Twisted Weyl algebras and their representations

Vyacheslav Futorny and Jonas Hartwig

IME-USP, São Paulo, Brazil

NF-2010

Definition (Mazorchuk & Turowska 1999): Given

- lacksquare R= a commutative algebra over a field k,
- $t = (t_1, \ldots, t_n) \in (R \setminus \{0\})^n,$
- $\sigma = (\sigma_1, \dots, \sigma_n) \in \operatorname{Aut}_{\Bbbk}(R)^n$ pairwise commuting,
- lacksquare $\mu = (\mu_{ij})_{i,j=1}^n$ matrix with $\mu_{ij} \in \mathbb{k} \setminus \{0\}$,

such that

$$t_i t_j = \mu_{ij} \mu_{ji} \sigma_j^{-1}(t_i) \sigma_i^{-1}(t_j) \quad \forall i \neq j,$$

Definition (Mazorchuk & Turowska 1999): Given

- lacksquare R= a commutative algebra over a field \Bbbk ,
- $t = (t_1, \ldots, t_n) \in (R \setminus \{0\})^n,$
- $\sigma = (\sigma_1, \ldots, \sigma_n) \in \operatorname{Aut}_{\mathbb{k}}(R)^n$ pairwise commuting,
- lacksquare $\mu=(\mu_{ij})_{i,j=1}^n$ matrix with $\mu_{ij}\in \mathbb{k}\backslash\{0\}$,

such that

$$t_i t_j = \mu_{ij} \mu_{ji} \sigma_j^{-1}(t_i) \sigma_i^{-1}(t_j) \quad \forall i \neq j,$$

the twisted generalized Weyl construction, $A' = A'(R, \sigma, t, \mu)$, is the R-ring generated by $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ modulo

$$X_i Y_j = \mu_{ij} Y_j X_i \quad (i \neq j) \tag{1.1}$$

$$Y_i X_i = t_i, X_i Y_i = \sigma_i(t_i), (1.2)$$

$$X_i r = \sigma_i(r) X_i, \qquad r Y_i = Y_i \sigma_i(r) \quad \forall r \in R.$$
 (1.3)

Any element of A' is a (non-unique) sum of elements of the form

$$rY_{i_1}\cdots Y_{i_k}X_{j_1}\cdots X_{j_l},$$

where $r \in R$.

Any element of A' is a (non-unique) sum of elements of the form

$$rY_{i_1}\cdots Y_{i_k}X_{j_1}\cdots X_{j_l}$$

where $r \in R$.

 \mathbb{Z}^n -gradation on A':

$$deg(r) = 0 \ \forall r \in R$$
,

$$\deg(X_i) = (0, \dots, 1^i, \dots, 0), \quad \deg(Y_i) = (0, \dots, -1^i, \dots, 0).$$

Let $I := \text{sum of all graded ideals } J \text{ in } A' \text{ with } J \cap (A'_0) = 0.$

Any element of A' is a (non-unique) sum of elements of the form

$$rY_{i_1}\cdots Y_{i_k}X_{j_1}\cdots X_{j_l}$$
,

where $r \in R$.

 \mathbb{Z}^n -gradation on A':

$$deg(r) = 0 \ \forall r \in R$$
,

$$\deg(X_i) = (0, \dots, 1^i, \dots, 0), \quad \deg(Y_i) = (0, \dots, -1^i, \dots, 0).$$

Let $I := \text{sum of all graded ideals } J \text{ in } A' \text{ with } J \cap (A'_0) = 0.$

The twisted generalized Weyl algebra $A = A_{\mu}(R, \sigma, t)$ is defined as

$$A = A'/I$$
.

Theorem

- **1** The construction of a twisted generalized Weyl algebra $A_{\mu}(R, \sigma, t)$ from a TGW datum (R, σ, t) defines a functor $A_{\mu}: \mathsf{TGW}_n(\Bbbk) \to \mathbb{Z}^n$ -GrAlg $_{\Bbbk}$. That is, for any morphism $\varphi: (R, \sigma, t) \to (R', \sigma', t')$ in $\mathsf{TGW}_n(\Bbbk)$ there is a morphism $A_{\mu}(\varphi): A_{\mu}(R, \sigma, t) \to A_{\mu}(R', \sigma', t')$ in \mathbb{Z}^n -GrAlg $_{\Bbbk}$ such that A_{μ} preserves compositions and identity morphisms.
- **2** Given any morphism $\varphi: (R, \sigma, t) \to (R', \sigma', t')$ in $TGW_n(\Bbbk)$, we have the following commutative diagram in \mathbb{Z}^n -GrAlg $_{\Bbbk}$:

$$R \xrightarrow{\varphi} R'$$

$$\downarrow^{\rho_{\mu,(R,\sigma,t)}} \qquad \qquad \downarrow^{\rho_{\mu,(R',\sigma',t')}}$$

$$A_{\mu}(R,\sigma,t) \xrightarrow{\mathcal{A}_{\mu}(\varphi)} A_{\mu}(R',\sigma',t')$$

$$(1.4)$$

The *n*:th Weyl algebra:

$$R = \mathbb{k}[t_1, \dots, t_n],$$
 $\sigma_i(t_j) = t_j + \delta_{ij} \quad \forall i, j$
 $\mu_{ij} = 1 \quad \forall i, j$

Then

$$I = \langle X_i X_j - X_j X_i, Y_i Y_j - Y_j Y_i \mid \forall i \neq j \rangle$$

and $A_{\mu}(R, \sigma, t) \simeq A_{n}(\mathbb{k})$, the *n*:th Weyl algebra over \mathbb{k} .

If $\sigma_i(t_j) = t_j \ \forall i \neq j$ and t_i are not zero-divisors then

$$I = \langle X_i X_j - X_j X_i, Y_i Y_j - Y_j Y_i \mid \forall i \neq j \rangle$$

 \implies A is a generalized Weyl algebra (Bavula 1992).

If $\sigma_i(t_i) = t_i \ \forall i \neq j$ and t_i are not zero-divisors then

$$I = \langle X_i X_j - X_j X_i, Y_i Y_j - Y_j Y_i \mid \forall i \neq j \rangle$$

 \implies A is a generalized Weyl algebra (Bavula 1992).

- Noncommutative Type-A Kleinian singularities. (studied by Bavula, Hodges, Rosenberg, Bavula & Jordan): Let n = 1, $R = \mathbb{k}[u]$, $\sigma(u) = u 1$, $t \in R$ arbitrary.
 - If t = u, then $R(\sigma, t) \simeq A_1(\mathbb{k})$.
 - If $t = -u^2 u \frac{\lambda}{4}$, $\lambda \in \mathbb{k}$, then $R(\sigma, t) \simeq U(sl_2(\mathbb{k}))/\langle C \lambda \rangle$.

If $\sigma_i(t_i) = t_i \ \forall i \neq j$ and t_i are not zero-divisors then

$$I = \langle X_i X_j - X_j X_i, Y_i Y_j - Y_j Y_i \mid \forall i \neq j \rangle$$

 \implies A is a generalized Weyl algebra (Bavula 1992).

- Noncommutative Type-A Kleinian singularities. (studied by Bavula, Hodges, Rosenberg, Bavula & Jordan): Let n=1, $R=\Bbbk[u],\ \sigma(u)=u-1,\ t\in R$ arbitrary.
 - If t = u, then $R(\sigma, t) \simeq A_1(\mathbb{k})$.
 - If $t = -u^2 u \frac{\lambda}{4}$, $\lambda \in \mathbb{k}$, then $R(\sigma, t) \simeq U(sl_2(\mathbb{k}))/\langle C \lambda \rangle$.
- $U(sl_2(\mathbb{k}))$, $U_q(sl_2(\mathbb{k}))$, $U(sl_3^+(\mathbb{k}))$, $U_q(sl_3^+(\mathbb{k}))$, (generalized) down-up algebras (Benkart & Roby 1998, Cassidy & Shelton 2004), Witten-Woronowicz deformations of $U(sl_2)$, ...

■ A TGWA of "type A_2 " (Mazorchuk and Turowska 1999): $R = \mathbb{C}[H], \ t_1 = H, \ t_2 = H + 1,$ $\sigma_1(H) = H + 1, \sigma_2(H) = H - 1,$ all $\mu_{ij} = 1$. Then $\sigma_1^{-1}(t_2)\sigma_2^{-1}(t_1) = H(H + 1) = t_1t_2$

So $A_{\mu}(R, \sigma, t)$ is some nontrivial TGWA.

