Finite-dimensional Lie algebras arising from a Nichols algebras of diagonal type

Nicolás Andruskiewitsch

Universidad de Córdoba, Argentina

Hopf Algebras, Algebraic Groups and Related Structures

Memorial University of Newfoundland. St John's, Canada

June 13-17, 2016

Joint work with Iván Angiono and Fiorela Rossi Bertone

Plan of the talk.

- I. Preliminaries.
- II. Nichols algebras of diagonal type.
- III. Pre-Nichols and Post-Nichols algebras.
- IV. An exact sequence and Lie algebras.

I. Preliminaries.

Definitions. (V, c) braided vector space: V is a vector space and $c \in GL(V \otimes V)$ satisfies the braid equation,

$$(c \otimes id)(id \otimes c)(c \otimes id) = (id \otimes c)(c \otimes id)(id \otimes c)$$

 Γ abelian group; $\mathbb{C}\Gamma \mathcal{YD} = \text{Yetter-Drinfeld modules over } \mathbb{C}\Gamma$:

- $V = \bigoplus_{g \in \Gamma} V_g$ is a Γ -graded vector space;
- V is a left Γ -module such that $g \cdot V_h = V_h$ (compatibility).

 $V \in {}^{\mathbb{C}\Gamma}_{\mathbb{C}\Gamma}\mathcal{YD} \implies V$ braided vector space:

$$c(v \otimes w) = g \cdot w \otimes v,$$
 $v \in V_q, w \in V.$

Given $V \in {\mathbb C}^{\Gamma}_{\mathbb C \Gamma} \mathcal{YD}$, the **Nichols algebra** of V is the graded Hopf algebra $\mathcal{B}(V) = \oplus_{n \geq 0} \mathcal{B}^n(V)$ in ${\mathbb C}^{\Gamma}_{\mathbb C \Gamma} \mathcal{YD}$ such that

1.
$$\mathcal{B}^{0}(V) = \mathbb{C}$$
, $\mathcal{B}^{1}(V) = P(V) := \{x : \Delta(x) = x \otimes 1 + 1 \otimes x\}$,

2.
$$\mathcal{B}(V) = \mathbb{C}\langle \mathcal{B}^1(V) \rangle$$
.

 $\mathcal{B}(V) \simeq T(V)/\mathcal{J}(V)$, where $\mathcal{J}(V)$ maximal graded Hopf ideal generated by elements in $\bigoplus_{n\geq 2} \mathcal{B}^n(V)$.

Problem: Determine when dim $\mathcal{B}(V) < \infty$, or GKdim $\mathcal{B}(V) < \infty$; and the structure of the ideal $\mathcal{J}(V)$ (it depends crucially on the braiding c on V).

II. Nichols algebras of diagonal type.

In this talk, we are interested in the following class:

(V,c) is of **diagonal type**: \exists a basis $(x_i)_{i\in\mathbb{I}_{\theta}}$ and $\mathfrak{q}=(q_{ij})_{i,j\in\mathbb{I}_{\theta}}$, $q_{ii}\neq 1$ for all i, with connected diagram, such that

$$c(x_i \otimes x_j) = q_{ij} x_j \otimes x_i, \qquad i, j \in \mathbb{I}_{\theta}.$$

 $V \in {}^{\mathbb{C}\Gamma}_{\mathbb{C}\Gamma}\mathcal{YD}$ semisimple (and f. d.) \Longrightarrow (V,c) is of diagonal type.

Theorem (Heckenberger). V of diagonal type, $\dim \mathcal{B}(V) < \infty$ classified.

Remark. [AAH] dim $\mathcal{B}(V) < \infty \implies V$ of diagonal type (Γ abelian).

 $(q_{ij})_{i,j\in\mathbb{I}}$ in $\mathbb{G}_{\infty}^{\mathbb{I}\times\mathbb{I}}$, $1\neq q_{ii}$, is of *Cartan type* if for all $i\neq j\in\mathbb{I}$, there exists $a_{ij}\in\mathbb{Z}$, $-\operatorname{ord} q_{ii}< a_{ij}\leq 0$ such that

$$q_{ij}q_{ji} = q_{ii}^{a_{ij}}.$$

Set $a_{ii} = 2$. Then (a_{ij}) is a generalized Cartan matrix.

