Invariant decompositions of H-(co)module algebras and their applications to polynomial identities

Alexey Gordienko

Memorial University of Newfoundland

August 17, 2012

Outline

Invariant decompositions

- H-(co)module algebras
- Invariant Wedderburn Mal'cev and Levi theorems
- Stability of radicals
- Other invariant decompositions

2 Polynomial identities

- Definitions, examples, conjecture
- H-identities of associative algebras
- H-identities of Lie algebras
- Criteria for H-simplicity

Original Wedderburn — Mal'cev and Levi theorems

Theorem (J.H.M. Wedderburn, A.I. Mal'cev)

Let A be a finite dimensional associative algebra over a field F of characteristic 0. Then there exists a maximal semisimple subalgebra $B \subseteq A$ such that $A = B \oplus J(A)$ (direct sum of subspaces) where J(A) is the Jacobson radical of A. Moreover, if A is unitary and $A = B' \oplus J(A)$ for another subalgebra B', then $B' = (1 - j)^{-1}B(1 - j)$ for some $j \in J(A)$.

Theorem (E. Levi)

Let L be a finite dimensional Lie algebra over a field F of characteristic 0. Then there exists a maximal semisimple subalgebra $B \subseteq L$ such that $L = B \oplus R$ (direct sum of subspaces) where R is the solvable radical of L.

Original Wedderburn — Mal'cev and Levi theorems

Theorem (J.H.M. Wedderburn, A.I. Mal'cev)

Let A be a finite dimensional associative algebra over a field F of characteristic 0. Then there exists a maximal semisimple subalgebra $B \subseteq A$ such that $A = B \oplus J(A)$ (direct sum of subspaces) where J(A) is the Jacobson radical of A. Moreover, if A is unitary and $A = B' \oplus J(A)$ for another subalgebra B', then $B' = (1 - j)^{-1}B(1 - j)$ for some $j \in J(A)$.

Theorem (E. Levi)

Let L be a finite dimensional Lie algebra over a field F of characteristic 0. Then there exists a maximal semisimple subalgebra $B \subseteq L$ such that $L = B \oplus R$ (direct sum of subspaces) where R is the solvable radical of L.

Original Wedderburn — Mal'cev and Levi theorems

Theorem (J.H.M. Wedderburn, A.I. Mal'cev)

Let A be a finite dimensional associative algebra over a field F of characteristic 0. Then there exists a maximal semisimple subalgebra $B \subseteq A$ such that $A = B \oplus J(A)$ (direct sum of subspaces) where J(A) is the Jacobson radical of A. Moreover, if A is unitary and $A = B' \oplus J(A)$ for another subalgebra B', then $B' = (1 - j)^{-1}B(1 - j)$ for some $j \in J(A)$.

Theorem (E. Levi)

Let L be a finite dimensional Lie algebra over a field F of characteristic 0. Then there exists a maximal semisimple subalgebra $B \subseteq L$ such that $L = B \oplus R$ (direct sum of subspaces) where R is the solvable radical of L.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Examples of *H*-(co)module algebras

- graded algebras. Let G be a group. We say that an algebra $A = \bigoplus_{a \in G} A^{(g)}$ is graded if $A^{(g)}A^{(h)} \subseteq A^{(gh)}$ for all $g, h \in G$.
- algebras with an action of a group by automorphisms. Let G be a group. We say that an algebra A is a G-algebra if A is endowed with a homomorphism $G \rightarrow \operatorname{Aut}(A)$. In particular, $(ab)^g = a^g b^g$, $a, b \in A$.
- algebras with an action of a Lie algebra by derivations. We say that a Lie algebra g acts on an algebra A by derivations if A is endowed with a homomorphism g → Der(A). In particular, u(ab) = (ua)b + a(ub) for all a, b ∈ A, u ∈ g.

ヘロト ヘワト ヘビト ヘビト

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Examples of *H*-(co)module algebras

- graded algebras. Let G be a group. We say that an algebra $A = \bigoplus_{g \in G} A^{(g)}$ is graded if $A^{(g)}A^{(h)} \subseteq A^{(gh)}$ for all $g, h \in G$.
- algebras with an action of a group by automorphisms. Let G be a group. We say that an algebra A is a G-algebra if A is endowed with a homomorphism G → Aut(A). In particular, (ab)^g = a^gb^g, a, b ∈ A.
- algebras with an action of a Lie algebra by derivations. We say that a Lie algebra g acts on an algebra A by derivations if A is endowed with a homomorphism g → Der(A). In particular, u(ab) = (ua)b + a(ub) for all a, b ∈ A, u ∈ g.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Examples of *H*-(co)module algebras

- graded algebras. Let G be a group. We say that an algebra $A = \bigoplus_{g \in G} A^{(g)}$ is graded if $A^{(g)}A^{(h)} \subseteq A^{(gh)}$ for all $g, h \in G$.
- algebras with an action of a group by automorphisms. Let G be a group. We say that an algebra A is a G-algebra if A is endowed with a homomorphism G → Aut(A). In particular, (ab)^g = a^gb^g, a, b ∈ A.
- algebras with an action of a Lie algebra by derivations. We say that a Lie algebra g acts on an algebra A by derivations if A is endowed with a homomorphism g → Der(A). In particular, u(ab) = (ua)b + a(ub) for all a, b ∈ A, u ∈ g.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-module algebras

Definition

Let *A* be an algebra over a field *F*. Suppose *A* is a left *H*-module where *H* is a Hopf algebra. We say that *A* is an *H*-module algebra if $h(ab) = (h_{(1)}a)(h_{(2)}b)$ for all $h \in H$ and $a, b \in A$. Here we use Sweedler's notation $\Delta(a) = a_{(1)} \otimes a_{(2)}$.

