigma(4)} \\ r_6 &= (u \circ v) w - (1/8) ([x_1, u, v, x_2] + [x_1, v, u, x_2] \\ &- [x_2, u, x_1, v] - [x_2, v, x_1, u]) \\ v_5 &= [x_2, x_3, [x_4, x_1], x_1] + [x_2, x_1, [x_3, x_1], x_4] \end{split}$$

$m_2(R)$ $m_2(R)$, chain $p \neq z$	Applications
000000000000000000000000000000000000000	

The identities of M_2

Linearize v_5 and write it as

$$\mathit{lin}(v_5) = \sum a_i[b_i, c_i]$$

where deg $b_i \ge 2$ (b_i , c_i are commutators).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The identities of M₂

Linearize v_5 and write it as

$$\mathit{lin}(v_5) = \sum a_i[b_i, c_i]$$

where deg $b_i \ge 2$ (b_i , c_i are commutators). One has then

$$w_6 = \sum a_i b_i \circ [c_i, x]$$

is an identity for M_2 .

The identities of M₂

Linearize v_5 and write it as

$$\mathit{lin}(v_5) = \sum a_i[b_i, c_i]$$

where deg $b_i \ge 2$ (b_i , c_i are commutators). One has then

$$w_6 = \sum a_i b_i \circ [c_i, x]$$

is an identity for M_2 . Add w_6 to the T-ideal *I*. Thus

$$I = \langle \boldsymbol{s}_4, \boldsymbol{h}_5, \boldsymbol{r}_6, \boldsymbol{v}_5, \boldsymbol{w}_6 \rangle^T$$

 $M_2(K) \qquad M_2(K), char K = p \neq 2$

Applications

Graded sl₂ 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Jordan algebras

The basis for $T(M_2)$

Theorem (Razmyslov)

$$I=T(M_2).$$

$M_2(K)$	$M_2(K)$, char $K = p \neq 2$	
000000000	000000000000000000000000000000000000000	

Graded *sl*2 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Jordan algebras

The basis for $T(M_2)$

Theorem (Razmyslov)

$$I=T(M_2).$$

It is easy to show that v_5 follows from s_4 only.

The basis for $T(M_2)$

Theorem (Razmyslov)

$$I=T(M_2).$$

It is easy to show that v_5 follows from s_4 only.

Corollary (Drensky)

The basis of the identities of M₂ in characteristic 0 consists of

$$s_4, h_5.$$

・ロト・日本・日本・日本・日本・日本

The scheme of proof

From now on assume *K* is infinite field, char $K \neq 2$. The main steps in the proof are the following.

The scheme of proof

From now on assume *K* is infinite field, char $K \neq 2$. The main steps in the proof are the following.

Describe a basis of the identities of sl₂.

The scheme of proof

From now on assume *K* is infinite field, char $K \neq 2$. The main steps in the proof are the following.

- Describe a basis of the identities of sl₂.
- 2 Describe a basis of the weak identities of (M_2, sl_2) .

The scheme of proof

From now on assume *K* is infinite field, char $K \neq 2$. The main steps in the proof are the following.

- Describe a basis of the identities of sl₂.
- 2 Describe a basis of the weak identities of (M_2, sl_2) .
- Iransfer all this to a basis of the identities of M_2 .

M_2	(K)	$M_2(K)$, char $K = p \neq 2$
00	000	000000000000000000000000000000000000000

Graded sl₂ 0000000000 Jordan algebras

Main Obstacles

The principal difficulties in such an approach are:

- * ロ > * 個 > * 注 > * 注 > … 注 … の < @

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Main Obstacles

The principal difficulties in such an approach are:

You cannot consider multilinear polynomials only.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Main Obstacles

The principal difficulties in such an approach are:

- You cannot consider multilinear polynomials only.
- You have to deal with multihomogeneous polynomials instead.

Main Obstacles

The principal difficulties in such an approach are:

- You cannot consider multilinear polynomials only.
- You have to deal with multihomogeneous polynomials instead.
- You cannot use the representations of S_n (neither those of GL_m).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The specifics of M_2

The algebra sl_2 has a well behaving nondegenerate symmetric bilinear form:

$$u \circ v = \lambda I, \quad u, v \in sl_2, \lambda \in K.$$

The specifics of M_2

The algebra sl_2 has a well behaving nondegenerate symmetric bilinear form:

$$u \circ v = \lambda I, \quad u, v \in sl_2, \lambda \in K.$$

One may consider the orthogonal group of such a form. Its invariants are well known over infinite fields.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The invariants of O_n

Let $x_i = (x_{i1}, ..., x_{in})$ be "vectors" whose coordinates x_{ij} are commuting variables, and define the symmetric, nondegenerate bilinear form

$$x_i \circ x_j = x_{i1}x_{j1} + \cdots + x_{in}x_{jn}$$

on the span of these vectors.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

The invariants of O_n

Let $x_i = (x_{i1}, ..., x_{in})$ be "vectors" whose coordinates x_{ij} are commuting variables, and define the symmetric, nondegenerate bilinear form

$$x_i \circ x_j = x_{i1}x_{j1} + \cdots + x_{in}x_{jn}$$

on the span of these vectors.

The invariants of the orthogonal group O_n were described by De Concini and Procesi for K infinite.

The invariants of O_n

Let $x_i = (x_{i1}, ..., x_{in})$ be "vectors" whose coordinates x_{ij} are commuting variables, and define the symmetric, nondegenerate bilinear form

$$x_i \circ x_j = x_{i1}x_{j1} + \cdots + x_{in}x_{jn}$$

on the span of these vectors.

The invariants of the orthogonal group O_n were described by De Concini and Procesi for K infinite.

The algebra of O_n -invariants in $K[x_{ij}]$ is generated by all $x_i \circ x_j$:

$$K[x_{ij}]^{O_n}=K[x_i\circ x_j].$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Invariants

Define the double tableau

$$T = \begin{pmatrix} p_{11} & p_{12} & \dots & p_{1m_1} \\ p_{21} & p_{22} & \dots & p_{2m_2} \\ p_{k1} & p_{k2} & \dots & p_{km_k} \\ \end{pmatrix} \begin{pmatrix} q_{11} & q_{12} & \dots & q_{1m_1} \\ q_{21} & q_{22} & \dots & q_{2m_2} \\ q_{k1} & q_{k2} & \dots & q_{km_k} \\ \end{pmatrix}$$

Here $n \ge m_1 \ge m_2 \ge \cdots \ge m_k \ge 0$ and p_{ij} , q_{ij} are positive integers.

Invariants

Define the double tableau

$$T = \begin{pmatrix} p_{11} & p_{12} & \dots & p_{1m_1} & q_{11} & q_{12} & \dots & q_{1m_1} \\ p_{21} & p_{22} & \dots & p_{2m_2} & q_{21} & q_{22} & \dots & q_{2m_2} \\ p_{k1} & p_{k2} & \dots & p_{km_k} & q_{k1} & q_{k2} & \dots & q_{km_k} \end{pmatrix}$$

Here $n \ge m_1 \ge m_2 \ge \cdots \ge m_k \ge 0$ and p_{ij} , q_{ij} are positive integers.

T is standard (or doubly standard) if the ordinary tableau obtained from T is standard (or semistandard): Its entries:

Invariants

Define the double tableau

$$T = \begin{pmatrix} p_{11} & p_{12} & \dots & p_{1m_1} & q_{11} & q_{12} & \dots & q_{1m_1} \\ p_{21} & p_{22} & \dots & p_{2m_2} & q_{21} & q_{22} & \dots & q_{2m_2} \\ p_{k1} & p_{k2} & \dots & p_{km_k} & q_{k1} & q_{k2} & \dots & q_{km_k} \end{pmatrix}$$

Here $n \ge m_1 \ge m_2 \ge \cdots \ge m_k \ge 0$ and p_{ij} , q_{ij} are positive integers.

