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Step one (char K = 0)

Consider the Lie algebra sl2 = sl2(K ).
One has M2 = K ⊕ sl2.

Moreover sl2 has a symmetric, nondegenerate bilinear form:

u ◦ v = (1/2)(uv + vu),u, v ∈ sl2.

Hence a fundamental identity in M2:

h5 = [[x1, x2] ◦ [x3, x4], x5] = 0.

As dim M2 = 4 one has the standard identity

s4 =
∑

(−1)σxσ(1)xσ(2)xσ(3)xσ(4) = 0.
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Technical matters

It can be shown that modulo s4, the polynomial h5 is equivalent,
as a PI, to

[[x1, x2]
2, x1].

Important relation in M2:

if u, v , w ∈ sl2 then (u ◦ v)w ∈ sl2.

More precisely (w = [x1, x2])

(u ◦ v)w = (1/8)([x1,u, v , x2] + [x1, v ,u, x2]

−[x2,u, x1, v ]− [x2, v , x1,u]).

The latter is not so technical. . .
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Weak (Lie) identities

Let L be a Lie algebra and A an associative envelope of A.
We denote K (X ) the free associative algebra and by L(X ) the
free Lie algebra, L(X ) ⊆ K (X )−.

Definition
1. A polynomial f ∈ K (X ) is a weak identity for the pair (A,L) if
f = 0 when evaluated on L.
2. T (A,L) = {f ∈ K (X ) | f is a weak identity for (A,L)}.

Clearly T (A,L) is an ideal; it is closed under Lie substitutions.
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Weak identities (cont’d)

One may consider weak identities in a more general setting.
Suppose A is an algebra and V a vector subspace of A such
that V generates A as an algebra.

Definition
The polynomial f (x1, . . . , xn) is a weak identity for the pair
(A,V ) if f (v1, . . . , vn) = 0 for all vi ∈ V .

Clearly the set T (A,V ) of all weak identities for (A,V ) is an
ideal. It is closed under linear substitutions of the variables.
Depending on the properties of A and of V one defines rules for
taking consequences and thus different types of weak identities.
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Weak identities (cont’d)

Assume P ⊆ K (X ) is a (nonempty) set of polynomials such that
p(v1, . . . , vn) ∈ V for every p ∈ P and vi ∈ V .

Definition
The polynomial g is a P-consequence of f ∈ T (A,V ) if g lies in
the ideal generated by all f (p1, . . . ,pn), pi ∈ P.

Depending on the set P (and on the properties of A and V ) we
obtain different types of weak identities.
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Weak identities: examples

P = K (X ) and A = V : the ordinary PI’s for A together with
the usual consequences.

P = L(X ), the free Lie algebra (L(X ) ⊆ K (X )). If
[V ,V ] ⊆ V one obtains the weak Lie identities for the pair
(A,V ).
P = SJ(X ), the free special Jordan algebra
(SJ(X ) ⊆ K (X )). If V ◦ V ⊆ V we have the weak Jordan
identities.
P = sp(X ) If (A,V ) is a pair “an associative algebra — a
vector space” then the ideal T (A,V ) is P–closed. In this
way we obtain the weakest PI’s.
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Weak identities: examples

Let P = sp(X ) and let GL = GL(P). Then GL acts on P and
hence on the tensor algebra K (X ) of P.

Thus T (A,V ) is GL-invariant (that is we may substitute the
variables of f ∈ T (A,V ) by linear combinations of these).
That is why the latter (weakest) PI’s are called sometimes
GL-identities.
One defines variety of pairs in the usual way.
Assuming K infinite then T (A,V ) is generated by its
multihomogeneous elements; if char K = 0 then it is generated
by its multilinear elements.
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Back to M2 and sl2

Fix V = sl2, A = M2, char K = 0.

Theorem (Razmyslov)

The weak Lie identities for (A,V ) follow from

[x ◦ y , z].

The proof concerns multilinear polynomials only. Let

I = 〈[x ◦ y , z]〉.

One shows that for each f (x1, . . . , xn) ∈ K (X )

f (x1, . . . , xn)− f (xσ(1), . . . , xσ(n)) ∈ I, σ ∈ Sn.
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The identities of sl2

These are much trickier than the weak ones.

Theorem (Razmyslov)
Let char K = 0. The identities of sl2 admit a finite basis.

Recall that Razmyslov proved the identities of sl2 follow from
those of small degree.

Later on an analysis on the identities of degree up to 6 proved
that:



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

The identities of sl2

These are much trickier than the weak ones.

Theorem (Razmyslov)
Let char K = 0. The identities of sl2 admit a finite basis.