■ A TGWA of "type A_2 " (Mazorchuk and Turowska 1999): $R = \mathbb{C}[H], \ t_1 = H, \ t_2 = H + 1,$ $\sigma_1(H) = H + 1, \sigma_2(H) = H - 1,$ all $\mu_{ij} = 1$. Then $\sigma_1^{-1}(t_2)\sigma_2^{-1}(t_1) = H(H + 1) = t_1t_2$

So $A_{\mu}(R, \sigma, t)$ is some nontrivial TGWA.

• Quantized Weyl algebras $A_n^{q,\Lambda}$,

■ A TGWA of "type A_2 " (Mazorchuk and Turowska 1999): $R = \mathbb{C}[H]$, $t_1 = H$, $t_2 = H + 1$, $\sigma_1(H) = H + 1$, $\sigma_2(H) = H - 1$, all $\mu_{ij} = 1$. Then $\sigma_1^{-1}(t_2)\sigma_2^{-1}(t_1) = H(H + 1) = t_1t_2$

So $A_{\mu}(R, \sigma, t)$ is some nontrivial TGWA.

- Quantized Weyl algebras $A_n^{q,\Lambda}$,
- Mickelsson step algebras $Z(\mathfrak{gl}_n, \mathfrak{gl}_{n-1} \times \mathfrak{gl}_1)$.

We say that (R, σ, t) is μ -consistent if the canonical map $\rho: R \to A_{\mu}(R, \sigma, t)$ is injective.

We say that (R, σ, t) is μ -consistent if the canonical map $\rho: R \to A_{\mu}(R, \sigma, t)$ is injective.

A regular TGW datum $D=(R,\sigma,t)\in\mathsf{TGW}_n(\Bbbk)$ is μ -consistent iff

$$\sigma_{i}\sigma_{j}(t_{i}t_{j}) = \mu_{ij}\mu_{ji}\sigma_{i}(t_{i})\sigma_{j}(t_{j}), \qquad \forall i,j = 1,\ldots,n, i \neq j,$$

$$(1.5)$$

$$t_j \sigma_i \sigma_k(t_j) = \sigma_i(t_j) \sigma_k(t_j), \qquad \forall i, j, k = 1, \dots, n, i \neq j \neq k \neq i.$$

$$(1.6)$$

Theorem A

Assume that $D=(R,\sigma,t)$ is a μ -consistent data. If t_1,\ldots,t_n are invertible in R, then $\mathcal{A}_{\mu}(R,\sigma,t)$ is graded isomorphic to a \mathbb{Z}^n -crossed product algebra over R: there is a unique σ -twisted 2-cocycle $\alpha:\mathbb{Z}^n\times\mathbb{Z}^n\to R^\times$ for which there exists a graded isomorphism

$$\xi_{\mu,D}: R \rtimes_{\alpha}^{\sigma} \mathbb{Z}^n \to \mathcal{A}_{\mu}(R,\sigma,t)$$

satisfying

$$\xi(ru_g)=rX_1^{g_1}\cdots X_n^{g_n},$$

$$\alpha(g,h)\alpha(gh,k) = \sigma_g(\alpha(h,k))\alpha(g,hk); \alpha(g,e) = \alpha(e,g) = 1$$

Remark

If t_1, \ldots, t_n are regular in R, then $\mathcal{A}_{\mu}(R, \sigma, t)$ can be embedded into a \mathbb{Z}^n -crossed product algebra over a localization of R.

Definition

A twisted generalized Weyl algebra $A = A_{\mu}(R, \sigma, t)$ is *locally finite* over k if

$$\dim_{\mathbb{K}} \left(\operatorname{Span}_{\mathbb{K}} \{ \sigma_i^k(t_j) \mid i, j = 1, \ldots, n, k \in \mathbb{Z} \} \right) < \infty.$$