T is standard (or doubly standard) if the ordinary tableau obtained from T is standard (or semistandard): Its entries: increase strictly along the rows;

increase (with possible repetitions) along the columns.

Graded sl₂ 0000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Jordan algebras

Theorem (De Concini, Procesi)

The algebra $K[x_{ij}]^{O_n}$ admits a basis indexed by all doubly standard tableaux with $m_1 \leq n$.

Graded sl₂ 0000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Jordan algebras

Theorem (De Concini, Procesi)

The algebra $K[x_{ij}]^{O_n}$ admits a basis indexed by all doubly standard tableaux with $m_1 \leq n$.

For $T = (p_1 p_2 \dots p_m \mid q_1 q_2 \dots q_m)$ define the polynomial

$$\tilde{\varphi}(T) = \sum (-1)^{\sigma} (\mathbf{x}_{p_1} \circ \mathbf{x}_{q_{\sigma(1)}}) (\mathbf{x}_{p_2} \circ \mathbf{x}_{q_{\sigma(2)}}) \dots (\mathbf{x}_{p_m} \circ \mathbf{x}_{q_{\sigma(m)}})$$

Graded sl₂ 0000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Jordan algebras

Theorem (De Concini, Procesi)

The algebra $K[x_{ij}]^{O_n}$ admits a basis indexed by all doubly standard tableaux with $m_1 \leq n$.

For $T = (p_1 p_2 \dots p_m \mid q_1 q_2 \dots q_m)$ define the polynomial

$$\tilde{\varphi}(T) = \sum (-1)^{\sigma} (\mathbf{x}_{p_1} \circ \mathbf{x}_{q_{\sigma(1)}}) (\mathbf{x}_{p_2} \circ \mathbf{x}_{q_{\sigma(2)}}) \dots (\mathbf{x}_{p_m} \circ \mathbf{x}_{q_{\sigma(m)}})$$

One has $\tilde{\varphi}(T) = \det((x_{p_i} \circ x_{q_j})).$

Graded *sl*2 0000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Jordan algebras

Theorem (De Concini, Procesi)

The algebra $K[x_{ij}]^{O_n}$ admits a basis indexed by all doubly standard tableaux with $m_1 \leq n$.

For $T = (p_1 p_2 \dots p_m \mid q_1 q_2 \dots q_m)$ define the polynomial

$$\tilde{\varphi}(T) = \sum (-1)^{\sigma} (x_{p_1} \circ x_{q_{\sigma(1)}}) (x_{p_2} \circ x_{q_{\sigma(2)}}) \dots (x_{p_m} \circ x_{q_{\sigma(m)}})$$

One has $\tilde{\varphi}(T) = \det((x_{p_i} \circ x_{q_j}))$. If T^1, \ldots, T^k are the rows of T then

$$\tilde{\varphi}(T) = \tilde{\varphi}(T^1) \cdots \tilde{\varphi}(T^k)$$

Graded *sl*2 0000000000 Jordan algebras

Theorem (De Concini, Procesi)

The algebra $K[x_{ij}]^{O_n}$ admits a basis indexed by all doubly standard tableaux with $m_1 \leq n$.

For $T = (p_1 p_2 \dots p_m \mid q_1 q_2 \dots q_m)$ define the polynomial

$$\tilde{\varphi}(T) = \sum (-1)^{\sigma} (\mathbf{x}_{p_1} \circ \mathbf{x}_{q_{\sigma(1)}}) (\mathbf{x}_{p_2} \circ \mathbf{x}_{q_{\sigma(2)}}) \dots (\mathbf{x}_{p_m} \circ \mathbf{x}_{q_{\sigma(m)}})$$

One has $\tilde{\varphi}(T) = \det((x_{p_i} \circ x_{q_j}))$. If T^1, \ldots, T^k are the rows of T then

$$\tilde{\varphi}(T) = \tilde{\varphi}(T^1) \cdots \tilde{\varphi}(T^k)$$

Corollary

The polynomials $\tilde{\varphi}(T)$ form a basis for $K[x_{ij}]^{O_n}$.
Let

$$\langle i_1, i_2, \ldots, i_n \rangle = \det(x_{i_1}, \ldots, x_{i_n})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

be the determinant formed by the coordinates of the vectors above.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Invariants for SO_n

Let

$$\langle i_1, i_2, \ldots, i_n \rangle = \det(x_{i_1}, \ldots, x_{i_n})$$

be the determinant formed by the coordinates of the vectors above.

Theorem (De Concini, Procesi)

The invariants of SO_n are generated by those of O_n plus the above determinant.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Invariants for SO_n

Let

$$\langle i_1, i_2, \ldots, i_n \rangle = \det(x_{i_1}, \ldots, x_{i_n})$$

be the determinant formed by the coordinates of the vectors above.

Theorem (De Concini, Procesi)

The invariants of SO_n are generated by those of O_n plus the above determinant.

Formally one puts an initial row on top of T whose first half is void.

Invariants for SO_n

Let

$$\langle i_1, i_2, \ldots, i_n \rangle = \det(x_{i_1}, \ldots, x_{i_n})$$

be the determinant formed by the coordinates of the vectors above.

Theorem (De Concini, Procesi)

The invariants of SO_n are generated by those of O_n plus the above determinant.

Formally one puts an initial row on top of T whose first half is void.

One usually assigns values (-n, -(n-1), ..., -1) to this first half. Then a basis of $K[x_{ij}]^{SO_n}$ is given by all standard tableaux *T*.

 $M_2(K) \qquad M_2(K), \text{ char } K = p \neq 2$

Applications

Graded sl₂ 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Jordan algebras

Straightening rules

Every double tableaux is a linear combination of standard ones.

Straightening rules

Every double tableaux is a linear combination of standard ones. The rules for obtaining such a presentation are called The straightening algorithm.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Straightening rules

Every double tableaux is a linear combination of standard ones. The rules for obtaining such a presentation are called The straightening algorithm.

Such rules were described in the general case by De Concini and Procesi.

M ₂ (K) 00000000	$M_2(K)$, char $K = p \neq 2$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras
Outli	ne			
1	The fundamental exan Characteristic zero 	nple: The algel case	ora $M_2(K)$	

- Weak identities
- The identities of *sl*₂
- The identities of M₂
- The identities of M₂ when charK = p ≠ 2
 Back to M₂
- Other applications of the method
 - Identities with involution
 - More (on) weak identities
- Graded identities for sl₂
 - Graded Lie identities
- 5 Graded identities for Jordan algebras
 - Graded Jordan identities

M_2	(K)	$M_2(K)$, char $K = p \neq 2$
00	000	000000000000000000000000000000000000000

Graded sl₂ 0000000000

イロン 不得 とくほ とくほ とうほ

Jordan algebras

The scheme of proof

Recall that *K* is an infinite field, char $K \neq 2$. The main steps in the proof are the following. $M_2(K) \qquad M_2(K), \operatorname{char} K = p \neq 2$

Applications

Graded sl₂ 00000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Jordan algebras

The scheme of proof

Recall that *K* is an infinite field, char $K \neq 2$. The main steps in the proof are the following.

• Describe a basis of the identities of sl_2 .

The scheme of proof

Recall that K is an infinite field, $char K \neq 2$. The main steps in the proof are the following.

- Describe a basis of the identities of sl₂.
- 2 Describe a basis of the weak identities of (M_2, sl_2) .

The scheme of proof

Recall that K is an infinite field, $char K \neq 2$. The main steps in the proof are the following.

- Describe a basis of the identities of sl₂.
- 2 Describe a basis of the weak identities of (M_2, sl_2) .
- Iransfer all this to a basis of the identities of M_2 .

The identities of *sl*₂

A basis of the identities of *sl*₂ was described by Vasilovsky.