Recall that Razmyslov proved the identities of sl2 follow from
those of small degree.
Later on an analysis on the identities of degree up to 6 proved
that:



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

The identities of sl2

Corollary (Drensky)
The polynomials

f =
∑

(−1)σ[[xσ(1), x1, x1], [xσ(2), xσ(3)]] (3,1,1)

g =
∑

(−1)σ[x1, xσ(1), xσ(2)], [xσ(3), xσ(4)]], (2,1,1,1)

form a basis of the identities of sl2.

The linearizations of these polynomials generate irreducible
S5-modules hence the above system is minimal.

Corollary (Filippov)
A basis of the identities of sl2 is given by

v5 = [x2, x3, [x4, x1], x1] + [x2, x1, [x3, x1], x4].
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From sl2 to M2

One studies proper polynomials only; that is linear
combinations of products of commutators = Lie elements.

Denote by I the ideal of identities in K (X ) generated by

h5 = [[x1, x2] ◦ [x3, x4], x5]

s4 =
∑

(−1)σxσ(1)xσ(2)xσ(3)xσ(4)

r6 = (u ◦ v)w − (1/8)([x1,u, v , x2] + [x1, v ,u, x2]

−[x2,u, x1, v ]− [x2, v , x1,u])

where u, v , w are commutators, w = [x1, x2].
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Proper elements

Let f (x1, . . . , xn) be a proper multilinear polynomial.
Step one: f can be written, modulo I, as

f = `+ p.

Here ` is a Lie element;
p is a linear combination of

pi ◦ [xi , x1],1 ≤ i ≤ n

where pi are commutators.

Step two: f is an identity for M2 if and only if
both p and ` are identities for M2.
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Proper elements (cont’d)

Let p =
∑

ai(ci ◦ [di , x1]) be multilinear.
Here ci , di are commutators, deg ci ≥ 2.

Corollary
The polynomial p is an identity for M2 if and only if∑

ai [ci ,di ] is an identity for sl2 (and for M2 as well).

Now add to the ideal I the basis of the identities of sl2.
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The identities of M2

Thus I is the T-ideal generated by

h5 = [[x1, x2] ◦ [x3, x4], x5]

s4 =
∑

(−1)σxσ(1)xσ(2)xσ(3)xσ(4)

r6 = (u ◦ v)w − (1/8)([x1,u, v , x2] + [x1, v ,u, x2]

−[x2,u, x1, v ]− [x2, v , x1,u])

v5 = [x2, x3, [x4, x1], x1] + [x2, x1, [x3, x1], x4]



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

The identities of M2

Linearize v5 and write it as

lin(v5) =
∑

ai [bi , ci ]

where deg bi ≥ 2 (bi , ci are commutators).

One has then
w6 =

∑
aibi ◦ [ci , x ]

is an identity for M2.
Add w6 to the T-ideal I. Thus

I = 〈s4,h5, r6, v5,w6〉T
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The basis for T (M2)

Theorem (Razmyslov)
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It is easy to show that v5 follows from s4 only.

Corollary (Drensky)
The basis of the identities of M2 in characteristic 0 consists of

s4, h5.
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The scheme of proof

From now on assume K is infinite field, char K 6= 2.
The main steps in the proof are the following.

1 Describe a basis of the identities of sl2.
2 Describe a basis of the weak identities of (M2, sl2).
3 Transfer all this to a basis of the identities of M2.
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Main Obstacles

The principal difficulties in such an approach are:

1 You cannot consider multilinear polynomials only.
2 You have to deal with multihomogeneous polynomials

instead.
3 You cannot use the representations of Sn

(neither those of GLm).
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The specifics of M2

The algebra sl2 has a well behaving nondegenerate symmetric
bilinear form:

u ◦ v = λI, u, v ∈ sl2, λ ∈ K .

One may consider the orthogonal group of such a form. Its
invariants are well known over infinite fields.
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The invariants of On

Let xi = (xi1, . . . , xin) be ”vectors” whose coordinates xij are
commuting variables, and define the symmetric, nondegenerate
bilinear form

xi ◦ xj = xi1xj1 + · · ·+ xinxjn

on the span of these vectors.

The invariants of the orthogonal group On were described by
De Concini and Procesi for K infinite.
The algebra of On-invariants in K [xij ] is generated by all xi ◦ xj :

K [xij ]
On = K [xi ◦ xj ].
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Invariants

Define the double tableau

T =

 p11 p12 . . . p1m1 q11 q12 . . . q1m1

p21 p22 . . . p2m2 q21 q22 . . . q2m2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
pk1 pk2 . . . pkmk qk1 qk2 . . . qkmk

 .

Here n ≥ m1 ≥ m2 ≥ · · · ≥ mk ≥ 0
and pij , qij are positive integers.