Example

Let *A* be an algebra. Suppose a group *G* acts on *A* by automorphisms. Denote by *FG* the group algebra of *G*. Then *FG* is a Hopf algebra with the comultiplication $\Delta(g) = g \otimes g$, the counit $\varepsilon(g) = 1$, and the antipode $S(g) = g^{-1}, g \in G$. Moreover *A* is an *FG*-module algebra.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-module algebras

Definition

Let *A* be an algebra over a field *F*. Suppose *A* is a left *H*-module where *H* is a Hopf algebra. We say that *A* is an *H*-module algebra if $h(ab) = (h_{(1)}a)(h_{(2)}b)$ for all $h \in H$ and $a, b \in A$. Here we use Sweedler's notation $\Delta(a) = a_{(1)} \otimes a_{(2)}$.

Example

Let *A* be an algebra. Suppose a group *G* acts on *A* by automorphisms. Denote by *FG* the group algebra of *G*. Then *FG* is a Hopf algebra with the comultiplication $\Delta(g) = g \otimes g$, the counit $\varepsilon(g) = 1$, and the antipode $S(g) = g^{-1}, g \in G$. Moreover *A* is an *FG*-module algebra.

H-module algebras

Definition

Let *A* be an algebra over a field *F*. Suppose *A* is a left *H*-module where *H* is a Hopf algebra. We say that *A* is an *H*-module algebra if $h(ab) = (h_{(1)}a)(h_{(2)}b)$ for all $h \in H$ and $a, b \in A$. Here we use Sweedler's notation $\Delta(a) = a_{(1)} \otimes a_{(2)}$.

Example

Let *A* be an algebra. Suppose a group *G* acts on *A* by automorphisms. Denote by *FG* the group algebra of *G*. Then *FG* is a Hopf algebra with the comultiplication $\Delta(g) = g \otimes g$, the counit $\varepsilon(g) = 1$, and the antipode $S(g) = g^{-1}, g \in G$. Moreover *A* is an *FG*-module algebra.

H-module algebras

Definition

Let *A* be an algebra over a field *F*. Suppose *A* is a left *H*-module where *H* is a Hopf algebra. We say that *A* is an *H*-module algebra if $h(ab) = (h_{(1)}a)(h_{(2)}b)$ for all $h \in H$ and $a, b \in A$. Here we use Sweedler's notation $\Delta(a) = a_{(1)} \otimes a_{(2)}$.

Example

Let *A* be an algebra. Suppose a group *G* acts on *A* by automorphisms. Denote by *FG* the group algebra of *G*. Then *FG* is a Hopf algebra with the comultiplication $\Delta(g) = g \otimes g$, the counit $\varepsilon(g) = 1$, and the antipode $S(g) = g^{-1}, g \in G$. Moreover *A* is an *FG*-module algebra.

H-module algebras

Definition

Let *A* be an algebra over a field *F*. Suppose *A* is a left *H*-module where *H* is a Hopf algebra. We say that *A* is an *H*-module algebra if $h(ab) = (h_{(1)}a)(h_{(2)}b)$ for all $h \in H$ and $a, b \in A$. Here we use Sweedler's notation $\Delta(a) = a_{(1)} \otimes a_{(2)}$.

Example

Let *A* be an algebra. Suppose a group *G* acts on *A* by automorphisms. Denote by *FG* the group algebra of *G*. Then *FG* is a Hopf algebra with the comultiplication $\Delta(g) = g \otimes g$, the counit $\varepsilon(g) = 1$, and the antipode $S(g) = g^{-1}, g \in G$. Moreover *A* is an *FG*-module algebra.

H-module algebras

Definition

Let *A* be an algebra over a field *F*. Suppose *A* is a left *H*-module where *H* is a Hopf algebra. We say that *A* is an *H*-module algebra if $h(ab) = (h_{(1)}a)(h_{(2)}b)$ for all $h \in H$ and $a, b \in A$. Here we use Sweedler's notation $\Delta(a) = a_{(1)} \otimes a_{(2)}$.

Example

Let *A* be an algebra. Suppose a group *G* acts on *A* by automorphisms. Denote by *FG* the group algebra of *G*. Then *FG* is a Hopf algebra with the comultiplication $\Delta(g) = g \otimes g$, the counit $\varepsilon(g) = 1$, and the antipode $S(g) = g^{-1}, g \in G$. Moreover *A* is an *FG*-module algebra.

H-module algebras

Definition

Let *A* be an algebra over a field *F*. Suppose *A* is a left *H*-module where *H* is a Hopf algebra. We say that *A* is an *H*-module algebra if $h(ab) = (h_{(1)}a)(h_{(2)}b)$ for all $h \in H$ and $a, b \in A$. Here we use Sweedler's notation $\Delta(a) = a_{(1)} \otimes a_{(2)}$.