Theorem (Vasilovsky)

Let K be infinite, charK \neq 2. The ideal of identities of sl₂ is generated by the single identity

$$v_5 = [x_2, x_3, [x_4, x_1], x_1] + [x_2, x_1, [x_3, x_1], x_4].$$

Graded sl₂ 0000000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Jordan algebras

The weak identities of (M_2, sl_2)

Theorem (PK)

Let *K* be infinite, char $K \neq 2$. The ideal of the weak Lie identities for (M_2, sl_2) is generated by $[x^2, y]$.

Graded sl₂ 0000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Jordan algebras

The weak identities of (M_2, sl_2)

Theorem (PK)

Let K be infinite, charK \neq 2. The ideal of the weak Lie identities for (M_2 , sl_2) is generated by [x^2 , y].

We recall that the same ideal was described, in characteristic 0, also by Drensky and PK, as a *GL*-ideal.

Theorem (Drensky, PK)

The GL-ideal of (M_2, sl_2) is generated by $[x^2, y]$ and by s_4 .

Graded sl₂ 0000000000

(日) (日) (日) (日) (日) (日) (日)

Jordan algebras

The weak identities of (M_2, sl_2)

Theorem (PK)

Let K be infinite, charK \neq 2. The ideal of the weak Lie identities for (M_2 , sl_2) is generated by [x^2 , y].

We recall that the same ideal was described, in characteristic 0, also by Drensky and PK, as a *GL*-ideal.

Theorem (Drensky, PK)

The GL-ideal of (M_2, sl_2) is generated by $[x^2, y]$ and by s_4 .

The result in the latter paper was much more general.

Graded sl₂ 0000000000 Jordan algebras

The weak identities of (M_2, sl_2)

Theorem (PK)

Let K be infinite, charK \neq 2. The ideal of the weak Lie identities for (M_2 , sl_2) is generated by [x^2 , y].

We recall that the same ideal was described, in characteristic 0, also by Drensky and PK, as a *GL*-ideal.

Theorem (Drensky, PK)

The GL-ideal of (M_2, sl_2) is generated by $[x^2, y]$ and by s_4 .

The result in the latter paper was much more general. It was transferred to positive characteristic by PK as well.

The identities of M₂

Theorem (PK)

Let K be infinite, charK \neq 2. Then T(M₂) is generated by

$$\begin{split} h_5 &= [[x_1, x_2] \circ [x_3, x_4], x_5] \\ s_4 &= \sum (-1)^\sigma x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} x_{\sigma(4)} \\ r_6 &= (u \circ v) w - (1/8) ([x_1, u, v, x_2] + [x_1, v, u, x_2] \\ &- [x_2, u, x_1, v] - [x_2, v, x_1, u]) \end{split}$$

and by w_6 .

In r_6 in the above theorem $w = [x_1, x_2]$.

 $M_2(K) \qquad \qquad M_2(K), \text{ char} K = p \neq 2$

Applications

Graded sl₂ 0000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Jordan algebras

The identities of M_2

Corollary (PK)

If charK > 5 then the basis consists of s_4 and h_5 . If charK = 3 then s_4 , h_5 and r_6 are independent. $M_2(K) \qquad M_2(K), \text{ char} K = p \neq 2$

Applications

Graded sl₂ 0000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Jordan algebras

The identities of M₂

Corollary (PK)

If charK > 5 then the basis consists of s_4 and h_5 . If charK = 3 then s_4 , h_5 and r_6 are independent.

Corollary (Colombo, PK)

If charK = 3 then s_4 , h_5 and r_6 form a basis of $T(M_2)$. If charK = 5 then s_4 and h_5 form a basis of $T(M_2)$.

M_2	(K)	$M_2(K)$, char $K = p \neq 2$
00	0000	000000000000000000000000000000000000000

The recipe

The identity

$$[x_1, x_2](u \circ v) - (1/8)([x_1, u, v, x_2] + [x_1, v, u, x_2] - [x_2, u, x_1, v] - [x_2, v, x_1, u])$$

holds for M_2 .

The recipe

The identity

$$[x_1, x_2](u \circ v) - (1/8)([x_1, u, v, x_2] + [x_1, v, u, x_2] - [x_2, u, x_1, v] - [x_2, v, x_1, u])$$

holds for M_2 .

Define a transformation L(u, v) on M_2 (or sl_2) as follows

$$[x_1, x_2]L(u, v) = (1/8)([x_1, u, v, x_2] + [x_1, v, u, x_2] + [x_2, u, x_1, v] + [x_2, v, x_1, u])$$

for $u, v \in sl_2$.

▲ロト ▲園 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()・

M_2	(K)	$M_2(K)$, char $K = p \neq 2$
		000000000000000000000000000000000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The recipe

Thus the following is a weak identity for M_2

$$[x_1,x_2]L(u,v)=[x_1,x_2]\circ(u\circ v)$$

u, *v* ∈ *sl*₂.

M_2	(K)	$M_2(K)$, char $K = p \neq 2$
		000000000000000000000000000000000000000

The recipe

Thus the following is a weak identity for M_2

$$[x_1,x_2]L(u,v)=[x_1,x_2]\circ(u\circ v)$$

 $u, v \in sl_2$.

This was first observed by Iltyakov for nonassociative algebras (the expressions involved are more complicated).

$M_2(K) \qquad M_2(K), \text{char}K = p \neq 2$	Applications 00000000	Graded <i>sl</i> 2 0000000000	Jordan algebras
The recipe, <i>sl</i> ₂			

One considers separately polynomials of even and of odd degree.

$M_2(K) \qquad M_2(K), charK = p \neq 2$	Applications	Graded <i>sl</i> 2 oooooooooo	Jordan algebras
The recipe, <i>sl</i> ₂			

One considers separately polynomials of even and of odd degree.

• When deg f is even you write it as

 $\sum a_i[x_i,x_j]P(L)$

• When deg f is odd you write it as

$$\sum a_i[x_i, x_j, x_k] P(L)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Here P(L) is a polynomial in the operators L(u, v).

One considers separately polynomials of even and of odd degree.

• When deg f is even you write it as

 $\sum a_i[x_i,x_j]P(L)$

• When deg f is odd you write it as

 $\sum a_i[x_i, x_j, x_k] P(L)$

Here P(L) is a polynomial in the operators L(u, v). In this way you split the relatively free algebra. In a sense you may consider it as a module over the (commutative) algebra of operators generated by the L(u, v).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Afterwards one associates to each element as before, a double tableau.

Using the straightening rules one gets linear combinations of standard tableaux.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Afterwards one associates to each element as before, a double tableau.

Using the straightening rules one gets linear combinations of standard tableaux.

As the straightening rules are implied by identities for sl_2 one gets a (finite) basis of its identities.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The difficulties, *sl*₂

Here we list some of the critical points (the case of sl_2).

- The transformations L are well defined.
- 2 The straightening rules are indeed identities for sl₂.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The difficulties, *sl*₂

Here we list some of the critical points (the case of sl_2).

- The transformations L are well defined.
- 2 The straightening rules are indeed identities for sl₂.
- The straightening rules follow from known identities of sl₂.
- Reduce the identities to one of them.

$M_2(K) \qquad M_2(K), \text{ char} K = p \neq 2$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras
The recipe, M_2			

Sort of similar to that of sl_2 . One deals with proper polynomials only.

Sort of similar to that of sl_2 . One deals with proper polynomials only.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Work modulo s_4 , h_5 , v_5 .
- Onsider only proper non-Lie polynomials.
- If *f* is proper then it is a combination of $g_1 \circ g_2$, both commutators.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The recipe, M_2

Sort of similar to that of sl_2 . One deals with proper polynomials only.

- Work modulo s_4 , h_5 , v_5 .
- Onsider only proper non-Lie polynomials.
- If *f* is proper then it is a combination of $g_1 \circ g_2$, both commutators.
- Define $(g_1 \circ g_2)L(u, v) = g_1 \circ (g_2L(u, v)).$
- Follow the steps from above.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The difficulties, M₂

Here the main problems are as follows.