If A is locally finite over k, let p_{ij} be the minimal polynomial for σ_i acting on the space

$$\mathrm{Span}_{\mathbb{k}}\{\sigma_i^k(t_j)\mid k\in\mathbb{Z}\}.$$

Theorem

The matrix $C_A = (a_{ij})_{i,i=1}^n$ defined by

$$a_{ij} = egin{cases} 2, & ext{if } i = j, \ 1 - \deg(p_{ij}), & ext{otherwise}. \end{cases}$$

is a generalized Cartan matrix. That is,

$$\deg(p_{ij}) \geq 1 \quad \forall i \neq j,$$

and

$$\deg(p_{ij}) = 1 \Longleftrightarrow \deg(p_{ji}) = 1.$$

Theorem

Let $A=A_{\mu}(R,\sigma,t)$ be a locally finite TGWA, where R has no zero-divisors and $\mu_{ij}=1 \forall i,j$. Then for all $i,j=1,\ldots,n$, $i\neq j$, there is a unique minimal $m_{ij}\in\mathbb{Z}_{>0}$ and unique $\lambda_{ij}^{(1)},\ldots\lambda_{ij}^{(m_{ij})}\in \Bbbk$, $\lambda_{ij}^{(m_{ij})}\neq 0$ such that

$$X_i^{m_{ij}}X_j + \lambda_{ij}^{(1)}X_i^{m_{ij}-1}X_jX_i + \cdots + \lambda_{ij}^{(m_{ij})}X_jX_i^{m_{ij}} = 0.$$

Theorem

Let $A=A_{\mu}(R,\sigma,t)$ be a locally finite TGWA, where R has no zero-divisors and $\mu_{ij}=1 \forall i,j$. Then for all $i,j=1,\ldots,n$, $i\neq j$, there is a unique minimal $m_{ij}\in\mathbb{Z}_{>0}$ and unique $\lambda_{ij}^{(1)},\ldots\lambda_{ij}^{(m_{ij})}\in\Bbbk$, $\lambda_{ij}^{(m_{ij})}\neq 0$ such that

$$X_i^{m_{ij}}X_j + \lambda_{ij}^{(1)}X_i^{m_{ij}-1}X_jX_i + \cdots + \lambda_{ij}^{(m_{ij})}X_jX_i^{m_{ij}} = 0.$$

They are given by the polynomials p_{ij} :

$$p_{ij}(x) = x^{m_{ij}} + \lambda_{ij}^{(1)} x^{m_{ij}-1} + \cdots + \lambda_{ij}^{(m_{ij})}.$$

Theorem

Let $A=A_{\mu}(R,\sigma,t)$ be a locally finite TGWA, where R has no zero-divisors and $\mu_{ij}=1 \forall i,j$. Then for all $i,j=1,\ldots,n$, $i\neq j$, there is a unique minimal $m_{ij}\in\mathbb{Z}_{>0}$ and unique $\lambda_{ij}^{(1)},\ldots\lambda_{ij}^{(m_{ij})}\in\mathbb{k}$, $\lambda_{ij}^{(m_{ij})}\neq 0$ such that

$$X_i^{m_{ij}}X_j + \lambda_{ij}^{(1)}X_i^{m_{ij}-1}X_jX_i + \cdots + \lambda_{ij}^{(m_{ij})}X_jX_i^{m_{ij}} = 0.$$

They are given by the polynomials p_{ij} :

$$p_{ij}(x) = x^{m_{ij}} + \lambda_{ij}^{(1)} x^{m_{ij}-1} + \cdots + \lambda_{ij}^{(m_{ij})}.$$

Also,

$$Y_j Y_i^{m_{ij}} + \lambda_{ij}^{(1)} Y_i Y_j Y_i^{m_{ij}-1} + \dots + \lambda_{ij}^{(m_{ij})} Y_i^{m_{ij}} Y_j = 0.$$

Example:

Let $A=A(R,\sigma,t,\mu)$ be the TGWA of "type A_2 ": $R=\mathbb{C}[H]$, $t_1=H$, $t_2=H+1$, $\sigma_1(H)=H+1$, $\sigma_2(H)=H-1$, all $\mu_{ij}=1$. Then

$$\sigma_2^2(t_1) - 2\sigma_2(t_1) + t_1 = 0$$

and $\{t_1, \sigma_2(t_1)\}$ is linearly independent.

Example:

Let $A=A(R,\sigma,t,\mu)$ be the TGWA of "type A_2 ": $R=\mathbb{C}[H]$, $t_1=H$, $t_2=H+1$, $\sigma_1(H)=H+1$, $\sigma_2(H)=H-1$, all $\mu_{ij}=1$. Then

$$\sigma_2^2(t_1) - 2\sigma_2(t_1) + t_1 = 0$$

and $\{t_1, \sigma_2(t_1)\}$ is linearly independent. So $1 - \deg(p_{21}) = -1$. Similarly $1 - \deg(p_{12}) = -1$. Thus

$$C_A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

really motivating us to say A is of type A_2 !