Theorem. (N. A.–H.-J. Schneider). (V,c) Cartan type, with matrix $(q_{ij})_{i,j\in\mathbb{I}}$. Assume $(\operatorname{ord} q_{ij},210)\stackrel{(\#)}{=} 1$ for all i,j. Then

$$\dim \mathcal{B}(V) < \infty \stackrel{(*)}{\iff} (a_{ij})$$
 of finite type.

If this is the case, $\mathcal{B}(V) = \mathbb{C}\langle x_1, \dots, x_{\theta} \rangle$ with relations:

(Serre)
$$\operatorname{ad}_c(x_i)^{1-a_{ij}}(x_j) = 0, \ i \neq j$$
 (Powers root vect.)
$$x_\alpha^{N_J} = 0.$$

- Original proof uses Lusztig's results.
- The conclusion (*) holds without the assumption (#) (Heckenberger) but the defining relations are more involved (Angiono).
- If $(|\mathbb{G}|, 210) = 1$, then the possible V are of Cartan type (Heckenberger).

Fix $\theta \in \mathbb{N}$, $\mathbb{I} = \{1, 2, \dots, \theta\}$.

Basic datum: (\mathcal{X}, ρ) : a set $\mathcal{X} \neq \emptyset$, together with $\rho : \mathbb{I} \to \mathbb{S}_{\mathcal{X}}$ such that $\rho_i^2 = \text{id for all } i \in \mathbb{I}$.

The set \mathcal{X} will be the basis of various sorts of bundles and ρ commands the symmetries that they may have:

 $C=(c_{ij})_{i,j\in\mathbb{I}}\in\mathbb{Z}^{ heta imes heta}$ is a generalized Cartan matrix (GCM) if $c_{ii}=2, \quad c_{ij}=0 \iff c_{ji}=0, \quad c_{ij}\leq 0 \quad \text{ for all } i\neq j\in\mathbb{I}.$

A semi-Cartan graph is a family of GCM $\mathcal{C}=(C^x)_{x\in\mathcal{X}}$, $C^x=(c^x_{ij})_{i,j\in\mathbb{I}},\ x\in\mathcal{X}$, such that $c^x_{ij}=c^{\rho_i(x)}_{ij}$ for all $x\in\mathcal{X},\ i,j\in\mathbb{I}$.

Let
$$s_i^x \in GL(\mathbb{Z}^{\theta})$$
: $s_i^x(\alpha_j) = \alpha_j - c_{ij}^x \alpha_i$, $x \in \mathcal{X}$, $i, j \in \mathbb{I}$.

The Weyl groupoid $W(C) \rightrightarrows \mathcal{X}$ is generated by $s_i^x \in \text{Hom}(x, \rho_i(x))$, $i \in I$, $x \in \mathcal{X}$. So $w \in \text{Hom}(x_m, x_1)$ is a product

$$s_{i_1}^{x_1}s_{i_2}^{x_2}\cdots s_{i_m}^{x_m}\in GL(\mathbb{Z}^\theta),$$

where $x_m = \rho_{i_{m-1}} \cdots \rho_{i_1}(x_1)$.

A generalized root system over C is a collection

 $\mathcal{R} = (R^x)_{x \in \mathcal{X}}, \ R^x \subset \mathbb{Z}^{\theta}$, such that $\forall x \in \mathcal{X}, i \neq j \in \mathbb{I}$

- $R^x = R^x_+ \cup R^x_-$, where $R^x_\pm := \pm (R^x \cap \mathbb{N}_0^\theta)$.
- $R^x \cap \mathbb{Z}\alpha_i = \{\pm \alpha_i\}$,
- $\bullet \ s_i^x(R^x) = R^{\rho_i(x)},$
- $(\rho_i \rho_j)^{m_{ij}^x}(x) = (x)$, if $m_{ij}^x := |R^x \cap (\mathbb{N}_0 \alpha_i + \mathbb{N}_0 \alpha_j)| < \infty$.