- L(u, v) are well defined (quite technical but as often happens lengthy).
- Separating even and odd degree proper elements gives considerably more work. One considers

$$[x_a, x_b] \circ [x_c, x_d]; \quad [x_a, x_b, x_c] \circ [x_d, x_e]$$

with suitable orders for the indices.

The difficulties, M_2

Here the main problems are as follows.

- L(u, v) are well defined (quite technical but as often happens lengthy).
- Separating even and odd degree proper elements gives considerably more work. One considers

 $[x_a, x_b] \circ [x_c, x_d]; \quad [x_a, x_b, x_c] \circ [x_d, x_e]$

with suitable orders for the indices.

- In odd degree one alternates on a, b, d. And all is acted on by some P(L).
- The straightening procedure yields a long list of identities.
| M_2 | (K) | $M_2(K),$ | charK = | | |
|-------|---------------|-----------|---------|----|--|
| 00 | 0000000000000 | 000000 | 000000 | 00 | |

Outline

- The fundamental example: The algebra $M_2(K)$
 - Characteristic zero case
 - Weak identities
 - The identities of *sl*₂
 - The identities of M₂
- The identities of M₂ when charK = p ≠ 2
 Back to M₂
- 3 Other applications of the method
 - Identities with involution
 - More (on) weak identities
- Graded identities for sl₂
 - Graded Lie identities
- 5 Graded identities for Jordan algebras
 - Graded Jordan identities

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Involutions on M_2

By extending the field K one may assume it algebraically closed.

Moreover one considers only involutions of first kind.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Involutions on M_2

By extending the field K one may assume it algebraically closed.

Moreover one considers only involutions of first kind. Hence only two involutions to consider.

Graded sl₂

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Jordan algebras

Identities in characteristic 0

We denote by *x* symmetric and by *y* skew-symmetric variables. ($x \leftrightarrow (a + a^*)/2$, $y \leftrightarrow (a - a^*)/2$)

Theorem (Levchenko)

Let charK = 0.

(a) A basis of the identities for (M_2, t) consists of

 $\begin{matrix} [y_1y_2, x], & [y_1, y_2], \\ [x_1, x_2][x_3, x_4] - [x_1, x_3][x_2, x_4] + [x_1, x_4][x_2, x_3], \\ [y_1x_1y_2, x_2] - y_1y_2[x_1, x_2]. \end{matrix}$

Graded sl₂

Jordan algebras

Identities in characteristic 0

We denote by *x* symmetric and by *y* skew-symmetric variables. ($x \leftrightarrow (a + a^*)/2$, $y \leftrightarrow (a - a^*)/2$)

Theorem (Levchenko)

Let charK = 0.

(a) A basis of the identities for (M_2, t) consists of

$$\begin{matrix} [y_1y_2, x], & [y_1, y_2], \\ [x_1, x_2][x_3, x_4] - [x_1, x_3][x_2, x_4] + [x_1, x_4][x_2, x_3], \\ & [y_1x_1y_2, x_2] - y_1y_2[x_1, x_2]. \end{matrix}$$

(b) A basis for the identities for (M_2, s) consists of

$$[x_1, x_2], [x, y].$$

 $M_2(K) \qquad M_2(K), charK = p \neq 2$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Jordan algebras

Characteristic $p \neq 2$

Theorem (Colombo, PK)

The same polynomials as in characteristic 0, form bases of the identities with involution (t and s) for M_2 .

Characteristic $p \neq 2$

Theorem (Colombo, PK)

The same polynomials as in characteristic 0, form bases of the identities with involution (t and s) for M_2 .

Consider first *s*, the symplectic involution.

- The symmetric elements are just scalar matrices.
- Interpresent only on skew variables (that is sl₂).
- I Hence *s*-identities are weak identities for (M_2, sl_2) .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The transpose involution

Let *t* be the transpose involution on M_2 .

Lemma

Every identity is equivalent to one in symmetric variables only.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The transpose involution

Let t be the transpose involution on M_2 .

Lemma

Every identity is equivalent to one in symmetric variables only.

- Define an analog to the transformation L(u, v) (for symmetric variables only).
- Consider proper elements and split them into three as follows:

The transpose involution

Let t be the transpose involution on M_2 .

Lemma

Every identity is equivalent to one in symmetric variables only.

- Define an analog to the transformation L(u, v) (for symmetric variables only).
- Consider proper elements and split them into three as follows:
- Products of two skew commutators; skew commutators, symmetric commutators.
- Sollow the recipe for the ordinary PI's (not much easier).

M_2	(K)	$M_2(K),$	charK =		
00	0000000000000	000000	000000	00	

Outline

- The fundamental example: The algebra $M_2(K)$
 - Characteristic zero case
 - Weak identities
 - The identities of *sl*₂
 - The identities of M₂
- 2 The identities of M_2 when $char K = p \neq 2$ • Back to M_2
- Other applications of the method
 - Identities with involution
 - More (on) weak identities
- Graded identities for sl₂
 - Graded Lie identities
- 5 Graded identities for Jordan algebras
 - Graded Jordan identities

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

GL-identities

Let V be a vector space with a nondegenerate symmetric bilinear form, and denote by C its Clifford algebra.

Theorem

The GL-identities for (C, V) are generated by $[x^2, y]$ if dim $V = \infty$ If dim V = n one adds an analog of the standard polynomial, w_{n+1} . It is skew symmetric and multilinear, deg $w_{n+1} = n + 1$.

(日) (日) (日) (日) (日) (日) (日)

GL-identities

Let V be a vector space with a nondegenerate symmetric bilinear form, and denote by C its Clifford algebra.

Theorem

The GL-identities for (C, V) are generated by $[x^2, y]$ if dim $V = \infty$ If dim V = n one adds an analog of the standard polynomial, w_{n+1} . It is skew symmetric and multilinear, deg $w_{n+1} = n + 1$.

The polynomials w_n are as follows: $w_1 = x_1$, $w_2 = [x_1, x_2]$,

$$w_{n+1} = [w_n, x_{n+1}]$$
 or $w_{n+1} = w_n \circ x_{n+1}$

depending on whether *n* is odd or even.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

GL-identities

The theorem was first proved by Drensky and PK in characteristic 0.

The proof relies on the representations of the symmetric and general linear groups.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

GL-identities

The theorem was first proved by Drensky and PK in characteristic 0.

The proof relies on the representations of the symmetric and general linear groups.

Later on it was extended to any characteristic $p \neq 2$. It is a sort of simplified model for applying the invariants of the orthogonal group.

(日) (日) (日) (日) (日) (日) (日)

GL-identities

The theorem was first proved by Drensky and PK in characteristic 0.

The proof relies on the representations of the symmetric and general linear groups.

Later on it was extended to any characteristic $p \neq 2$. It is a sort of simplified model for applying the invariants of the orthogonal group.

It is necessary to split the relatively free algebra in various parts in order to consider it as a "good" module over the algebra of operators L(u, v).