Example

Let *A* be an algebra. Suppose a group *G* acts on *A* by automorphisms. Denote by *FG* the group algebra of *G*. Then *FG* is a Hopf algebra with the comultiplication $\Delta(g) = g \otimes g$, the counit $\varepsilon(g) = 1$, and the antipode $S(g) = g^{-1}, g \in G$. Moreover *A* is an *FG*-module algebra.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-module algebras

Example

Let *A* be an algebra and g be a Lie algebra. The universal enveloping algebra U(g) is a Hopf algebra where $\Delta(v) = v \otimes 1 + 1 \otimes v, \varepsilon(v) = 0, S(v) = -v$ for all $v \in g$. Suppose g is acting on *A* by derivations. Consider the corresponding homomorphism $U(g) \rightarrow \operatorname{End}_F(A)$ of associative algebras. Then *A* becomes an U(g)-module algebra.

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-module algebras

Example

Let *A* be an algebra and g be a Lie algebra. The universal enveloping algebra U(g) is a Hopf algebra where $\Delta(v) = v \otimes 1 + 1 \otimes v, \varepsilon(v) = 0, S(v) = -v$ for all $v \in g$. Suppose g is acting on *A* by derivations. Consider the corresponding homomorphism $U(g) \rightarrow \operatorname{End}_F(A)$ of associative algebras. Then *A* becomes an U(g)-module algebra.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-module algebras

Example

Let *A* be an algebra and g be a Lie algebra. The universal enveloping algebra $U(\mathfrak{g})$ is a Hopf algebra where $\Delta(v) = v \otimes 1 + 1 \otimes v, \varepsilon(v) = 0, S(v) = -v$ for all $v \in \mathfrak{g}$. Suppose g is acting on *A* by derivations. Consider the corresponding homomorphism $U(\mathfrak{g}) \to \operatorname{End}_{\mathcal{F}}(A)$ of associative algebras. Then *A* becomes an $U(\mathfrak{g})$ -module algebra.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-module algebras

Example

Let *A* be an algebra and g be a Lie algebra. The universal enveloping algebra U(g) is a Hopf algebra where $\Delta(v) = v \otimes 1 + 1 \otimes v, \varepsilon(v) = 0, S(v) = -v$ for all $v \in g$. Suppose g is acting on *A* by derivations. Consider the corresponding homomorphism $U(g) \rightarrow \text{End}_F(A)$ of associative algebras. Then *A* becomes an U(g)-module algebra.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-module algebras

Example

Let *A* be an algebra and g be a Lie algebra. The universal enveloping algebra U(g) is a Hopf algebra where $\Delta(v) = v \otimes 1 + 1 \otimes v, \varepsilon(v) = 0, S(v) = -v$ for all $v \in g$. Suppose g is acting on *A* by derivations. Consider the corresponding homomorphism $U(g) \rightarrow \operatorname{End}_F(A)$ of associative algebras. Then *A* becomes an U(g)-module algebra.

ヘロト 人間 ト ヘヨト ヘヨト

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-comodule algebras

Definition

Let *A* be an algebra over a field *F*. Suppose *A* is a right *H*-comodule for some Hopf algebra *H*. Denote by $\rho: A \to A \otimes H$ the corresponding comodule map. We say that *A* is an *H*-comodule algebra if $\rho(ab) = a_{(0)}b_{(0)} \otimes a_{(1)}b_{(1)}$ for all $a, b \in A$. Here we use Sweedler's notation $\rho(a) = a_{(0)} \otimes a_{(1)}$.

Example

Let $A = \bigoplus_{g \in G} A^{(g)}$ be an algebra over a field F graded by a group G. Then A is an FG-comodule algebra where $\rho(a^{(g)}) = a^{(g)} \otimes g$ for all $g \in G$ and $a^{(g)} \in A^{(g)}$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-comodule algebras

Definition

Let A be an algebra over a field F. Suppose A is a right H-comodule for some Hopf algebra H. Denote by

 $\rho: A \to A \otimes H$ the corresponding comodule map. We say that A is an *H*-comodule algebra if $\rho(ab) = a_{(0)}b_{(0)} \otimes a_{(1)}b_{(1)}$ for all $a, b \in A$. Here we use Sweedler's notation $\rho(a) = a_{(0)} \otimes a_{(1)}$.

Example

Let $A = \bigoplus_{g \in G} A^{(g)}$ be an algebra over a field F graded by a group G. Then A is an FG-comodule algebra where $\rho(a^{(g)}) = a^{(g)} \otimes g$ for all $g \in G$ and $a^{(g)} \in A^{(g)}$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-comodule algebras

Definition

Let *A* be an algebra over a field *F*. Suppose *A* is a right *H*-comodule for some Hopf algebra *H*. Denote by $\rho: A \to A \otimes H$ the corresponding comodule map. We say that *A* is an *H*-comodule algebra if $\rho(ab) = a_{(0)}b_{(0)} \otimes a_{(1)}b_{(1)}$ for all $a, b \in A$. Here we use Sweedler's notation $\rho(a) = a_{(0)} \otimes a_{(1)}$.