 $R^{\operatorname{re} x} := \{ w(\alpha_i) : i \in \mathbb{I}, w \in \bigcup_{y \in \mathcal{X}} \operatorname{Hom}_{\mathcal{W}}(y, x) \} \text{ (real roots at } x).$

Theorem. (Heckenberger). If $\dim \mathcal{B}(V) < \infty$, then it has an associated finite Generalized Root System.

Sketch: The semi-Cartan graph is defined by (Rosso)

$$c_{ij}^{\mathfrak{q}} := \begin{cases} 2 & \text{si } i = j; \\ -\min\{n \in \mathbb{N}_0 : (n+1)_{q_{ii}}(1 - q_{ii}^n q_{ij} q_{ji}) = 0\} & \text{si } i \neq j. \end{cases}$$

Let $\mathbf{q}: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \to \mathbb{C}^{\times}$ be the bilinear form $\mathbf{q}(\alpha_{j}, \alpha_{k}) = q_{jk} \ j, k \in \mathbb{I}$.

$$\rho_i(\mathfrak{q})_{jk} = \mathbf{q}(s_i^{\mathfrak{q}}(\alpha_j), s_i^{\mathfrak{q}}(\alpha_k)), \qquad j, k \in \mathbb{I}.$$

 $\rho_i(V) = \text{ braided v. sp. of diagonal type with matrix } \rho_i(\mathfrak{q}).$

$$\mathcal{X} = \{ \rho_{i_1} \dots \rho_{i_N}(V) : N \in \mathbb{N}_0, i_1, \dots, i_N \in \mathbb{I} \}.$$

 $R^W = \{ \text{degrees of the generators of a PBW-basis of } \mathcal{B}(W) \}, \ W \in \mathcal{X}.$

(existence of PBW-basis by Kharchenko's theorem).

From now on \mathfrak{q} is assumed to be symmetric.

Let $\mathfrak{u}(V) = \mathcal{B}(V) \otimes \mathbb{C}\Gamma \otimes \mathcal{B}(V) = \text{Hopf algebra with triangular}$ decomposition associated to V, Γ .

Theorem. (Heckenberger). If $i \in \mathbb{I}$, then there is an algebra isomorphism $T_i : \mathfrak{u}(V) \to \mathfrak{u}(\rho_i(V))$ (Lusztig-like isomorphism).

This gives a representation of the Weyl groupoid of V.

Modular contragredient Lie superalgebras

 \Bbbk field char $\Bbbk = \ell \neq 2$, $A = (a_{ij}) \in \mathbb{C}^{\theta \times \theta}$,

$$\mathbf{p} = (p_i) \in (\mathbb{Z}/2)^{\theta}$$
, parity vector. \mathfrak{h} \mathbb{k} -v. sp., dim $\mathfrak{h} = 2\theta - \operatorname{rk} A$,

 $\xi_j \in \mathfrak{h}^*$, $h_i \in \mathfrak{h}$ L. I., such that $\xi_j(h_i) = a_{ij}$ for all $i, j \in \mathbb{I}$.

 $\circ \widetilde{\mathfrak{g}} := \widetilde{\mathfrak{g}}(A, \mathbf{p}) = \text{Lie superalgebra generated by } e_i, f_i, i \in \mathbb{I}, \text{ and } \mathfrak{h}, \text{ with parity and relations}$

$$|e_i| = |f_i| = p_i, i \in \mathbb{I},$$
 $|h| = 0, h \in \mathfrak{h},$ $[h, e_j] = \xi_j(h)e_j,$ $[h, h'] = 0,$ $[h, h'] = 0,$ $[e_i, f_j] = \delta_{ij}h_i.$

 $\circ \mathfrak{r} := \text{maximal ideal among those that intersect } \mathfrak{h} \text{ trivially};$

 $\circ \mathfrak{g}(A, \mathbf{p}) := \widetilde{\mathfrak{g}}(A, \mathbf{p})/\mathfrak{r}$ contragredient Lie superalgebra.

Theorem. (N. A.–I. Angiono).

- (a) If dim $\mathfrak{g}(A, \mathbf{p}) < \infty$, then it has an associated finite Generalized Root System.
- (b) Each of these GRS also appears as a GRS of a Nichols algebra of diagonal type.