M ₂ (K) 00000000	$M_2(K)$, char $K = p \neq 2$	Applications	Graded <i>sl</i> ₂ ●000000000	Jordan algebras
Outli	ne			
1	 The fundamental example Characteristic zero Weak identities The identities of <i>sl</i>₂ The identities of <i>M</i> 	mple: The algel case	ora <i>M</i> 2(<i>K</i>)	
2	• The identities of M_2 w • Back to M_2	when $char K = p$	9 ≠ 2	
3	Other applications of Identities with invol	the method ution		

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Graded identities for sl₂
 - Graded Lie identities
- Graded identities for Jordan algebras
 Graded Jordan identities

Gradina	s on ch			
<i>M</i> ₂ (<i>K</i>) 000000000000000000000000000000000000	$M_2(K)$, char $K = p \neq 2$	Applications	Graded <i>sl</i> ₂ ○●○○○○○○○○	Jordan algebras 0000000000000

Theorem

Gradina	s on ch			
<i>M</i> ₂ (<i>K</i>) 000000000000000000000000000000000000	$M_2(K)$, char $K = p \neq 2$	Applications	Graded <i>sl</i> ₂ ○●○○○○○○○○	Jordan algebras 0000000000000

Theorem

•
$$G = C_2, Sl_2 = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix} + \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix};$$

Gradina	s on ch			
<i>M</i> ₂ (<i>K</i>) 000000000000000000000000000000000000	$M_2(K)$, char $K = p \neq 2$	Applications	Graded <i>sl</i> ₂ ○●○○○○○○○○	Jordan algebras 0000000000000

Theorem

•
$$G = C_2, sl_2 = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix} + \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix};$$

• $G = Z, sl_2 = \begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix} + \begin{pmatrix} a & 0 \\ -0 & -a \end{pmatrix} + \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix};$

Gradina	s on ch			
<i>M</i> ₂ (<i>K</i>) 000000000000000000000000000000000000	$M_2(K)$, char $K = p \neq 2$	Applications	Graded <i>sl</i> ₂ ○●○○○○○○○○	Jordan algebras 0000000000000

Theorem

$$G = C_2, \, sl_2 = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix} + \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix};$$

$$G = Z, \, sl_2 = \begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix} + \begin{pmatrix} a & 0 \\ -0 & -a \end{pmatrix} + \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix};$$

$$G = C_2 \times C_2,$$

$$(0,0) \to 0, \, (1,1) \to K(e_{11} - e_{22}),$$

$$(0,1) \to K(e_{12} + e_{21}), \, (1,0) \to K(e_{12} - e_{21}).$$

$M_2(K) \qquad M_2(K), \text{ char} K = p \neq 2$	Applications	Graded <i>sl</i> ₂ ००●००००००	Jordan algebras
The grading by C_2			

The structure of the relatively free graded algebra (charK = 0) with the grading by C_2 was described by Repin.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The structure of the relatively free graded algebra (charK = 0) with the grading by C_2 was described by Repin. Let $f(y_1, \ldots, y_k, z_1, \ldots, z_{n-k})$ be multilinear, depending on k even (degree 0) variables y and n - k odd (degree 1) variables z. Then $P_{k,n-k}$ is an $S_k \times S_{n-k}$ -module.

The structure of the relatively free graded algebra (charK = 0) with the grading by C_2 was described by Repin. Let $f(y_1, \ldots, y_k, z_1, \ldots, z_{n-k})$ be multilinear, depending on k even (degree 0) variables y and n - k odd (degree 1) variables z. Then $P_{k,n-k}$ is an $S_k \times S_{n-k}$ -module. Denote $Q_{k,n-k}$ the multilinear part of the relatively free algebra of sl_2 with the 2-grading, and $\chi_{k,n-k}$ its character. Then

$$\chi_{k,n-k} = \sum m_{\lambda,\mu} (\chi_{\lambda} \otimes \chi_{\mu})$$

Here $\chi_{\lambda} \otimes \chi_{\mu}$ is the irreducible $S_{k,n-k}$ character for the pair of partitions (λ, μ) .

M_2	(K)	$M_2(K)$, char $K = p \neq$	
00	000000000000	000000000000000000000000000000000000000	

Graded *sl*2

Jordan algebras

The grading by C₂

Lemma (Repin)

If $\lambda_2 > 0$ or $\mu_3 > 0$ then $m_{\lambda,\mu} = 0$.

The grading by C_2

Lemma (Repin)

If
$$\lambda_2 > 0$$
 or $\mu_3 > 0$ then $m_{\lambda,\mu} = 0$.

Theorem (Repin)

Let $G = C_2$, and let $\lambda = (k)$, $\mu = (q + r, q)$. Then $m_{\lambda,\mu} = 1$ if and only if

$$n \neq k$$
, $n \neq r$, $r \equiv_2 1$ or $k + q \equiv_2 1$.

In all remaining cases $m_{\lambda,\mu} = 0$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The grading by $C_2 \times C_2$

Analogously for the $C_2 \times C_2$ -grading one has four sets of variables, and $S_p \times S_q \times S_r \times S_t$ -module and character, n = p + q + r + t.

The grading by $C_2 \times C_2$

Analogously for the $C_2 \times C_2$ -grading one has four sets of variables, and $S_p \times S_q \times S_r \times S_t$ -module and character, n = p + q + r + t.

Theorem (Repin)

 $m_{\lambda,\mu,
u,\pi} = 1$ if and only if

$$\lambda = (p), \quad \mu = (q), \quad \nu = (r), \quad \pi = (t),$$

The grading by $C_2 \times C_2$

Analogously for the $C_2 \times C_2$ -grading one has four sets of variables, and $S_p \times S_q \times S_r \times S_t$ -module and character, n = p + q + r + t.

Theorem (Repin)

 $m_{\lambda,\mu,
u,\pi}=$ 1 if and only if

$$\lambda=(p),\quad \mu=(q),\quad
u=(r),\quad \pi=(t),$$

and p = 0, $q \neq n$, $r \neq n$, $t \neq n$, and

$$q-r\equiv_2 1$$
, or $r-t\equiv_2 1$

In all remaining cases $m_{\lambda,\mu,\nu,\pi} = 0$.

The grading by *Z* is concentrated on -1, 0, 1. Hence one considers $S_p \times S_q \times S_r$ -modules and characters.

▲□▶▲□▶▲□▶▲□▶ □ のQで

The grading by Z

The grading by Z is concentrated on -1, 0, 1.

Hence one considers $S_{p} \times S_{q} \times S_{r}$ -modules and characters.

Theorem (Repin)

Let n = p + q + r > 1. Then $m_{\lambda,\mu,\nu} = 1$ if and only if

$$\lambda = (p), \quad \mu = (q), \quad \nu = (r),$$

and $p \neq n$, $q \neq n$, $r \neq n$, and p = r or $p = r \pm 1$. In the remaining cases $m_{\lambda,\mu,\nu} = 0$.

・ロト・西ト・西ト・西・ うくぐ

Graded *sl*2

▲□▶▲□▶▲□▶▲□▶ □ のQで

Jordan algebras

Basis of the graded identities

We consider the grading by C_2 , assuming K infinite, char $K \neq 2$. (So we cannot use the results of Repin.)

Graded *sl*2 00000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Jordan algebras

Basis of the graded identities

We consider the grading by C_2 , assuming K infinite, char $K \neq 2$. (So we cannot use the results of Repin.)

Theorem (PK)

The graded identities for sl_2 with the C_2 -grading follow from

$[y_1, y_2].$

Recall that *y* are even, and *z* are odd variables.

Graded sl₂ 00000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Jordan algebras

Basis of the graded identities

We consider the grading by C_2 , assuming K infinite, char $K \neq 2$. (So we cannot use the results of Repin.)

Theorem (PK)

The graded identities for sl_2 with the C_2 -grading follow from

$[y_1, y_2].$

Recall that y are even, and z are odd variables. We shall give a (very brief) sketch of the proof.

Graded *sl*2 00000000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Jordan algebras

Some graded identities

Denote
$$I = \langle [y_1, y_2] \rangle$$
.

Lemma

The following polynomials lie in I.

$$[z_1, y_1, \ldots, y_t, z_2] - (-1)^{t-1} [z_2, y_1, \ldots, y_t, z_1].$$

$$[y, z_1, z_2, z_3, z_4] - [y, z_3, z_4, z_1, z_2].$$

Some graded identities

Denote
$$I = \langle [y_1, y_2] \rangle$$
.