T is standard (or doubly standard) if the ordinary tableau
obtained from T is standard (or semistandard): Its entries:
increase strictly along the rows;
increase (with possible repetitions) along the columns.
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Theorem (De Concini, Procesi)

The algebra K [xij ]
On admits a basis indexed by all doubly

standard tableaux with m1 ≤ n.

For T = (p1p2 . . . pm | q1q2 . . . qm) define the polynomial

ϕ̃(T ) =
∑

(−1)σ(xp1 ◦ xqσ(1)
)(xp2 ◦ xqσ(2)

) . . . (xpm ◦ xqσ(m)
)

One has ϕ̃(T ) = det((xpi ◦ xqj )).
If T 1, . . . , T k are the rows of T then

ϕ̃(T ) = ϕ̃(T 1) · · · ϕ̃(T k )

Corollary

The polynomials ϕ̃(T ) form a basis for K [xij ]
On .



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

Theorem (De Concini, Procesi)

The algebra K [xij ]
On admits a basis indexed by all doubly

standard tableaux with m1 ≤ n.

For T = (p1p2 . . . pm | q1q2 . . . qm) define the polynomial

ϕ̃(T ) =
∑

(−1)σ(xp1 ◦ xqσ(1)
)(xp2 ◦ xqσ(2)

) . . . (xpm ◦ xqσ(m)
)

One has ϕ̃(T ) = det((xpi ◦ xqj )).
If T 1, . . . , T k are the rows of T then

ϕ̃(T ) = ϕ̃(T 1) · · · ϕ̃(T k )

Corollary

The polynomials ϕ̃(T ) form a basis for K [xij ]
On .



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

Theorem (De Concini, Procesi)

The algebra K [xij ]
On admits a basis indexed by all doubly

standard tableaux with m1 ≤ n.

For T = (p1p2 . . . pm | q1q2 . . . qm) define the polynomial

ϕ̃(T ) =
∑

(−1)σ(xp1 ◦ xqσ(1)
)(xp2 ◦ xqσ(2)

) . . . (xpm ◦ xqσ(m)
)

One has ϕ̃(T ) = det((xpi ◦ xqj )).

If T 1, . . . , T k are the rows of T then

ϕ̃(T ) = ϕ̃(T 1) · · · ϕ̃(T k )

Corollary

The polynomials ϕ̃(T ) form a basis for K [xij ]
On .



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

Theorem (De Concini, Procesi)

The algebra K [xij ]
On admits a basis indexed by all doubly

standard tableaux with m1 ≤ n.

For T = (p1p2 . . . pm | q1q2 . . . qm) define the polynomial

ϕ̃(T ) =
∑

(−1)σ(xp1 ◦ xqσ(1)
)(xp2 ◦ xqσ(2)

) . . . (xpm ◦ xqσ(m)
)

One has ϕ̃(T ) = det((xpi ◦ xqj )).
If T 1, . . . , T k are the rows of T then

ϕ̃(T ) = ϕ̃(T 1) · · · ϕ̃(T k )

Corollary

The polynomials ϕ̃(T ) form a basis for K [xij ]
On .



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

Theorem (De Concini, Procesi)

The algebra K [xij ]
On admits a basis indexed by all doubly

standard tableaux with m1 ≤ n.

For T = (p1p2 . . . pm | q1q2 . . . qm) define the polynomial

ϕ̃(T ) =
∑

(−1)σ(xp1 ◦ xqσ(1)
)(xp2 ◦ xqσ(2)

) . . . (xpm ◦ xqσ(m)
)

One has ϕ̃(T ) = det((xpi ◦ xqj )).
If T 1, . . . , T k are the rows of T then

ϕ̃(T ) = ϕ̃(T 1) · · · ϕ̃(T k )

Corollary

The polynomials ϕ̃(T ) form a basis for K [xij ]
On .



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

Invariants for SOn

Let
〈i1, i2, . . . , in〉 = det(xi1 , . . . , xin)

be the determinant formed by the coordinates of the vectors
above.

Theorem (De Concini, Procesi)
The invariants of SOn are generated by those of On plus the
above determinant.

Formally one puts an initial row on top of T whose first half is
void.
One usually assigns values (−n,−(n − 1), . . . ,−1) to this first
half. Then a basis of K [xij ]

SOn is given by all standard tableaux
T .
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Straightening rules

Every double tableaux is a linear combination of standard ones.

The rules for obtaining such a presentation are called
The straightening algorithm.
Such rules were described in the general case by De Concini
and Procesi.
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Outline

1 The fundamental example: The algebra M2(K )
Characteristic zero case
Weak identities
The identities of sl2
The identities of M2

2 The identities of M2 when charK = p 6= 2
Back to M2

3 Other applications of the method
Identities with involution
More (on) weak identities

4 Graded identities for sl2
Graded Lie identities

5 Graded identities for Jordan algebras
Graded Jordan identities
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The scheme of proof

Recall that K is an infinite field, char K 6= 2.
The main steps in the proof are the following.