Example

Let $A = \bigoplus_{g \in G} A^{(g)}$ be an algebra over a field F graded by a group G. Then A is an FG-comodule algebra where $\rho(a^{(g)}) = a^{(g)} \otimes g$ for all $g \in G$ and $a^{(g)} \in A^{(g)}$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-comodule algebras

Definition

Let *A* be an algebra over a field *F*. Suppose *A* is a right *H*-comodule for some Hopf algebra *H*. Denote by $\rho: A \to A \otimes H$ the corresponding comodule map. We say that *A* is an *H*-comodule algebra if $\rho(ab) = a_{(0)}b_{(0)} \otimes a_{(1)}b_{(1)}$ for all $a, b \in A$. Here we use Sweedler's notation $\rho(a) = a_{(0)} \otimes a_{(1)}$.

Example

Let $A = \bigoplus_{g \in G} A^{(g)}$ be an algebra over a field F graded by a group G. Then A is an FG-comodule algebra where $\rho(a^{(g)}) = a^{(g)} \otimes g$ for all $g \in G$ and $a^{(g)} \in A^{(g)}$.

ヘロト ヘアト ヘビト ヘビト

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-comodule algebras

Definition

Let *A* be an algebra over a field *F*. Suppose *A* is a right *H*-comodule for some Hopf algebra *H*. Denote by $\rho: A \to A \otimes H$ the corresponding comodule map. We say that *A* is an *H*-comodule algebra if $\rho(ab) = a_{(0)}b_{(0)} \otimes a_{(1)}b_{(1)}$ for all $a, b \in A$. Here we use Sweedler's notation $\rho(a) = a_{(0)} \otimes a_{(1)}$.

Example

Let $A = \bigoplus_{g \in G} A^{(g)}$ be an algebra over a field F graded by a group G. Then A is an FG-comodule algebra where $\rho(a^{(g)}) = a^{(g)} \otimes g$ for all $g \in G$ and $a^{(g)} \in A^{(g)}$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-comodule algebras

Definition

Let *A* be an algebra over a field *F*. Suppose *A* is a right *H*-comodule for some Hopf algebra *H*. Denote by $\rho: A \to A \otimes H$ the corresponding comodule map. We say that *A* is an *H*-comodule algebra if $\rho(ab) = a_{(0)}b_{(0)} \otimes a_{(1)}b_{(1)}$ for all $a, b \in A$. Here we use Sweedler's notation $\rho(a) = a_{(0)} \otimes a_{(1)}$.

Example

Let $A = \bigoplus_{g \in G} A^{(g)}$ be an algebra over a field F graded by a group G. Then A is an FG-comodule algebra where $\rho(a^{(g)}) = a^{(g)} \otimes g$ for all $g \in G$ and $a^{(g)} \in A^{(g)}$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Affine algebraic groups

Let G be an affine algebraic group over a field F.

Denote by $\mathcal{O}(G)$ the coordinate algebra of *G*. Then $\mathcal{O}(G)$ is a Hopf algebra where the comultiplication $\Delta : \mathcal{O}(G) \to \mathcal{O}(G) \otimes \mathcal{O}(G)$ is dual to the multiplication $G \times G \to G$, the counit $\varepsilon : \mathcal{O}(G) \to F$ is defined by $\varepsilon(f) = f(1_G)$, and the antipode $S : \mathcal{O}(G) \to \mathcal{O}(G)$ is dual to the map $g \to g^{-1}$, $g \in G$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Affine algebraic groups

Let *G* be an affine algebraic group over a field *F*. Denote by $\mathcal{O}(G)$ the coordinate algebra of *G*.

Then $\mathcal{O}(G)$ is a Hopf algebra where the comultiplication $\Delta: \mathcal{O}(G) \to \mathcal{O}(G) \otimes \mathcal{O}(G)$ is dual to the multiplication $G \times G \to G$, the counit $\varepsilon: \mathcal{O}(G) \to F$ is defined by $\varepsilon(f) = f(1_G)$, and the antipode $S: \mathcal{O}(G) \to \mathcal{O}(G)$ is dual to the map $g \to g^{-1}$, $g \in G$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Affine algebraic groups

Let *G* be an affine algebraic group over a field *F*. Denote by $\mathcal{O}(G)$ the coordinate algebra of *G*. Then $\mathcal{O}(G)$ is a Hopf algebra where the comultiplication $\Delta : \mathcal{O}(G) \to \mathcal{O}(G) \otimes \mathcal{O}(G)$ is dual to the multiplication $G \times G \to G$, the counit $\varepsilon : \mathcal{O}(G) \to F$ is defined by $\varepsilon(f) = f(1_G)$, and the antipode $S : \mathcal{O}(G) \to \mathcal{O}(G)$ is dual to the map $g \to g^{-1}$, $g \in G$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Affine algebraic groups

Let *G* be an affine algebraic group over a field *F*. Denote by $\mathcal{O}(G)$ the coordinate algebra of *G*. Then $\mathcal{O}(G)$ is a Hopf algebra where the comultiplication $\Delta: \mathcal{O}(G) \to \mathcal{O}(G) \otimes \mathcal{O}(G)$ is dual to the multiplication $G \times G \to G$, the counit $\varepsilon: \mathcal{O}(G) \to F$ is defined by $\varepsilon(f) = f(1_G)$, and the antipode $S: \mathcal{O}(G) \to \mathcal{O}(G)$ is dual to the map $g \to g^{-1}$, $g \in G$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Affine algebraic groups