Example:

Let $A=A(R,\sigma,t,\mu)$ be the TGWA of "type A_2 ": $R=\mathbb{C}[H]$, $t_1=H$, $t_2=H+1$, $\sigma_1(H)=H+1$, $\sigma_2(H)=H-1$, all $\mu_{ij}=1$. Then

$$\sigma_2^2(t_1) - 2\sigma_2(t_1) + t_1 = 0$$

and $\{t_1, \sigma_2(t_1)\}$ is linearly independent. So $1 - \deg(p_{21}) = -1$. Similarly $1 - \deg(p_{12}) = -1$. Thus

$$C_A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

really motivating us to say A is of type A_2 ! Moreover, in A,

$$X_i^2 X_j - 2X_i X_j X_i + X_j X_i^2 = 0, \quad \{i, j\} = \{1, 2\},$$

 $Y_i^2 Y_j - 2Y_i Y_j Y_i + Y_j Y_i^2 = 0, \quad \{i, j\} = \{1, 2\}.$

To any generalized Cartan matrix $C=(a_{ij})$ we can associate the polynomials $p_{ij}(x)=(x-1)^{1-a_{ij}}, i\neq j$. Then the above relations look like ordinary Serre relations for the Kac-Moody algebra g(C). If we instead take $p_{ij}(x)=(x-q^{a_{ij}})(x-q^{a_{ij}+2})\cdots(x-q^{-a_{ij}})$ we get quantum Serre relations.

Theorem

Let $A = \mathcal{A}_{\mu}(R, \sigma, t)$ is a locally finite TGW algebra of type $(A_1)^n$, where (R, σ, t) is regular and μ -consistent. Then A is isomorphic to the R-ring generated by $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ modulo the relations

$$X_{i}r = \sigma_{i}(r)X_{i}, \quad Y_{i}r = \sigma_{i}^{-1}(r)Y_{i} \quad \forall r \in R, \forall i,$$

$$Y_{i}X_{i} = t_{i}, \quad X_{i}Y_{i} = \sigma_{i}(t_{i}), \quad \forall i,$$
(2.1)

$$X_{i}Y_{j} = \mu_{ij}Y_{j}X_{i}, \quad X_{i}X_{j} = \gamma_{ij}\mu_{ij}^{-1}X_{j}X_{i}, \quad Y_{j}Y_{i} = \gamma_{ij}\mu_{ji}^{-1}Y_{i}Y_{j}, \quad i \neq j,$$
(2.2)

where $\sigma_i(t_j) = \gamma_{ij}t_j$, $i \neq j$.

Moreover, A is simple if and only if R is \mathbb{Z}^n -simple and $Rt_i + R\sigma_i^d(t_i) = R$ for all $d \in \mathbb{Z}_{>0}$ and i = 1, ..., n.

Let $n \in \mathbb{Z}_{>0}$ and $k \in \mathbb{Z} \setminus \{0\}$ and let $\Lambda = (\lambda_{ij})$, $r = (r_{ij})$ and $s = (s_{ij})$ be three $n \times n$ -matrix with entries from $\mathbb{k} \setminus \{0\}$, such that

$$\lambda_{ii} = 1 \ \forall i \ \text{and} \ \lambda_{ij}\lambda_{ji} = 1 \ \forall i \neq j,$$
 (3.1)

$$r_{ii}/s_{ii}$$
 is a nonroot of unity $\forall i$, (3.2)

$$r_{ij}^k = s_{ij}^k \quad i \neq j. \tag{3.3}$$

Let

$$R = \mathbb{k}[u_1^{\pm 1}, \dots, u_n^{\pm 1}, v_1^{\pm 1}, \dots, v_n^{\pm 1}], \tag{3.4}$$

 $\sigma_1, \ldots, \sigma_n \in \operatorname{Aut}_{\Bbbk}(R)$ as follows:

$$\sigma_i(u_j) = r_{ij}^{-1} u_j, \qquad \sigma_i(v_j) = s_{ij}^{-1} v_j,$$
 (3.5)

for all $i,j \in \{1,\ldots,n\}$, and

$$t_{i} = \frac{(r_{ii}u_{i})^{k} - (s_{ii}v_{i})^{k}}{r_{ii}^{k} - s_{ii}^{k}}.$$
(3.6)

Put

$$\mu_{ij} = r_{ii}^{-k} \lambda_{ji}, i \neq j. \tag{3.7}$$

Then (R, σ, t) is μ -consistent and $\mathcal{A}_{\mu}(R, \sigma, t) = A_n^k(r, s, \Lambda)$ is a multiparameter twisted Weyl algebra.