1 Describe a basis of the identities of sl2.
2 Describe a basis of the weak identities of (M2, sl2).
3 Transfer all this to a basis of the identities of M2.
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The identities of sl2

A basis of the identities of sl2 was described by Vasilovsky.

Theorem (Vasilovsky)
Let K be infinite, charK 6= 2. The ideal of identities of sl2 is
generated by the single identity

v5 = [x2, x3, [x4, x1], x1] + [x2, x1, [x3, x1], x4].
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The weak identities of (M2, sl2)

Theorem (PK)
Let K be infinite, charK 6= 2. The ideal of the weak Lie identities
for (M2, sl2) is generated by [x2, y ].

We recall that the same ideal was described, in characteristic 0,
also by Drensky and PK, as a GL-ideal.

Theorem (Drensky, PK)

The GL-ideal of (M2, sl2) is generated by [x2, y ] and by s4.

The result in the latter paper was much more general.
It was transferred to positive characteristic by PK as well.
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The identities of M2

Theorem (PK)

Let K be infinite, charK 6= 2. Then T (M2) is generated by

h5 = [[x1, x2] ◦ [x3, x4], x5]

s4 =
∑

(−1)σxσ(1)xσ(2)xσ(3)xσ(4)

r6 = (u ◦ v)w − (1/8)([x1,u, v , x2] + [x1, v ,u, x2]

−[x2,u, x1, v ]− [x2, v , x1,u])

and by w6.

In r6 in the above theorem w = [x1, x2].
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The identities of M2

Corollary (PK)
If charK > 5 then the basis consists of s4 and h5.
If charK = 3 then s4, h5 and r6 are independent.

Corollary (Colombo, PK)

If charK = 3 then s4, h5 and r6 form a basis of T (M2).
If charK = 5 then s4 and h5 form a basis of T (M2).



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

The identities of M2

Corollary (PK)
If charK > 5 then the basis consists of s4 and h5.
If charK = 3 then s4, h5 and r6 are independent.

Corollary (Colombo, PK)

If charK = 3 then s4, h5 and r6 form a basis of T (M2).
If charK = 5 then s4 and h5 form a basis of T (M2).



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

The recipe

The identity

[x1, x2](u ◦ v) − (1/8)([x1,u, v , x2] + [x1, v ,u, x2]

− [x2,u, x1, v ]− [x2, v , x1,u])

holds for M2.

Define a transformation L(u, v) on M2 (or sl2) as follows

[x1, x2]L(u, v) = (1/8)([x1,u, v , x2] + [x1, v ,u, x2]

+[x2,u, x1, v ] + [x2, v , x1,u])

for u, v ∈ sl2.
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The recipe

Thus the following is a weak identity for M2

[x1, x2]L(u, v) = [x1, x2] ◦ (u ◦ v)

u, v ∈ sl2.

This was first observed by Iltyakov for nonassociative algebras
(the expressions involved are more complicated).
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The recipe, sl2

One considers separately polynomials of even and of odd
degree.

When deg f is even you write it as∑
ai [xi , xj ]P(L)

When deg f is odd you write it as∑
ai [xi , xj , xk ]P(L)

Here P(L) is a polynomial in the operators L(u, v).
In this way you split the relatively free algebra. In a sense you
may consider it as a module over the (commutative) algebra of
operators generated by the L(u, v).



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

The recipe, sl2

One considers separately polynomials of even and of odd
degree.

When deg f is even you write it as∑
ai [xi , xj ]P(L)

When deg f is odd you write it as∑
ai [xi , xj , xk ]P(L)

Here P(L) is a polynomial in the operators L(u, v).

In this way you split the relatively free algebra. In a sense you
may consider it as a module over the (commutative) algebra of
operators generated by the L(u, v).



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

The recipe, sl2

One considers separately polynomials of even and of odd
degree.

When deg f is even you write it as∑
ai [xi , xj ]P(L)

When deg f is odd you write it as∑
ai [xi , xj , xk ]P(L)

Here P(L) is a polynomial in the operators L(u, v).
In this way you split the relatively free algebra. In a sense you
may consider it as a module over the (commutative) algebra of
operators generated by the L(u, v).
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The recipe, sl2

Afterwards one associates to each element as before, a double
tableau.
Using the straightening rules one gets linear combinations of
standard tableaux.

As the straightening rules are implied by identities for sl2 one
gets a (finite) basis of its identities.
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The difficulties, sl2

Here we list some of the critical points (the case of sl2).
1 The transformations L are well defined.
2 The straightening rules are indeed identities for sl2.

3 The straightening rules follow from known identities of sl2.
4 Reduce the identities to one of them.
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The recipe, M2

Sort of similar to that of sl2. One deals with proper polynomials
only.