Remark. There are still 11 unidentified braided vector spaces of diagonal type in the list.

III. Pre-Nichols and Post-Nichols algebras.

 $R=\oplus_{n\geq 0}R^n\in {}^H_H\mathcal{YD}$ graded connected Hopf algebra, $V=R^1$

R is a Nichols algebra when

- \clubsuit R is coradically graded \iff P(R) = V.
- lacktriangleright R is generated by V.

R is a **pre-Nichols** algebra when \blacklozenge holds (Masuoka).

R is a **post-Nichols** algebra when \clubsuit holds.

T(V) free algebra $T^c(V)$ free coalgebra $\mathcal{B}(V)$ Nichols alg. Ω_n quantum symm. \mathcal{B} pre-Nichols \mathcal{E} post-Nichols

 $\mathfrak{Pre}(V)$: poset of pre-Nichols, \leq is \rightarrow ; min. T(V), max. $\mathcal{B}(V)$.

 $\mathfrak{Post}(V)$: poset of post-Nichols, \leq is \subseteq ; min. $\mathcal{B}(V)$, max. $T^c(V)$.

 $(\dim V < \infty)$: $\Phi : \mathfrak{Pre}(V) \to \mathfrak{Post}(V^*), \ \Phi(R) = R^d$, anti-isom.

Post-Nichols algebras with finite GKdim are relevant for the classification of Hopf algebras with finite GKdim.

Let K be a Hopf algebra, $V \in {}^K_K\mathcal{YD}$ finite-dimensional.

Lemma. \mathcal{B} a pre-Nichols algebra of a V, $\mathcal{E} = \mathcal{B}^d$. Then $\mathsf{GKdim}\,\mathcal{E} \leq \mathsf{GKdim}\,\mathcal{B}$. If \mathcal{E} is fin. gen., then $\mathsf{GKdim}\,\mathcal{E} = \mathsf{GKdim}\,\mathcal{B}$.

V is *pre-bounded* if every chain

$$\cdots < \mathcal{B}[3] < \mathcal{B}[2] < \mathcal{B}[1] < \mathcal{B}[0] = \mathcal{B}(V), \tag{1}$$

of pre-Nichols algebras over V with finite GKdim, is finite.

Lemma. $\mathcal{E} \in {}^K_K \mathcal{YD}$ post-Nichols algebra of V, GKdim $\mathcal{E} < \infty$. If V^* is pre-bounded, then \mathcal{E} is fin. gen. and GKdim $\mathcal{E} = \mathsf{GKdim}\,\mathcal{E}^d$.

In particular, if the only pre-Nichols algebra of V^* with finite GKdim is $\mathcal{B}(V^*)$, then $\mathcal{E} = \mathcal{B}(V)$.

Examples: the only pre-Nichols or post-Nichols algebra of V with finite GKdim is $\mathcal{B}(V)$ when:

- V is of finite generic Cartan type,
- $\circ V$ is of Jordan or super Jordan type.
- (V,c) $\theta := \dim V < \infty$; c = the usual flip. Then
- $\mathcal{B}(V) = S(V)$, $T(V) \simeq U(L(V))$ (free Lie algebra on V).
- \mathcal{B} a pre-Nichols algebra of $V \Rightarrow U(P(\mathcal{B}))$; $P(\mathcal{B})$ graded Lie algebra generated by V.
- L N-graded Lie algebra generated by $L_1 \simeq V \Rightarrow U(L)$ is a pre-Nichols algebra of V. L finite-dimensional \Rightarrow GKdim $U(L) < \infty$. Such Lie algebras are nilpotent, there are infinitely many.

Distinguished pre-Nichols algebras. $\mathfrak{q}=(q_{ij})_{i,j\in\mathbb{I}_{\theta}}\leadsto V$.