Put

$$\mu_{ij} = r_{ii}^{-k} \lambda_{ji}, i \neq j. \tag{3.7}$$

Then (R, σ, t) is μ -consistent and $\mathcal{A}_{\mu}(R, \sigma, t) = \mathcal{A}_{n}^{k}(r, s, \Lambda)$ is a multiparameter twisted Weyl algebra.

Let
$$R^{\mathbb{Z}^n} = \{ r \in R \mid \sigma_i(r) = r \ \forall i = 1, ..., n \},$$

 $G = \{ d \in \mathbb{Z}^{2n} \mid u^d \in R^{\mathbb{Z}^n} \}$ the gradation group of $R^{\mathbb{Z}^n}$.

Theorem B

Let $A = A_n^k(r, s, \Lambda)$ be a multiparameter twisted Weyl algebra.

(a) The assignment

$$\mathfrak{n} \mapsto A/\langle \mathfrak{n} \rangle \tag{3.8}$$

where $\langle \mathfrak{n} \rangle$ denotes the ideal in A generated by \mathfrak{n} , is a bijection between the set of maximal ideals in the invariant subring $R^{\mathbb{Z}^n}$ and the set of simple quotients of A in which all X_i , Y_i ($i=1,\ldots,n$) are regular.

- (b) For any $\mathfrak{n} \in \operatorname{Specm}(R^{\mathbb{Z}^n})$, the quotient $A/\langle \mathfrak{n} \rangle$ is isomorphic to the twisted generalized Weyl algebra $\mathcal{A}_{\mu}(R/R\mathfrak{n}, \bar{\sigma}, \bar{t})$, where $\bar{\sigma}_g(r+R\mathfrak{n}) = \sigma_g(r) + R\mathfrak{n}, \ \forall g \in \mathbb{Z}^n, r \in R$ and $\bar{t}_i = t_i + R\mathfrak{n}, \ \forall i.$
- (c) $A/\langle \mathfrak{n} \rangle$ is a domain for all $\mathfrak{n} \in \operatorname{Specm}(R^{\mathbb{Z}^n})$ if and only if \mathbb{Z}^{2n}/G is torsion-free.

Let $\underline{r}=(r_1,\ldots,r_n)$, $\underline{s}=(s_1,\ldots,s_n)$ are such that $(r_is_i^{-1})^2\neq 1$ for each i. Let $A_{\underline{r},\underline{s}}(n)$ be the unital associative algebra generated by $\rho_i,\rho_i^{-1},\sigma_i,\sigma_i^{-1},x_i,y_i,\ i=1,\ldots,n$, subject to the following relations:

- (R1) The $\rho_i^{\pm 1}$, $\sigma_j^{\pm 1}$ all commute with one another and $\rho_i \rho_i^{-1} = \sigma_i \sigma_i^{-1} = 1$;
- (R2) $\rho_i x_j = r_i^{\delta_{i,j}} x_j \rho_i$ $\rho_i y_j = r_i^{-\delta_{i,j}} y_j \rho_i$ $1 \le i, j \le n;$
- (R3) $\sigma_i x_j = s_i^{\delta_{i,j}} x_j \sigma_i$ $\sigma_i y_j = s_i^{-\delta_{i,j}} y_j \sigma_i$ $1 \le i, j \le n;$
- (R4) $x_i x_j = x_j x_i$, $y_i y_j = y_j y_i$, $1 \le i, j \le n$; $y_i x_j = x_j y_i$, $1 \le i \ne j \le n$;
- (R5) $y_i x_i r_i^2 x_i y_i = \sigma_i^2$ and $y_i x_i s_i^2 x_i y_i = \rho_i^2$, $1 \le i \le n$, or equivalently
- (R5') $y_i x_i = \frac{r_i^2 \rho_i^2 s_i^2 \sigma_i^2}{r_i^2 s_i^2}$ and $x_i y_i = \frac{\rho_i^2 \sigma_i^2}{r_i^2 s_i^2}$ $1 \le i \le n$.