1 Work modulo s4, h5, v5.
2 Consider only proper non-Lie polynomials.
3 If f is proper then it is a combination of g1 ◦ g2, both

commutators.
4 Define (g1 ◦ g2)L(u, v) = g1 ◦ (g2L(u, v)).
5 Follow the steps from above.



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

The recipe, M2

Sort of similar to that of sl2. One deals with proper polynomials
only.

1 Work modulo s4, h5, v5.
2 Consider only proper non-Lie polynomials.
3 If f is proper then it is a combination of g1 ◦ g2, both

commutators.

4 Define (g1 ◦ g2)L(u, v) = g1 ◦ (g2L(u, v)).
5 Follow the steps from above.



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

The recipe, M2

Sort of similar to that of sl2. One deals with proper polynomials
only.

1 Work modulo s4, h5, v5.
2 Consider only proper non-Lie polynomials.
3 If f is proper then it is a combination of g1 ◦ g2, both

commutators.
4 Define (g1 ◦ g2)L(u, v) = g1 ◦ (g2L(u, v)).
5 Follow the steps from above.



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

The difficulties, M2

Here the main problems are as follows.

1 L(u, v) are well defined (quite technical but as often
happens lengthy).

2 Separating even and odd degree proper elements gives
considerably more work. One considers

[xa, xb] ◦ [xc , xd ]; [xa, xb, xc] ◦ [xd , xe]

with suitable orders for the indices.

3 In odd degree one alternates on a, b, d . And all is acted on
by some P(L).

4 The straightening procedure yields a long list of identities.



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

The difficulties, M2

Here the main problems are as follows.

1 L(u, v) are well defined (quite technical but as often
happens lengthy).

2 Separating even and odd degree proper elements gives
considerably more work. One considers

[xa, xb] ◦ [xc , xd ]; [xa, xb, xc] ◦ [xd , xe]

with suitable orders for the indices.
3 In odd degree one alternates on a, b, d . And all is acted on

by some P(L).
4 The straightening procedure yields a long list of identities.



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

Outline

1 The fundamental example: The algebra M2(K )
Characteristic zero case
Weak identities
The identities of sl2
The identities of M2

2 The identities of M2 when charK = p 6= 2
Back to M2

3 Other applications of the method
Identities with involution
More (on) weak identities

4 Graded identities for sl2
Graded Lie identities

5 Graded identities for Jordan algebras
Graded Jordan identities
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Involutions on M2

By extending the field K one may assume it algebraically
closed.
Moreover one considers only involutions of first kind.

Hence only two involutions to consider.

1 The transpose t :
(

a b
c d

)
7→
(

a c
b d

)
2 The symplectic s:

(
a b
c d

)
7→
(

d −b
−c a

)
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Identities in characteristic 0

We denote by x symmetric and by y skew-symmetric variables.
(x ↔ (a + a∗)/2, y ↔ (a− a∗)/2)

Theorem (Levchenko)
Let charK = 0.
(a) A basis of the identities for (M2, t) consists of

[y1y2, x ], [y1, y2],
[x1, x2][x3, x4]− [x1, x3][x2, x4] + [x1, x4][x2, x3],

[y1x1y2, x2]− y1y2[x1, x2].

(b) A basis for the identities for (M2, s) consists of

[x1, x2], [x , y ].
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Characteristic p 6= 2

Theorem (Colombo, PK)
The same polynomials as in characteristic 0, form bases of the
identities with involution (t and s) for M2.

Consider first s, the symplectic involution.
1 The symmetric elements are just scalar matrices.
2 The PI’s depend only on skew variables (that is sl2).
3 Hence s-identities are weak identities for (M2, sl2).
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The transpose involution

Let t be the transpose involution on M2.

Lemma
Every identity is equivalent to one in symmetric variables only.

1 Define an analog to the transformation L(u, v) (for
symmetric variables only).

2 Consider proper elements and split them into three as
follows:

3 Products of two skew commutators; skew commutators,
symmetric commutators.

4 Follow the recipe for the ordinary PI’s (not much easier).
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GL-identities

Let V be a vector space with a nondegenerate symmetric
bilinear form, and denote by C its Clifford algebra.

Theorem

The GL-identities for (C,V ) are generated by [x2, y ] if
dim V =∞
If dim V = n one adds an analog of the standard polynomial,
wn+1. It is skew symmetric and multilinear, deg wn+1 = n + 1.

The polynomials wn are as follows: w1 = x1, w2 = [x1, x2],

wn+1 = [wn, xn+1] or wn+1 = wn ◦ xn+1

depending on whether n is odd or even.
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GL-identities

The theorem was first proved by Drensky and PK in
characteristic 0.
The proof relies on the representations of the symmetric and
general linear groups.