Let *G* be an affine algebraic group over a field *F*. Denote by $\mathcal{O}(G)$ the coordinate algebra of *G*. Then $\mathcal{O}(G)$ is a Hopf algebra where the comultiplication $\Delta : \mathcal{O}(G) \to \mathcal{O}(G) \otimes \mathcal{O}(G)$ is dual to the multiplication $G \times G \to G$, the counit $\varepsilon : \mathcal{O}(G) \to F$ is defined by $\varepsilon(f) = f(1_G)$, and the antipode $S : \mathcal{O}(G) \to \mathcal{O}(G)$ is dual to the map $g \to g^{-1}$, $g \in G$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Affine algebraic groups

Let *G* be an affine algebraic group over a field *F*. Denote by $\mathcal{O}(G)$ the coordinate algebra of *G*. Then $\mathcal{O}(G)$ is a Hopf algebra where the comultiplication $\Delta : \mathcal{O}(G) \to \mathcal{O}(G) \otimes \mathcal{O}(G)$ is dual to the multiplication $G \times G \to G$, the counit $\varepsilon : \mathcal{O}(G) \to F$ is defined by $\varepsilon(f) = f(1_G)$, and the antipode $S : \mathcal{O}(G) \to \mathcal{O}(G)$ is dual to the map $g \to g^{-1}$, $g \in G$.

H-comodule algebras

Let A be an algebra over a field F and let G be an affine algebraic group.

Suppose *A* is endowed with a *rational action* of *G* by automorphisms, i.e. there is a fixed homomorphism $G \rightarrow \operatorname{Aut}(A) \subseteq GL(A)$ such that for some basis e_1, \ldots, e_m of *A* we have $ge_j = \sum_{i=1}^m \omega_{ij}(g)e_i$ where ω_{ij} are polynomials in the coordinates of $g \in G$. Then *A* is an $\mathcal{O}(G)$ -comodule algebra where $\rho(e_i) = \sum_{i=1}^m e_i \otimes \omega_{ii}, 1 \leq i \leq m$, and $ga = a_{(1)}(g)a_{(0)}, g \in G$.

Furthermore, each $\mathcal{O}(G)$ -subcomodule of A is a G-invariant subspace and vice versa.

H-comodule algebras

Let A be an algebra over a field F and let G be an affine algebraic group.

Suppose *A* is endowed with a *rational action* of *G* by automorphisms, i.e. there is a fixed homomorphism

 $G \rightarrow \operatorname{Aut}(A) \subseteq GL(A)$ such that for some basis e_1, \ldots, e_m of A we have $ge_j = \sum_{i=1}^m \omega_{ij}(g)e_i$ where ω_{ij} are polynomials in the coordinates of $g \in G$.

Then A is an $\mathcal{O}(G)$ -comodule algebra where

 $\rho(e_j) = \sum_{i=1}^{m} e_i \otimes \omega_{ij}, 1 \leq j \leq m$, and $ga = a_{(1)}(g)a_{(0)}, g \in G$. Furthermore, each $\mathcal{O}(G)$ -subcomodule of A is a G-invariant subspace and vice versa.

H-comodule algebras

Let A be an algebra over a field F and let G be an affine algebraic group.

Suppose *A* is endowed with a *rational action* of *G* by automorphisms, i.e. there is a fixed homomorphism

 $G \rightarrow \text{Aut}(A) \subseteq GL(A)$ such that for some basis e_1, \ldots, e_m of A we have $ge_j = \sum_{i=1}^m \omega_{ij}(g)e_i$ where ω_{ij} are polynomials in the coordinates of $g \in G$.

Then *A* is an $\mathcal{O}(G)$ -comodule algebra where $\rho(e_j) = \sum_{i=1}^{m} e_i \otimes \omega_{ij}, 1 \leq j \leq m$, and $ga = a_{(1)}(g)a_{(0)}, g \in G$. Furthermore, each $\mathcal{O}(G)$ -subcomodule of *A* is a *G*-invariant subspace and vice versa.

H-comodule algebras

Let A be an algebra over a field F and let G be an affine algebraic group.

Suppose *A* is endowed with a *rational action* of *G* by automorphisms, i.e. there is a fixed homomorphism

 $G \rightarrow \text{Aut}(A) \subseteq GL(A)$ such that for some basis e_1, \ldots, e_m of A we have $ge_j = \sum_{i=1}^m \omega_{ij}(g)e_i$ where ω_{ij} are polynomials in the coordinates of $g \in G$.

Then *A* is an $\mathcal{O}(G)$ -comodule algebra where $\rho(e_j) = \sum_{i=1}^{m} e_i \otimes \omega_{ij}, 1 \leq j \leq m$, and $ga = a_{(1)}(g)a_{(0)}, g \in G$. Furthermore, each $\mathcal{O}(G)$ -subcomodule of *A* is a *G*-invariant subspace and vice versa.
H-comodule algebras

Let A be an algebra over a field F and let G be an affine algebraic group.