Multiparameter Weyl algebras and Hayashi's q-analog

 $A_{\underline{r},\underline{s}}(n)$ is a multiparameter Weyl algebra.

 $A_{\underline{r},\underline{s}}(n)$ is a multiparameter Weyl algebra. When $r_i=q^{-1}$ and $s_i=q$ for all i, the quotient by the ideal generated by $\sigma_i\rho_i-1,\ i=1,\ldots,n$, gives Hayashi's q-analogs of the Weyl algebras.

 $A_{\underline{r},\underline{s}}(n)$ is a multiparameter Weyl algebra. When $r_i=q^{-1}$ and $s_i=q$ for all i, the quotient by the ideal generated by $\sigma_i\rho_i-1,\ i=1,\ldots,n$, gives Hayashi's q-analogs of the Weyl algebras.

Take k=2, and for all i,j put $\lambda_{ij}=1$, $r_{ij}=r_i^{\delta_{ij}}$, $s_{ij}=s_i^{\delta_{ij}}$, where $r_i,s_i\in \mathbb{k}\backslash\{0\},\ i=1,\ldots,n$. Then $A_n^k(r,s,\Lambda)$ is isomorphic to $A_{\underline{r},\underline{s}}(n)$.

Multiparameter Weyl algebras and Hayashi's q-analog

Proposition

(Benkart) When the parameters r_i , s_i are generic, the multiparameter Weyl algebra $A_{r,\underline{s}}(n)$ is isomorphic to the degree n generalized Weyl algebra over D, where D is the k-algebra generated by the elements ρ_i , ρ_i^{-1} , σ_i , σ_i^{-1} , $i=1,\ldots,n$, subject to the relations in (R1). Thus, $A_{r,\underline{s}}(n)$ is Noetherian domain.

Let $\bar{q}=(q_1,\ldots,q_n)$ be an n-tuple of elements of $\mathbb{k}\setminus\{0\}$. Let $\Lambda=(\lambda_{ij})_{i,j=1}^n$ be an $n\times n$ matrix with $\lambda_{ij}\in\mathbb{k}\setminus\{0\}$, such that: $\lambda_{ij}\lambda_{ji}=1$ for all i,j.

The multiparameter quantized Weyl algebra of degree n over k, denoted $A_n^{\bar{q},\Lambda}(k)$, is defined as the unital k-algebra generated by $x_i,y_i,\ 1\leq i\leq n$ subject to the following defining relations:

$$y_i y_j = \lambda_{ij} y_j y_i, \qquad \forall i, j, \qquad (3.9)$$

$$x_i x_j = q_i \lambda_{ij} x_j x_i, \qquad \qquad i < j, \qquad (3.10)$$

$$x_i y_j = \lambda_{ji} y_j x_i, \qquad \qquad i < j, \qquad (3.11)$$

$$x_i y_j = q_j \lambda_{ji} y_j x_i, \qquad i > j, \qquad (3.12)$$

$$x_i y_i - q_i y_i x_i = 1 + \sum_{k=1}^{i-1} (q_k - 1) y_k x_k, \quad \forall i.$$
 (3.13)

For $\mathbb{k}=\mathbb{C}$ and $q_1=\cdots=q_n=\mu^2,\ \lambda_{ji}=\mu\ \forall j< i,$ where $\mu\in\mathbb{k}\backslash\{0\}$, the algebra $A_n^{\bar{q},\Lambda}(\mathbb{k})$ is isomorphic to the quantized Weyl algebra introduced by Pusz and Woronowicz.