Later on it was extended to any characteristic p 6= 2. It is a sort
of simplified model for applying the invariants of the orthogonal
group.
It is necessary to split the relatively free algebra in various parts
in order to consider it as a ”good” module over the algebra of
operators L(u, v).
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Gradings on sl2

Assume charK = 0 and K algebraically closed. The following
fact is well known.

Theorem
Let sl2 be G-graded where G is a group. Then the grading is
equivalent to one of the following.

1 G = C2, sl2 =

(
a 0
0 −a

)
+

(
0 b
c 0

)
;

2 G = Z, sl2 =

(
0 0
c 0

)
+

(
a 0
−0 −a

)
+

(
0 b
0 0

)
;

3 G = C2 × C2,
(0,0)→ 0, (1,1)→ K (e11 − e22),
(0,1)→ K (e12 + e21), (1,0)→ K (e12 − e21).
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The grading by C2

The structure of the relatively free graded algebra (charK = 0)
with the grading by C2 was described by Repin.

Let f (y1, . . . , yk , z1, . . . , zn−k ) be multilinear, depending on
k even (degree 0) variables y and
n − k odd (degree 1) variables z.
Then Pk ,n−k is an Sk × Sn−k -module.
Denote Qk ,n−k the multilinear part of the relatively free algebra
of sl2 with the 2-grading, and χk ,n−k its character. Then

χk ,n−k =
∑

mλ,µ(χλ ⊗ χµ)

Here χλ ⊗ χµ is the irreducible Sk ,n−k character for the pair of
partitions (λ, µ).
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The grading by C2

Lemma (Repin)
If λ2 > 0 or µ3 > 0 then mλ,µ = 0.

Theorem (Repin)

Let G = C2, and let λ = (k), µ = (q + r ,q). Then mλ,µ = 1 if
and only if

n 6= k , n 6= r , r ≡2 1 or k + q ≡2 1.

In all remaining cases mλ,µ = 0.
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The grading by C2 × C2

Analogously for the C2 × C2-grading one has four sets of
variables, and Sp × Sq × Sr × St -module and character,
n = p + q + r + t .

Theorem (Repin)
mλ,µ,ν,π = 1 if and only if

λ = (p), µ = (q), ν = (r), π = (t),

and p = 0, q 6= n, r 6= n, t 6= n, and

q − r ≡2 1, or r − t ≡2 1

In all remaining cases mλ,µ,ν,π = 0.
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The grading by Z

The grading by Z is concentrated on −1, 0, 1.
Hence one considers Sp × Sq × Sr -modules and characters.

Theorem (Repin)
Let n = p + q + r > 1. Then mλ,µ,ν = 1 if and only if

λ = (p), µ = (q), ν = (r),

and p 6= n, q 6= n, r 6= n, and p = r or p = r ± 1.
In the remaining cases mλ,µ,ν = 0.
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Basis of the graded identities

We consider the grading by C2, assuming K infinite, charK 6= 2.
(So we cannot use the results of Repin.)

Theorem (PK)
The graded identities for sl2 with the C2-grading follow from

[y1, y2].

Recall that y are even, and z are odd variables.
We shall give a (very brief) sketch of the proof.
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Some graded identities

Denote I = 〈[y1, y2]〉.

Lemma
The following polynomials lie in I.

1 [z1, y1, . . . , yt , z2]− (−1)t−1[z2, y1, . . . , yt , z1].
2 [y , z1, z2, z3, z4]− [y , z3, z4, z1, z2].

3 [z1, z2, z3, y1, y2]− [z1, y1, y2, z2, z3].
4 [y1, z1, z2, z3, y2] = [y2, z1, z2, z3, y1].
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The operators L(a, b)

Now one defines the transformation L(a,b) as usual. If w1, w2,
a, b are elements of the Lie algebra L(Y ,Z )/I then
[w1,w2]L(a,b) equals

(1/8)([w1,a,b,w2]+[w1,b,a,w2]− [w2,a,w1,b]− [w2,b,w1,a]).

By using the above graded identities one deduces

Lemma
L(a,b) is well defined linear operator on [L(Y ,Z ),L(Y ,Z )].

Now one applies the invariants of the orthogonal group as done
several times earlier, and obtains the theorem.
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By using the above graded identities one deduces

Lemma
L(a,b) is well defined linear operator on [L(Y ,Z ),L(Y ,Z )].

Now one applies the invariants of the orthogonal group as done
several times earlier, and obtains the theorem.
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The remaining gradings

These follow from the description of the 2-graded identities.

Theorem
1 If G = Z then the graded identities follow from

[x1, x2],deg xi = 0, y = 0, |deg y | > 1.