Suppose *A* is endowed with a *rational action* of *G* by automorphisms, i.e. there is a fixed homomorphism

 $G \rightarrow \text{Aut}(A) \subseteq GL(A)$ such that for some basis e_1, \ldots, e_m of A we have $ge_j = \sum_{i=1}^m \omega_{ij}(g)e_i$ where ω_{ij} are polynomials in the coordinates of $g \in G$.

Then *A* is an $\mathcal{O}(G)$ -comodule algebra where $\rho(e_j) = \sum_{i=1}^{m} e_i \otimes \omega_{ij}, 1 \leq j \leq m$, and $ga = a_{(1)}(g)a_{(0)}, g \in G$. Furthermore, each $\mathcal{O}(G)$ -subcomodule of *A* is a *G*-invariant subspace and vice versa.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-(co)module algebras

If dim $H < +\infty$, then we can define a Hopf algebra structure on the space $H^* := \text{Hom}_F(H, F)$ using the dual operators.

In this case, every H-comodule algebra A is an H^* -module algebra and vice versa.

The correspondence between the *H*-coaction and the *H*^{*}-action is given by the formula $h^*a = h^*(a_{(1)})a_{(0)}$ where $h^* \in H^*$, $a \in A$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-(co)module algebras

If dim $H < +\infty$, then we can define a Hopf algebra structure on the space $H^* := \text{Hom}_F(H, F)$ using the dual operators. In this case, every *H*-comodule algebra *A* is an *H**-module algebra and vice versa.

The correspondence between the *H*-coaction and the *H*^{*}-action is given by the formula $h^*a = h^*(a_{(1)})a_{(0)}$ where $h^* \in H^*$, $a \in A$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-(co)module algebras

If dim $H < +\infty$, then we can define a Hopf algebra structure on the space $H^* := \text{Hom}_F(H, F)$ using the dual operators. In this case, every *H*-comodule algebra *A* is an *H**-module algebra and vice versa.

The correspondence between the *H*-coaction and the *H*^{*}-action is given by the formula $h^*a = h^*(a_{(1)})a_{(0)}$ where $h^* \in H^*$, $a \in A$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Integrals on Hopf algebras

Let *H* be a Hopf algebra.

Recall that $t \in H^*$ is a *left integral on H* if $t(a_{(2)})a_{(1)} = t(a)1$ for all $a \in H$. We say that a left integral is ad-*invariant* if $t(a_{(1)} \ b \ S(a_{(2)})) = \varepsilon(a)t(b)$ for all $a, b \in H$. In the main results we assume that there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1.

Now we list three main examples of such Hopf algebras *H*. First, we notice that the existence of an integral $t \in H^*$, such that t(1) = 1, is equivalent to the cosemisimplicity of *H*.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Integrals on Hopf algebras

Let *H* be a Hopf algebra. Recall that $t \in H^*$ is a *left integral on H* if $t(a_{(2)})a_{(1)} = t(a)1$ for all $a \in H$.

We say that a left integral is ad-*invariant* if $t(a_{(1)} b S(a_{(2)})) = \varepsilon(a)t(b)$ for all $a, b \in H$.

In the main results we assume that there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1.

Now we list three main examples of such Hopf algebras *H*. First, we notice that the existence of an integral $t \in H^*$, such that t(1) = 1, is equivalent to the cosemisimplicity of *H*.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Integrals on Hopf algebras

Let *H* be a Hopf algebra. Recall that $t \in H^*$ is a *left integral on* H if $t(a_{(2)})a_{(1)} = t(a)1$ for all $a \in H$. We say that a left integral is ad-invariant if $t(a_{(1)} b S(a_{(2)})) = \varepsilon(a)t(b)$ for all $a, b \in H$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Integrals on Hopf algebras

Let *H* be a Hopf algebra.

Recall that $t \in H^*$ is a *left integral on* H if $t(a_{(2)})a_{(1)} = t(a)1$ for all $a \in H$.

We say that a left integral is ad-invariant if

 $t(a_{(1)} b S(a_{(2)})) = \varepsilon(a)t(b)$ for all $a, b \in H$.

In the main results we assume that there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1.

Now we list three main examples of such Hopf algebras *H*. First, we notice that the existence of an integral $t \in H^*$, such that t(1) = 1, is equivalent to the cosemisimplicity of *H*.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Integrals on Hopf algebras

Let *H* be a Hopf algebra. Recall that $t \in H^*$ is a *left integral on* H if $t(a_{(2)})a_{(1)} = t(a)1$ for all $a \in H$. We say that a left integral is ad-invariant if $t(a_{(1)} b S(a_{(2)})) = \varepsilon(a)t(b)$ for all $a, b \in H$. In the main results we assume that there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1. Now we list three main examples of such Hopf algebras H.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Integrals on Hopf algebras

Let *H* be a Hopf algebra.

Recall that $t \in H^*$ is a *left integral on* H if $t(a_{(2)})a_{(1)} = t(a)1$ for all $a \in H$.

We say that a left integral is ad-invariant if

 $t(a_{(1)} b S(a_{(2)})) = \varepsilon(a)t(b)$ for all $a, b \in H$.

In the main results we assume that there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1.