Lemma

The following polynomials lie in I.

$$[z_1, y_1, \ldots, y_t, z_2] - (-1)^{t-1} [z_2, y_1, \ldots, y_t, z_1].$$

$$[y, z_1, z_2, z_3, z_4] - [y, z_3, z_4, z_1, z_2].$$

$$[[z_1, z_2, z_3, y_1, y_2] - [z_1, y_1, y_2, z_2, z_3].$$

$$[y_1, z_1, z_2, z_3, y_2] = [y_2, z_1, z_2, z_3, y_1].$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで
Now one defines the transformation L(a, b) as usual. If w_1 , w_2 , a, b are elements of the Lie algebra L(Y, Z)/I then $[w_1, w_2]L(a, b)$ equals

 $(1/8)([w_1, a, b, w_2] + [w_1, b, a, w_2] - [w_2, a, w_1, b] - [w_2, b, w_1, a]).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Now one defines the transformation L(a, b) as usual. If w_1 , w_2 , a, b are elements of the Lie algebra L(Y, Z)/I then $[w_1, w_2]L(a, b)$ equals

 $(1/8)([w_1, a, b, w_2] + [w_1, b, a, w_2] - [w_2, a, w_1, b] - [w_2, b, w_1, a]).$

By using the above graded identities one deduces

Lemma

L(a, b) is well defined linear operator on [L(Y, Z), L(Y, Z)].

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Now one defines the transformation L(a, b) as usual. If w_1 , w_2 , a, b are elements of the Lie algebra L(Y, Z)/I then $[w_1, w_2]L(a, b)$ equals

 $(1/8)([w_1, a, b, w_2] + [w_1, b, a, w_2] - [w_2, a, w_1, b] - [w_2, b, w_1, a]).$

By using the above graded identities one deduces

Lemma

L(a, b) is well defined linear operator on [L(Y, Z), L(Y, Z)].

Now one applies the invariants of the orthogonal group as done several times earlier, and obtains the theorem.

Applications

Graded sl₂ 000000000 Jordan algebras

The remaining gradings

These follow from the description of the 2-graded identities.

Theorem

• If G = Z then the graded identities follow from

$$[x_1, x_2], \deg x_i = 0, \qquad y = 0, |\deg y| > 1.$$

▲ロト ▲園 ト ▲目 ト ▲目 ト ● ● ●

Applications

Graded sl₂

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Jordan algebras

The remaining gradings

These follow from the description of the 2-graded identities.

Theorem

• If G = Z then the graded identities follow from

$$[x_1, x_2], \deg x_i = 0, \qquad y = 0, |\deg y| > 1.$$

2 If $G = C_2 \times C_2$ then the graded identities follow from

t = 0, deg t = (0, 0).

M ₂ (K)	$M_2(K)$, char $K = p \neq 2$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras ●oooooooooooo
Outlir	ne			
1	The fundamental example Characteristic zero Weak identities The identities of <i>sl</i> ₂ The identities of <i>M</i> ₂	mple: The alge case	bra $M_2(K)$	
2	The identities of M_2 w • Back to M_2	when $char K = p$	0 ≠ 2	
3	Other applications ofIdentities with involMore (on) weak identified to the second second	the method ution entities		
4	Graded identities for a Graded Lie identitie	51 ₂		

5 Graded identities for Jordan algebras

Graded Jordan identities

$M_2(K) \qquad \qquad M_2(K), \text{ char } K = p \neq 2$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras o●ooooooooooo
The algebra J			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Assume *K* is infinite, char $K \neq 2$.

Let J be the Jordan algebra of 2×2 symmetric matrices.

$M_2(K) \qquad M_2(K), \text{ char} K = p \neq 2$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras o●ooooooooooo
The algebra J			

(ロ) (同) (三) (三) (三) (三) (○) (○)

Assume *K* is infinite, char $K \neq 2$.

Let *J* be the Jordan algebra of 2×2 symmetric matrices. It is simple, and it is isomorphic to the Jordan algebra of a symmetric bilinear form on a vector space of dimension 2.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The algebra J

Assume *K* is infinite, char $K \neq 2$.

Let *J* be the Jordan algebra of 2×2 symmetric matrices. It is simple, and it is isomorphic to the Jordan algebra of a

symmetric bilinear form on a vector space of dimension 2.

Definition

Let *V* be a vector space with a symmetric bilinear form *f*, dim $V = \infty$. Define on $B = K \oplus V$ a product

$$(\alpha + \mathbf{u}) \circ (\beta + \mathbf{v}) = (\alpha\beta + f(\mathbf{u}, \mathbf{v})) + (\alpha\mathbf{u} + \beta\mathbf{v}),$$

 $\alpha, \beta \in K, u, v \in V$. When dim V = n denote it V_n , resp. B_n .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

The algebra J

Assume *K* is infinite, char $K \neq 2$.

Let J be the Jordan algebra of 2 \times 2 symmetric matrices. It is simple, and it is isomorphic to the Jordan algebra of a

symmetric bilinear form on a vector space of dimension 2.

Definition

Let *V* be a vector space with a symmetric bilinear form *f*, dim $V = \infty$. Define on $B = K \oplus V$ a product

$$(\alpha + u) \circ (\beta + v) = (\alpha \beta + f(u, v)) + (\alpha u + \beta v),$$

 $\alpha, \beta \in K, u, v \in V$. When dim V = n denote it V_n , resp. B_n .

The Jordan algebras B, B_n are simple (as long as f is nondegenerate). They are special ($B \subseteq C$ where C is the Clifford algebra

They are special ($B \subseteq C$ where C is the Clifford algebra of V).

Applications

Graded sl₂ 0000000000 Jordan algebras

Gradings on B and on B_n

The gradings on B and B_n by a group G are known.

Theorem (Bahturin, Shestakov)

Let $B = \oplus B_g$ be G-graded. Then there exists a homogeneous basis T of V such that

・ロト・日本・日本・日本・日本・日本

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Gradings on B and on B_n

The gradings on B and B_n by a group G are known.

Theorem (Bahturin, Shestakov)

Let $B = \oplus B_g$ be G-graded.

Then there exists a homogeneous basis T of V such that

- $T = E \cup E' \cup F$, a disjoint union where
 - There is a 1–1 correspondence $E \leftrightarrow E'$ with $e \leftrightarrow e'$ and $|e| = |e'|^{-1} \neq e \in G$; $|f|^2 = e$ for all $e \in E$, $f \in F$.

2 *F* is orthonormal and $F \perp E$, $F \perp E'$.

The converse also holds. Analogously for B_n .

$M_2(K) \qquad \qquad M_2(K), \text{ char } K = p \neq 2$	Applications	Graded <i>sl</i> 2 000000000	Jordan algebras
The algebra J			

We write $J = K \oplus \{$ traceless symmetric matrices $\}$. If *u* and *v* are symmetric and traceless matrices then $u \circ v = \lambda$ is a scalar matrix.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The algebra J

We write $J = K \oplus \{$ traceless symmetric matrices $\}$.

If *u* and *v* are symmetric and traceless matrices then $u \circ v = \lambda$ is a scalar matrix.

In this way one defines a symmetric bilinear form on J; it is nondegenerate.

Therefore $J \cong B_2$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The algebra J

We write $J = K \oplus \{$ traceless symmetric matrices $\}$.

If *u* and *v* are symmetric and traceless matrices then $u \circ v = \lambda$ is a scalar matrix.

In this way one defines a symmetric bilinear form on J; it is nondegenerate.

Therefore $J \cong B_2$.

Recall V can have several nonequivalent bilinear forms that define nonisomorphic Jordan algebras J.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The algebra J

We write $J = K \oplus \{$ traceless symmetric matrices $\}$.

If *u* and *v* are symmetric and traceless matrices then $u \circ v = \lambda$ is a scalar matrix.

In this way one defines a symmetric bilinear form on J; it is nondegenerate.

Therefore $J \cong B_2$.

Recall V can have several nonequivalent bilinear forms that define nonisomorphic Jordan algebras J.

Fortunately their (graded) identities are the same.