2 If G = C2 × C2 then the graded identities follow from

t = 0, deg t = (0,0).
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Outline

1 The fundamental example: The algebra M2(K )
Characteristic zero case
Weak identities
The identities of sl2
The identities of M2

2 The identities of M2 when charK = p 6= 2
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More (on) weak identities

4 Graded identities for sl2
Graded Lie identities
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Graded Jordan identities
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The algebra J

Assume K is infinite, charK 6= 2.
Let J be the Jordan algebra of 2× 2 symmetric matrices.

It is simple, and it is isomorphic to the Jordan algebra of a
symmetric bilinear form on a vector space of dimension 2.

Definition
Let V be a vector space with a symmetric bilinear form f ,
dim V =∞. Define on B = K ⊕ V a product

(α+ u) ◦ (β + v) = (αβ + f (u, v)) + (αu + βv),

α, β ∈ K , u, v ∈ V . When dim V = n denote it Vn, resp. Bn.

The Jordan algebras B, Bn are simple (as long as f is
nondegenerate).
They are special (B ⊆ C where C is the Clifford algebra of V ).
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Gradings on B and on Bn

The gradings on B and Bn by a group G are known.

Theorem (Bahturin, Shestakov)
Let B = ⊕Bg be G-graded.
Then there exists a homogeneous basis T of V such that

T = E ∪ E ′ ∪ F, a disjoint union where
1 There is a 1–1 correspondence E ↔ E ′ with e↔ e′ and
|e| = |e′|−1 6= e ∈ G; |f |2 = e for all e ∈ E, f ∈ F.

2 F is orthonormal and F ⊥ E, F ⊥ E ′.
The converse also holds.
Analogously for Bn.
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The algebra J

We write J = K ⊕ { traceless symmetric matrices}.
If u and v are symmetric and traceless matrices then u ◦ v = λ
is a scalar matrix.

In this way one defines a symmetric bilinear form on J; it is
nondegenerate.
Therefore J ∼= B2.
Recall V can have several nonequivalent bilinear forms that
define nonisomorphic Jordan algebras J.
Fortunately their (graded) identities are the same.
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The algebra J

Fix the following basis of J.

1 = e11 + e22, a = e11 − e22, b = e12 + e21.

Then
a2 = b2 = 1, a ◦ b = 0.

Hence if V2 = sp(a,b) then J = K ⊕ V2 is a Jordan algebra of a
symmetric bilinear form on V2.
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Gradings on B by C2

Now fix G = C2, the cyclic group of order 2. It follows

Theorem
Let B = K ⊕ V be a Jordan algebra of a bilinear form. Every
G-grading on B is defined by splitting V into a direct sum of two
orthogonal subspaces.
The same holds for Bn.

The above theorem is a particular case of the above cited
classification of the gradings on B and Bn given by Bahturin
and Shestakov.
On the other hand it can be obtained directly (and quite easily).
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Gradings on J

Corollary
Up to a graded isomorphism there are two nontrivial gradings
on J = J0 ⊕ J1.

the nonscalar grading

J0 = sp(1,a), J1 = sp(b).

the scalar grading

J0 = K , J1 = sp(a,b).
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The nonscalar grading

We denote
(x , y , z) = (xy)z − x(yz)

the associator of x , y , z in a nonassociative algebra.

In long associators the (missing) parentheses are supposed left
normed:

(x , y , z, t ,u) = ((x , y , z), t ,u).

Recall we use y and z for even, respectively odd variables.
Letters x denote any of these.
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The nonscalar grading

Denote by I the ideal of graded identities generated by the
polynomials

x1(x2x3)− x2(x1x3), |x1| = |x2|
(y1y2, z1, z2)− (y1(y2, z1, z2) + y2(y1, z1, z2)− 2z1(z2, y1, y2))

(y1y2, y3, z1)− (y1(y2, y3, z1) + y2(y1, y3, z1))

(z1z2, x1, x2)

(y1, y2, z1, x , y3)− (y1, y3, z1, x , y2)
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Graded identities

Let T be the ideal of graded identities of J (with the nonscalar
grading).

Lemma
I ⊆ T .

Hence we can work modulo I.
Denote L = J(X )/I, L is a graded Jordan algebra.

Lemma
Let L = L0 ⊕ L1. Then

1 The subalgebra L0 is associative.
2 The subalgebra of L generated by L1 is associative.
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A technical lemma

We give several (quite a lot) consequences of the identities in I.

Lemma
The following polynomials lie in I.
(a) (x1, x2, x3), |x1| = |x3|;
(b) (y1z1, y2, y3)− y1(z1, y2, y3);

(c) (z1, y1, . . . , y2k )− (z1, yσ(1), . . . , yσ(2k)),
σ ∈ S2k ;

(d) (z1, y1, . . . , y2k , z2, y2k+1)−
(zτ(1), yσ(1), . . . , yσ(2k), zτ(2), yσ(2k+1)),
σ ∈ S2k+1, τ ∈ S2.
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Another technical lemma

Lemma
The following polynomials lie in I.