Assume dim $\mathcal{B}(V) < \infty$. Notation: $\mathcal{B}_{\mathfrak{q}} = \mathcal{B}(V) = T(V)/\mathcal{J}_{\mathfrak{q}}$.

$$c_{ij}^{\mathfrak{q}} := -\min \left\{ n \in \mathbb{N}_0 : (n+1)_{q_{ii}} (1 - q_{ii}^n q_{ij} q_{ji}) = 0 \right\}, \quad i \neq j.$$

- $\circ i \in \mathbb{I}$ is a Cartan vertex of \mathfrak{q} if $q_{ij}q_{ji} \stackrel{(\star)}{=} q_{ii}^{c_{ij}^{\mathfrak{q}}}$, for all $j \neq i$.
- o $\alpha = s_{i_1}^{\mathfrak{q}} s_{i_2} \dots s_{i_k}(\alpha_i) \in \Delta_+^{\mathfrak{q}}$ Cartan root of \mathfrak{q} if $i \in \mathbb{I}$ Cartan vertex of $\rho_{i_k} \dots \rho_{i_2} \rho_{i_1}(\mathfrak{q})$.

 $\mathfrak{S}=$ set of generators of $\mathcal{J}_{\mathfrak{q}}$ (Angiono). Let

$$\begin{split} \mathcal{J}_{\mathfrak{q}} \supset \mathcal{I}_{\mathfrak{q}} &:= \langle \mathfrak{S} \cup \mathfrak{S}_2 - \mathfrak{S}_1 \rangle \\ \mathfrak{S}_1 &= \{ \text{powers root vectors } E_{\alpha}^{N_{\alpha}}, \ \alpha \ \text{Cartan root} \}; \\ \mathfrak{S}_2 &= \{ \text{quantum Serre rel.} (\text{ad}_c E_i)^{1-c_{ij}^{\mathfrak{q}}} E_j, i \neq j \ \text{s. t. } (\star). \} \end{split}$$

Definition (Angiono). The distinguished pre-Nichols algebra of V is $\widetilde{\mathcal{B}}_{\mathfrak{q}} = T(V)/\mathcal{I}_{\mathfrak{q}}$. Let $\widetilde{\mathfrak{u}}(V) = \widetilde{\mathcal{B}}(V) \otimes \mathbb{C}\Gamma \otimes \widetilde{\mathcal{B}}(V)$.

Theorem. (Angiono) (a) GKdim $\tilde{\mathcal{B}}_{\mathfrak{q}} = |\{\text{Cartan roots}\}|$.

(b) The Lusztig automorphisms can be lifted to $\tilde{\mathfrak{u}}(V)$.

The Lusztig algebra $\mathcal{L}_{\mathfrak{q}}$ of V is the graded dual of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$.

Theorem. [AAR]. $\mathsf{GKdim}_{\mathfrak{q}} \mathcal{L}_{\mathfrak{q}} = |\{\mathsf{Cartan roots}\}|.$

Example: $\mathfrak{q}=(q_{ij})_{i,j\in\mathbb{I}_{\theta}}$ of Cartan type, i. e. $q_{ij}q_{ji}=q_{ii}^{c_{ij}^{\mathfrak{q}}}$, for all $j\neq i$. Assume $(\operatorname{ord} q_{ij}q_{ji},210)=1$ for all i,j. Then $\mathcal{B}_{\mathfrak{q}}=\mathbb{C}\langle x_1,\ldots,x_{\theta}|$ quantum Serre rel., power root vectors \rangle ; $\widetilde{\mathcal{B}}_{\mathfrak{q}}=\mathbb{C}\langle x_1,\ldots,x_{\theta}|$ quantum Serre rel. \rangle GKdim $\widetilde{\mathcal{B}}_{\mathfrak{q}}=\operatorname{GKdim}_{\mathfrak{q}}\mathcal{L}_{\mathfrak{q}}=|\Delta^+|$.

IV. An exact sequence and Lie algebras.

Let $\pi:\widetilde{\mathcal{B}}_{\mathfrak{q}}\to\mathcal{B}_{\mathfrak{q}}$ be the projection. Let $Z_{\mathfrak{q}}$ be the subalgebra of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ generated by $x_{\beta}^{N_{\beta}}$, β Cartan root.

We need that if α, β are Cartan roots, then $q_{\alpha\beta}^{N_{\beta}} = 1$.