MQWA can be realized as a TGWA. Let $P=\Bbbk[s_1,\ldots,s_n]$ and $au_i\in \operatorname{Aut} P$ defined by

$$\tau_{i}(s_{j}) = \begin{cases} s_{j}, & j < i, \\ 1 + q_{i}s_{i} + \sum_{k=1}^{i-1} (q_{k} - 1)s_{k}, & j = i, \\ q_{i}s_{j}, & j > i. \end{cases}$$
(3.14)

Let $\mu = (\mu_{ij})_{i,j=1}^n$ be such that

$$\mu_{ij} = \begin{cases} \lambda_{ji}, & i < j, \\ q_j \lambda_{ji}, & i > j. \end{cases}$$
 (3.15)

Put $\tau = (\tau_1, \ldots, \tau_n)$ and $s = (s_1, \ldots, s_n)$. Then $\mathcal{A}_{\mu}(P, \tau, s)$ is \mathbb{k} -finitistic, $p_{ij}(x) = x - 1$ for i < j and $p_{ij}(x) = x - q_i$ for j > i, so it is of type $(A_1)^n$, and $\mathcal{A}_{\mu}(P, \tau, s)$ is isomorphic to $A_n^{\bar{q}, \Lambda}(\mathbb{k})$ via $X_i \mapsto x_i, Y_i \mapsto y_i$ and $s_i \mapsto y_i x_i$.

Quantized Weyl algebras

Identify P with its image in $A_n^{\bar{q},\Lambda}$ via $s_i \mapsto y_i x_i$. Consider

$$z_i = 1 + \sum_{k \le i} (q_k - 1)s_k, \qquad i = 1, \dots, n.$$
 (3.16)

Identify P with its image in $A_n^{\bar{q},\Lambda}$ via $s_i \mapsto y_i x_i$. Consider

$$z_i = 1 + \sum_{k < i} (q_k - 1)s_k, \qquad i = 1, \dots, n.$$
 (3.16)

The set $S := \{z_1^{k_1} \cdots z_n^{k_n} \mid k_1, \dots, k_n \in \mathbb{Z}\} \setminus \{0\}$ is an Ore set, and provided that none of the q_i is a root of unity, the algebra

$$B_n^{\bar{q},\Lambda} := S^{-1}A_n^{\bar{q},\Lambda}$$

is simple.

Identify P with its image in $A_n^{\overline{q},\Lambda}$ via $s_i \mapsto y_i x_i$. Consider

$$z_i = 1 + \sum_{k \le i} (q_k - 1)s_k, \qquad i = 1, \dots, n.$$
 (3.16)

The set $S := \{z_1^{k_1} \cdots z_n^{k_n} \mid k_1, \dots, k_n \in \mathbb{Z}\} \setminus \{0\}$ is an Ore set, and provided that none of the q_i is a root of unity, the algebra

$$B_n^{\bar{q},\Lambda} := S^{-1}A_n^{\bar{q},\Lambda}$$

is simple.

Then we have

$$B_n^{\bar{q},\Lambda} \simeq S^{-1}A_n^{\bar{q},\Lambda} \simeq S^{-1}\mathcal{A}_{\mu}(P,\tau,s) \simeq \mathcal{A}_{\mu}(S^{-1}P,\widetilde{\tau},s).$$

Algebra $B_n^{ar{q},\Lambda}$ fits into the framework of multiparameter twisted Weyl algebras. Let $ar{q}=(q_1,\ldots,q_n)\in (\Bbbk\backslash\{0\})^n$, $\Lambda=(\lambda_{ij})_{i,j=1}^n$ with $\lambda_{ij}\in \Bbbk\backslash\{0\}$, $\lambda_{ii}=1$, $\lambda_{ij}\lambda_{ji}=1$ for all i,j (none of the q_i is a root of unity). Let

$$r_{ij} = \begin{cases} 1, & j \le i \\ q_i^{-1}, & j > i \end{cases} \qquad s_{ij} = \begin{cases} 1, & j < i \\ q_i^{-1}, & j \ge i \end{cases}$$
 (3.17)

Let $A_n^k(r, s, \Lambda) = A_\mu(R, \sigma, t)$ where

$$R = \mathbb{k}[u_1^{\pm 1}, \dots, u_n^{\pm 1}, v_1^{\pm 1}, \dots, v_n^{\pm 1}], \tag{3.18}$$

$$\sigma_i(u_j) = r_{ij}^{-1} u_j, \qquad \sigma_i(v_j) = s_{ij}^{-1} v_j,$$
 (3.19)

$$t_i = \frac{u_i - q_i^{-1} v_i}{1 - q_i^{-1}},\tag{3.20}$$

$$\mu_{ij} = r_{ji}^{-1} \lambda_{ji}, \forall i, j. \tag{3.21}$$

Quantized Weyl algebras

Quantized Weyl algebras

THANK YOU!