(i) (y1, z2, (y2z1))− (y2(y1, z1, z2) + z1(y1, y2, z2));
(ii) z1(z2, z3, y1);

(iii) (z1z2)(z3, x , y1)− (z1, z2, y1, x , z3);
(iv) (y1, z1, z2)(y2, z3, z4)− z1(y1, z2, z3, y2, z4);
(v) (y1, y2, z1)(y3, y4, z2)− z1(z2, y1, y2, y3, y4).

Corollary
If u1 and u2 are two nonzero associators of the same
multidegree in L. Then u1 = ±u2.
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The basis of graded identities

Here it should go a handful of slides containing technical details
and computations. These occupy some 5 pages of
computations.

Instead we omit these altogether and state the main result.

Theorem (D. Silva, PK)
The ideal of graded identities of J with the nonscalar grading
coincides with I.
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The scalar grading

The scalar grading: J = K ⊕ V2.
The scalar grading is ”easier” to resolve in a general setup.

We describe the graded identities of the Jordan algebras B and
Bn of a nondegenerate symmetric bilinear form on the vector
spaces V and Vn, respectively.
We start with B = K ⊕ V .
Here B(0) = K , and B(1) = V (using upper indices).

Lemma
The associator

(y , x1, x2)

is a graded identity for B.
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A reduction

Denote by I the ideal of graded identities generated by this
associator, and set L = J(X )/I.

Let f (y1, . . . , yp, z1, . . . , zq) be multihomogeneous.

Lemma
In L one has

f (y1, . . . , yp, z1, . . . , zq) = yn1
1 . . . ynp

p g(z1, . . . , zq)

where g depends on the variables z only.
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Weak identities and graded identities

Recall what a weak Jordan identity is.

Corollary
Let f be as above. Then the following are equivalent.

1 f is a graded identity for B.
2 g is a graded identity for B.
3 g is a weak Jordan identity for the pair (B,V ).
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Another reduction

Let M be the subalgebra of L = J(X )/I generated by all
variables Z .
Then M = M(0) ⊕M(1) is C2-graded (induced by the grading on
L).

Lemma
1 The subalgebra M(0) is spanned by all products

(zi1zj1) . . . (zik zjk ).
2 The vector space M(1) is spanned by all

zi0(zi1zj1) . . . (zik zjk ).
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Weak identities

Recall B is a special Jordan algebra and the Clifford algebra C
is its associative envelope.

The weak (associative) identities for (C,V ) and for (Cn,Vn)
were described as follows.

If charK = 0, by Drensky and PK.
If K is infinite of characteristic p 6= 2, by PK.

The latter result relied heavily on the invariants of the
orthogonal group On.



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

Weak identities

Recall B is a special Jordan algebra and the Clifford algebra C
is its associative envelope.
The weak (associative) identities for (C,V ) and for (Cn,Vn)
were described as follows.

If charK = 0, by Drensky and PK.
If K is infinite of characteristic p 6= 2, by PK.

The latter result relied heavily on the invariants of the
orthogonal group On.



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

Weak identities

Recall B is a special Jordan algebra and the Clifford algebra C
is its associative envelope.
The weak (associative) identities for (C,V ) and for (Cn,Vn)
were described as follows.

If charK = 0, by Drensky and PK.
If K is infinite of characteristic p 6= 2, by PK.

The latter result relied heavily on the invariants of the
orthogonal group On.



M2(K ) M2(K ), charK = p 6= 2 Applications Graded sl2 Jordan algebras

Basis of the weak Jordan identities

We use again Invariant theory, and obtain the following
theorem.

Theorem (D. Silva, PK)
1 The weak Jordan identities for the pair (B,V ) are

consequences of the polynomial (x1x2, x3, x4).

2 The weak Jordan identities for the pair (Bn,Vn) follow from
(x1x2, x3, x4) and

fn =
∑

(−1)σxσ(1)(xn+2xσ(2)) . . . (x2n+1xσ(n+1))
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The basis of graded identities

Recall that I = 〈(y , x1, x2)〉.

Corollary
1. The ideal of the graded identities for B with the scalar
grading coincides with the ideal I.

2. The ideal of the graded identities for Bn with the scalar
grading is generated by (y , x1, x2) and by the identity

gn =
∑

(−1)σzσ(1)(zn+2zσ(2)) . . . (z2n+1zσ(n+1))

where σ ∈ Sn+1.
3. The graded identities for the Jordan algebra of the symmetric
2× 2 matrices (with the scalar grading) follow from (y , x1, x2)
and ∑

(−1)σzσ(1)(z4zσ(2))(z5zσ(3)), σ ∈ S3.
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