$\begin{array}{ll} M_2(K) & M_2(K), {\rm char} K = p \neq 2 \\ \circ \circ$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras oooo●oooooooc
The algebra J			

Fix the following basis of J.

$$1 = e_{11} + e_{22}, \qquad a = e_{11} - e_{22}, \qquad b = e_{12} + e_{21}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$M_2(K) \qquad M_2(K), \text{ char} K = p \neq 2$	Applications	Graded <i>sl</i> 2 oooooooooo	Jordan algebras
The algebra J			

Fix the following basis of *J*.

$$1 = e_{11} + e_{22}, \qquad a = e_{11} - e_{22}, \qquad b = e_{12} + e_{21}.$$

Then

$$a^2 = b^2 = 1, \qquad a \circ b = 0.$$

<□ > < @ > < E > < E > E のQ @

$M_2(K) \qquad M_2(K), char K = p \neq 2$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras oooo●oooooooo
The algebra J			

Fix the following basis of J.

$$1 = e_{11} + e_{22}, \qquad a = e_{11} - e_{22}, \qquad b = e_{12} + e_{21}.$$

Then

 \mathbf{z}

$$a^2 = b^2 = 1, \qquad a \circ b = 0.$$

Hence if $V_2 = sp(a, b)$ then $J = K \oplus V_2$ is a Jordan algebra of a symmetric bilinear form on V_2 .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Gradings on B by C_2

Now fix $G = C_2$, the cyclic group of order 2. It follows

Theorem

Let $B = K \oplus V$ be a Jordan algebra of a bilinear form. Every *G*-grading on *B* is defined by splitting *V* into a direct sum of two orthogonal subspaces. The same holds for B_n .

(日) (日) (日) (日) (日) (日) (日)

Gradings on B by C_2

Now fix $G = C_2$, the cyclic group of order 2. It follows

Theorem

Let $B = K \oplus V$ be a Jordan algebra of a bilinear form. Every *G*-grading on *B* is defined by splitting *V* into a direct sum of two orthogonal subspaces. The same holds for B_n .

The above theorem is a particular case of the above cited classification of the gradings on B and B_n given by Bahturin and Shestakov.

Gradings on B by C_2

Now fix $G = C_2$, the cyclic group of order 2. It follows

Theorem

Let $B = K \oplus V$ be a Jordan algebra of a bilinear form. Every *G*-grading on *B* is defined by splitting *V* into a direct sum of two orthogonal subspaces. The same holds for B_n .

The above theorem is a particular case of the above cited classification of the gradings on B and B_n given by Bahturin and Shestakov.

On the other hand it can be obtained directly (and quite easily).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Gradings on J

Corollary

Up to a graded isomorphism there are two nontrivial gradings on $J = J_0 \oplus J_1$.

• the nonscalar grading

$$J_0 = sp(1, a), \qquad J_1 = sp(b).$$

the scalar grading

$$J_0 = K$$
, $J_1 = sp(a, b)$.

The nonscalar grading

We denote

$$(x, y, z) = (xy)z - x(yz)$$

the associator of x, y, z in a nonassociative algebra.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The nonscalar grading

We denote

$$(x, y, z) = (xy)z - x(yz)$$

the associator of x, y, z in a nonassociative algebra. In long associators the (missing) parentheses are supposed left normed:

$$(x, y, z, t, u) = ((x, y, z), t, u).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The nonscalar grading

We denote

$$(x, y, z) = (xy)z - x(yz)$$

the associator of x, y, z in a nonassociative algebra. In long associators the (missing) parentheses are supposed left normed:

$$(x, y, z, t, u) = ((x, y, z), t, u).$$

Recall we use y and z for even, respectively odd variables. Letters x denote any of these.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The nonscalar grading

Denote by *I* the ideal of graded identities generated by the polynomials

$$\begin{aligned} x_1(x_2x_3) - x_2(x_1x_3), & |x_1| = |x_2| \\ (y_1y_2, z_1, z_2) - (y_1(y_2, z_1, z_2) + y_2(y_1, z_1, z_2) - 2z_1(z_2, y_1, y_2)) \\ (y_1y_2, y_3, z_1) - (y_1(y_2, y_3, z_1) + y_2(y_1, y_3, z_1)) \\ (z_1z_2, x_1, x_2) \\ (y_1, y_2, z_1, x, y_3) - (y_1, y_3, z_1, x, y_2) \end{aligned}$$

000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000
Grado	h idantitiae		

Let T be the ideal of graded identities of J (with the nonscalar grading).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Graded identities			
$M_2(K)$ $M_2(K)$, char $K = \rho \neq 2$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras ○○○○○○○○○○○○

Let T be the ideal of graded identities of J (with the nonscalar grading).

Lemma
$$I \subseteq T.$$

Hence we can work modulo *I*. Denote L = J(X)/I, *L* is a graded Jordan algebra.

Lemma

Let $L = L_0 \oplus L_1$. Then

- The subalgebra L_0 is associative.
- 2 The subalgebra of L generated by L₁ is associative.

A technical lemma

We give several (quite a lot) consequences of the identities in *I*.

Lemma

The following polynomials lie in I.

(a)
$$(x_1, x_2, x_3), |x_1| = |x_3|;$$

(b)
$$(y_1z_1, y_2, y_3) - y_1(z_1, y_2, y_3);$$

A technical lemma

We give several (quite a lot) consequences of the identities in *I*.

Lemma

The following polynomials lie in I.

(a)
$$(x_1, x_2, x_3), |x_1| = |x_3|;$$

(b)
$$(y_1z_1, y_2, y_3) - y_1(z_1, y_2, y_3);$$

(c)
$$(z_1, y_1, \dots, y_{2k}) - (z_1, y_{\sigma(1)}, \dots, y_{\sigma(2k)}), \sigma \in S_{2k};$$

(d)
$$(z_1, y_1, \dots, y_{2k}, z_2, y_{2k+1}) - (z_{\tau(1)}, y_{\sigma(1)}, \dots, y_{\sigma(2k)}, z_{\tau(2)}, y_{\sigma(2k+1)}), \sigma \in S_{2k+1}, \tau \in S_2.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Another technical lemma

Lemma

The following polynomials lie in I. (i) $(y_1, z_2, (y_2z_1)) - (y_2(y_1, z_1, z_2) + z_1(y_1, y_2, z_2));$ (ii) $z_1(z_2, z_3, y_1);$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Another technical lemma

Lemma

The following polynomials lie in I. (i) $(y_1, z_2, (y_2z_1)) - (y_2(y_1, z_1, z_2) + z_1(y_1, y_2, z_2));$ (ii) $z_1(z_2, z_3, y_1);$ (iii) $(z_1z_2)(z_3, x, y_1) - (z_1, z_2, y_1, x, z_3);$ (iv) $(y_1, z_1, z_2)(y_2, z_3, z_4) - z_1(y_1, z_2, z_3, y_2, z_4);$ (v) $(y_1, y_2, z_1)(y_3, y_4, z_2) - z_1(z_2, y_1, y_2, y_3, y_4).$

Another technical lemma

Lemma

The following polynomials lie in I. (i) $(y_1, z_2, (y_2z_1)) - (y_2(y_1, z_1, z_2) + z_1(y_1, y_2, z_2));$ (ii) $z_1(z_2, z_3, y_1);$ (iii) $(z_1z_2)(z_3, x, y_1) - (z_1, z_2, y_1, x, z_3);$ (iv) $(y_1, z_1, z_2)(y_2, z_3, z_4) - z_1(y_1, z_2, z_3, y_2, z_4);$ (v) $(y_1, y_2, z_1)(y_3, y_4, z_2) - z_1(z_2, y_1, y_2, y_3, y_4).$

Corollary

If u_1 and u_2 are two nonzero associators of the same multidegree in L. Then $u_1 = \pm u_2$.