Now we list three main examples of such Hopf algebras *H*. First, we notice that the existence of an integral $t \in H^*$, such that t(1) = 1, is equivalent to the cosemisimplicity of *H*.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Examples of Hopf algebras with ad-invariant integrals

Example

Let *G* be any group. Consider $t \in (FG)^*$, $t(g) = \begin{cases} 0 & \text{if } g \neq 1, \\ 1 & \text{if } g = 1. \end{cases}$ Then *t* is an ad-invariant left integral on *FG*. Note that t(1) = 1.

Example

Let *G* be an affine algebraic group over a field *F*. If *F* is algebraically closed of characteristic 0 and *G* is reductive, then there exists an ad-invariant left integral $t \in \mathcal{O}(G)^*$ such that t(1) = 1.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Examples of Hopf algebras with ad-invariant integrals

Example

Let *G* be any group. Consider $t \in (FG)^*$, $t(g) = \begin{cases} 0 & \text{if } g \neq 1, \\ 1 & \text{if } g = 1. \end{cases}$ Then *t* is an ad-invariant left integral on *FG*. Note that t(1) = 1.

Example

Let *G* be an affine algebraic group over a field *F*. If *F* is algebraically closed of characteristic 0 and *G* is reductive, then there exists an ad-invariant left integral $t \in \mathcal{O}(G)^*$ such that t(1) = 1.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Examples of Hopf algebras with ad-invariant integrals

Example

Let *G* be any group. Consider $t \in (FG)^*$, $t(g) = \begin{cases} 0 & \text{if } g \neq 1, \\ 1 & \text{if } g = 1. \end{cases}$ Then *t* is an ad-invariant left integral on *FG*. Note that t(1) = 1.

Example

Let *G* be an affine algebraic group over a field *F*. If *F* is algebraically closed of characteristic 0 and *G* is reductive, then there exists an ad-invariant left integral $t \in \mathcal{O}(G)^*$ such that t(1) = 1.

イロト 不得 とくほ とくほとう

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Examples of Hopf algebras with ad-invariant integrals

Example

Let *G* be any group. Consider $t \in (FG)^*$, $t(g) = \begin{cases} 0 & \text{if } g \neq 1, \\ 1 & \text{if } g = 1. \end{cases}$ Then *t* is an ad-invariant left integral on *FG*. Note that t(1) = 1.

Example

Let *G* be an affine algebraic group over a field *F*. If *F* is algebraically closed of characteristic 0 and *G* is reductive, then there exists an ad-invariant left integral $t \in \mathcal{O}(G)^*$ such that t(1) = 1.

ヘロト 人間 ト ヘヨト ヘヨト

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Examples of Hopf algebras with ad-invariant integrals

Example

Let *H* be a finite dimensional (co)semisimple Hopf algebra over a field *F* of characteristic 0. Then there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1.

We conclude the subsection with an example of a Hopf algebra that does not have nonzero integrals.

Example

Let *L* be a Lie algebra over a field *F*. If $L \neq 0$, *F* is of characteristic 0, and $t \in U(L)^*$ is a left integral of U(L), then t = 0.

イロン イボン イヨン イヨン

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Examples of Hopf algebras with ad-invariant integrals

Example

Let *H* be a finite dimensional (co)semisimple Hopf algebra over a field *F* of characteristic 0. Then there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1.

We conclude the subsection with an example of a Hopf algebra that does not have nonzero integrals.

Example

Let *L* be a Lie algebra over a field *F*. If $L \neq 0$, *F* is of characteristic 0, and $t \in U(L)^*$ is a left integral of U(L), then t = 0.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Examples of Hopf algebras with ad-invariant integrals

Example

Let *H* be a finite dimensional (co)semisimple Hopf algebra over a field *F* of characteristic 0. Then there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1.

We conclude the subsection with an example of a Hopf algebra that does not have nonzero integrals.

Example

Let *L* be a Lie algebra over a field *F*. If $L \neq 0$, *F* is of characteristic 0, and $t \in U(L)^*$ is a left integral of U(L), then t = 0.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Examples of Hopf algebras with ad-invariant integrals

Example

Let *H* be a finite dimensional (co)semisimple Hopf algebra over a field *F* of characteristic 0. Then there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1.

We conclude the subsection with an example of a Hopf algebra that does not have nonzero integrals.

Example

Let *L* be a Lie algebra over a field *F*. If $L \neq 0$, *F* is of characteristic 0, and $t \in U(L)^*$ is a left integral of U(L), then t = 0.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Examples of Hopf algebras with ad-invariant integrals

Example

Let *H* be a finite dimensional (co)semisimple Hopf algebra over a field *F* of characteristic 0. Then there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1.

We conclude the subsection with an example of a Hopf algebra that does not have nonzero integrals.

Example

Let *L* be a Lie algebra over a field *F*. If $L \neq 0$, *F* is of characteristic 0, and $t \in U(L)^*$ is a left integral of U(L), then t = 0.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Taft's results

In 1957 E.J. Taft proved the *G*-invariant Levi and Wedderburn — Mal'cev theorems for *G*-algebras with an action of a finite group *G* by automorphisms and anti-automorphisms. Due to a well-known duality between *G*-gradings and *G*-actions, Taft's result implies the invariant decompositions of algebras graded by a finite Abelian group *G*.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Taft's results

In 1957 E.J. Taft proved the *G*-invariant Levi and Wedderburn — Mal'cev theorems for *G*-algebras with an action of a finite group *G* by automorphisms and anti-automorphisms. Due to a well-known duality between *G*-gradings and *G*-actions, Taft's result implies the invariant decompositions of algebras graded by a finite Abelian group *G*.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Invariant Wedderburn — Mal'cev theorems

The study of Wedderburn decompositions for *H*-module algebras started by A. V. Sidorov in 1986.