Theorem. (Angiono). $Z_{\mathfrak{q}} = \widetilde{\mathcal{B}}_{\mathfrak{q}}^{\mathsf{CO}\pi}$ is a commutative normal Hopf subalgebra of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ and the following sequence is exact:

$$\mathbb{C} o Z_{\mathfrak{q}} \stackrel{\iota}{ o} \widetilde{\mathcal{B}}_{\mathfrak{q}} \stackrel{\pi}{ o} \mathcal{B}_{\mathfrak{q}} o \mathbb{C}.$$

Let $\mathfrak{Z}_{\mathfrak{q}}$ be the graded dual of $Z_{\mathfrak{q}}$.

Theorem. [AAR] $\mathfrak{Z}_{\mathfrak{q}}$ is a cocommutative Hopf algebra and the following sequence is exact:

$$\mathbb{C} o \mathcal{B}_{\mathfrak{q}} \overset{\pi^*}{ o} \mathcal{L}_{\mathfrak{q}} \overset{\iota^*}{ o} \mathfrak{Z}_{\mathfrak{q}} o \mathbb{C}.$$

 $\mathfrak{Z}_{\mathfrak{q}}$ is the enveloping algebra of the Lie algebra $\mathfrak{n}_{\mathfrak{q}}=\mathcal{P}(\mathfrak{Z}_{\mathfrak{q}}).$

This Lie algebra can be explicitly described and computed.

Diagram	Parameter	Туре	$\mathfrak{n}_{\mathfrak{q}}=\mathfrak{g}^+$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$q \neq 1$	Cartan A	A_2
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$q \neq \pm 1$	Super A	A_1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$q \neq \pm 1$	Cartan B	B_2
$egin{pmatrix} q & q^{-2} & -1 \ \bigcirc & \bigcirc & \bigcirc \end{matrix}$	$q otin \mathbb{G}_4$	Super B	$\boxed{A_1 \times A_1}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\zeta \in \mathbb{G}_3 \not\ni q$	$\mathfrak{br}(2,a)$	$A_1 \times A_1$
$egin{array}{cccc} \zeta & -\zeta & -1 \ \bigcirc & \bigcirc & \bigcirc \end{array}$	$\zeta\in\mathbb{G}_3'$	Standard B	0
$ \begin{array}{c c} -\zeta^{-2} - \zeta^3 - \zeta^2 \\ \bigcirc - \bigcirc \end{array} $	$\zeta\in\mathbb{G}_{12}'$	ufo(7)	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\zeta\in\mathbb{G}_{12}'$	ufo(8)	A_1

Diagram	Parameter	Туре	$\mathfrak{n}_{\mathfrak{q}}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\zeta\in\mathbb{G}_9'$	brj(2; 3)	$A_1 \times A_1$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$q \notin \mathbb{G}_2 \cup \mathbb{G}_3$	Cartan G_2	G_2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\zeta\in\mathbb{G}_8'$	Standard G_2	$A_1 \times A_1$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\zeta\in\mathbb{G}_{24}'$	ufo(9)	$A_1 \times A_1$
$\begin{array}{c cccc} \zeta & \zeta^2 & -1 \\ \bigcirc & \bigcirc & \bigcirc \end{array}$	$\zeta\in\mathbb{G}_5'$	brj(2; 5)	B_2
ζ ζ^{-3} -1	$\zeta\in\mathbb{G}_{20}'$	ufo(10)	$A_1 \times A_1$
$\begin{array}{c c} -\zeta_{-\zeta^{-3}} \zeta^5 \\ \bigcirc & \bigcirc \end{array}$	$\zeta\in\mathbb{G}_{15}'$	ufo(11)	$A_1 \times A_1$
$\begin{array}{c c} -\zeta_{-\zeta^{-3}-1} \\ \bigcirc & \bigcirc \end{array}$	$\zeta\in\mathbb{G}_7'$	ufo(12)	G_2

References:

- I. Angiono. *Distinguished pre-Nichols algebras*. Transf. Groups 21 (2016), 1-33.
- N. A., I. Angiono, F. Rossi Bertone. *The quantum divided power algebra of a finite-dimensional Nichols algebra of diagonal type*. Math. Res. Lett., to appear.
- N. A., I. Angiono, F. Rossi Bertone. *A finite-dimensional Lie algebra arising from a Nichols algebra of diagonal type (rank 2)*, arXiv:1603.09387.