Applications

Graded *sl*2

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Jordan algebras

The basis of graded identities

Here it should go a handful of slides containing technical details and computations. These occupy some 5 pages of computations. Applications

Graded *sl*2

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Jordan algebras

The basis of graded identities

Here it should go a handful of slides containing technical details and computations. These occupy some 5 pages of computations.

Instead we omit these altogether and state the main result.

Theorem (D. Silva, PK)

The ideal of graded identities of J with the nonscalar grading coincides with I.
$M_2(K) \qquad M_2(K), \text{ char} K = p \neq 2$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras 00000000000000
The scalar grading			

The scalar grading: $J = K \oplus V_2$.

The scalar grading is "easier" to resolve in a general setup.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The scalar grading

The scalar grading: $J = K \oplus V_2$.

The scalar grading is "easier" to resolve in a general setup. We describe the graded identities of the Jordan algebras B and B_n of a nondegenerate symmetric bilinear form on the vector spaces V and V_n , respectively.

We start with $B = K \oplus V$.

Here $B^{(0)} = K$, and $B^{(1)} = V$ (using upper indices).

The scalar grading

The scalar grading: $J = K \oplus V_2$.

The scalar grading is "easier" to resolve in a general setup. We describe the graded identities of the Jordan algebras B and B_n of a nondegenerate symmetric bilinear form on the vector spaces V and V_n , respectively.

We start with $B = K \oplus V$.

Here $B^{(0)} = K$, and $B^{(1)} = V$ (using upper indices).

Lemma

The associator

$$(y, x_1, x_2)$$

is a graded identity for B.

	00000000	0000000000	000000000000000000000000000000000000000
A reduction			

Denote by *I* the ideal of graded identities generated by this associator, and set L = J(X)/I.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$M_2(K) \qquad \qquad M_2(K), \text{ char } K = p \neq 2$	Applications	Graded <i>sl</i> 2 000000000	Jordan algebras
A reduction			

Denote by *I* the ideal of graded identities generated by this associator, and set L = J(X)/I. Let $f(y_1, \ldots, y_p, z_1, \ldots, z_q)$ be multihomogeneous.

Lemma

In L one has

$$f(y_1,\ldots,y_p,z_1,\ldots,z_q)=y_1^{n_1}\ldots y_p^{n_p}g(z_1,\ldots,z_q)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where g depends on the variables z only.

 $M_2(K) \qquad M_2(K), \text{ char} K = p \neq 2$

Applications

Graded sl₂ 0000000000 Jordan algebras

Weak identities and graded identities

Recall what a weak Jordan identity is.

Graded sl₂ 0000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Jordan algebras

Weak identities and graded identities

Recall what a weak Jordan identity is.

Corollary

Let f be as above. Then the following are equivalent.

f is a graded identity for B.

Graded sl₂ 0000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Jordan algebras

Weak identities and graded identities

Recall what a weak Jordan identity is.

Corollary

Let f be as above. Then the following are equivalent.

- f is a graded identity for B.
- g is a graded identity for B.
- **(3)** g is a weak Jordan identity for the pair (B, V).

Another reduction			
$M_2(K)$ $M_2(K)$, char $K = p \neq 2$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras

Let *M* be the subalgebra of L = J(X)/I generated by all variables *Z*. Then $M = M^{(0)} \oplus M^{(1)}$ is *C*₂-graded (induced by the grading on *L*).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let *M* be the subalgebra of L = J(X)/I generated by all variables *Z*. Then $M = M^{(0)} \oplus M^{(1)}$ is *C*₂-graded (induced by the grading on *L*).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Lemma

- The subalgebra $M^{(0)}$ is spanned by all products $(z_{i_1}z_{j_1})...(z_{i_k}z_{j_k}).$
- 2 The vector space $M^{(1)}$ is spanned by all $z_{i_0}(z_{i_1}z_{j_1})\dots(z_{i_k}z_{j_k}).$

Weak identities			
$\begin{array}{cc} M_2(K) & M_2(K), {\rm char} K = \rho \neq 2 \\ OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras

Recall *B* is a special Jordan algebra and the Clifford algebra *C* is its associative envelope.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Weak identities			
$\begin{array}{ll} M_2(K) & M_2(K), {\rm char} K = \rho \neq 2 \\ ooooooooooooooooooooooooooooooooooo$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras

Recall *B* is a special Jordan algebra and the Clifford algebra *C* is its associative envelope.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The weak (associative) identities for (C, V) and for (C_n, V_n) were described as follows.

- If char K = 0, by Drensky and PK.
- If K is infinite of characteristic $p \neq 2$, by PK.

Weak identities			
$M_2(K) \qquad M_2(K), char K = p \neq 2$	Applications	Graded <i>sl</i> 2 0000000000	Jordan algebras

Recall *B* is a special Jordan algebra and the Clifford algebra *C* is its associative envelope.

(日) (日) (日) (日) (日) (日) (日)

The weak (associative) identities for (C, V) and for (C_n, V_n) were described as follows.

- If char K = 0, by Drensky and PK.
- If K is infinite of characteristic $p \neq 2$, by PK.

The latter result relied heavily on the invariants of the orthogonal group O_n .

Graded sl₂ 0000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Jordan algebras

Basis of the weak Jordan identities

We use again Invariant theory, and obtain the following theorem.

Theorem (D. Silva, PK)

The weak Jordan identities for the pair (B, V) are consequences of the polynomial (x₁x₂, x₃, x₄).

Graded sl₂ 0000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Jordan algebras

Basis of the weak Jordan identities

We use again Invariant theory, and obtain the following theorem.

Theorem (D. Silva, PK)

- The weak Jordan identities for the pair (B, V) are consequences of the polynomial (x₁x₂, x₃, x₄).
- 2 The weak Jordan identities for the pair (B_n, V_n) follow from (x_1x_2, x_3, x_4) and

$$f_n = \sum (-1)^{\sigma} x_{\sigma(1)}(x_{n+2}x_{\sigma(2)}) \dots (x_{2n+1}x_{\sigma(n+1)})$$

Graded sl₂ 0000000000 Jordan algebras

The basis of graded identities

Recall that $I = \langle (y, x_1, x_2) \rangle$.

Corollary

1. The ideal of the graded identities for B with the scalar grading coincides with the ideal I.

Graded sl₂ 0000000000 Jordan algebras

The basis of graded identities

Recall that $I = \langle (y, x_1, x_2) \rangle$.

Corollary

1. The ideal of the graded identities for B with the scalar grading coincides with the ideal I.

2. The ideal of the graded identities for B_n with the scalar grading is generated by (y, x_1, x_2) and by the identity

$$g_n = \sum (-1)^{\sigma} z_{\sigma(1)}(z_{n+2}z_{\sigma(2)}) \dots (z_{2n+1}z_{\sigma(n+1)})$$

where $\sigma \in S_{n+1}$.

Graded sl₂ 0000000000 Jordan algebras

The basis of graded identities

Recall that $I = \langle (y, x_1, x_2) \rangle$.

Corollary

1. The ideal of the graded identities for B with the scalar grading coincides with the ideal I.

2. The ideal of the graded identities for B_n with the scalar grading is generated by (y, x_1, x_2) and by the identity

$$g_n = \sum (-1)^{\sigma} z_{\sigma(1)}(z_{n+2} z_{\sigma(2)}) \dots (z_{2n+1} z_{\sigma(n+1)})$$

where $\sigma \in S_{n+1}$.

3. The graded identities for the Jordan algebra of the symmetric 2×2 matrices (with the scalar grading) follow from (y, x_1, x_2) and

$$\sum (-1)^{\sigma} \mathsf{Z}_{\sigma(1)}(\mathsf{Z}_4 \mathsf{Z}_{\sigma(2)})(\mathsf{Z}_5 \mathsf{Z}_{\sigma(3)}), \quad \sigma \in \mathcal{S}_3.$$