Theorem (D. Ştefan, F. Van Oystaeyen, 1999)

Let A be a finite dimensional associative H-comodule algebra over a field F of characteristic 0 where H is a Hopf algebra with an ad-invariant left integral $t \in H^*$, t(1) = 1. Suppose J(A) is an H-subcomodule. Then there exists an maximal semisimple subalgebra $B \subseteq A$ such that $A = B \oplus J(A)$ (direct sum of H-subcomodules).

Invariant Wedderburn — Mal'cev theorems

The study of Wedderburn decompositions for *H*-module algebras started by A. V. Sidorov in 1986.

Theorem (D. Ştefan, F. Van Oystaeyen, 1999)

Let A be a finite dimensional associative H-comodule algebra over a field F of characteristic 0 where H is a Hopf algebra with an ad-invariant left integral $t \in H^*$, t(1) = 1. Suppose J(A) is an H-subcomodule. Then there exists an maximal semisimple subalgebra $B \subseteq A$ such that $A = B \oplus J(A)$ (direct sum of H-subcomodules).

Invariant Wedderburn — Mal'cev theorems

The study of Wedderburn decompositions for *H*-module algebras started by A. V. Sidorov in 1986.

Theorem (D. Ştefan, F. Van Oystaeyen, 1999)

Let A be a finite dimensional associative H-comodule algebra over a field F of characteristic 0 where H is a Hopf algebra with an ad-invariant left integral $t \in H^*$, t(1) = 1. Suppose J(A) is an H-subcomodule. Then there exists an maximal semisimple subalgebra $B \subseteq A$ such that $A = B \oplus J(A)$ (direct sum of H-subcomodules).

Invariant Wedderburn — Mal'cev theorems

The study of Wedderburn decompositions for *H*-module algebras started by A. V. Sidorov in 1986.

Theorem (D. Ştefan, F. Van Oystaeyen, 1999)

Let A be a finite dimensional associative H-comodule algebra over a field F of characteristic 0 where H is a Hopf algebra with an ad-invariant left integral $t \in H^*$, t(1) = 1. Suppose J(A) is an H-subcomodule. Then there exists an maximal semisimple subalgebra $B \subseteq A$ such that $A = B \oplus J(A)$ (direct sum of H-subcomodules).

Invariant Wedderburn — Mal'cev theorems

The study of Wedderburn decompositions for *H*-module algebras started by A. V. Sidorov in 1986.

Theorem (D. Ştefan, F. Van Oystaeyen, 1999)

Let A be a finite dimensional associative H-comodule algebra over a field F of characteristic 0 where H is a Hopf algebra with an ad-invariant left integral $t \in H^*$, t(1) = 1. Suppose J(A) is an H-subcomodule. Then there exists an maximal semisimple subalgebra $B \subseteq A$ such that $A = B \oplus J(A)$ (direct sum of H-subcomodules).

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Invariant Wedderburn — Mal'cev theorems

In particular, D. Ştefan and F. Van Oystaeyen proved

- the H-(co)invariant Wedderburn Mal'cev theorem for finite dimensional (co)semisimple H;
- the graded Wedderburn Mal'cev theorem for any grading group provided that the Jacobson radical is graded too;
- if the field is algebraically closed and *A* is endowed with a rational action of a reductive affine algebraic group *G* by automorphisms, then *B* can be chosen to be *G*-invariant.

ヘロト 人間 ト ヘヨト ヘヨト

Invariant Wedderburn — Mal'cev theorems

In particular, D. Ştefan and F. Van Oystaeyen proved

- the *H*-(co)invariant Wedderburn Mal'cev theorem for finite dimensional (co)semisimple *H*;
- the graded Wedderburn Mal'cev theorem for any grading group provided that the Jacobson radical is graded too;
- if the field is algebraically closed and *A* is endowed with a rational action of a reductive affine algebraic group *G* by automorphisms, then *B* can be chosen to be *G*-invariant.

くロト (過) (目) (日)

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Invariant Wedderburn — Mal'cev theorems

In particular, D. Ştefan and F. Van Oystaeyen proved

- the H-(co)invariant Wedderburn Mal'cev theorem for finite dimensional (co)semisimple H;
- the graded Wedderburn Mal'cev theorem for any grading group provided that the Jacobson radical is graded too;
- if the field is algebraically closed and *A* is endowed with a rational action of a reductive affine algebraic group *G* by automorphisms, then *B* can be chosen to be *G*-invariant.

Invariant Levi theorems

The graded Levi theorem for finite dimensional Lie algebras over an algebraically closed field of characteristic 0, graded by a finite group, was proved by D. Pagon, D. Repovš, and M.V. Zaicev in 2011.

Theorem (A. S. Gordienko, 2012)

Let L be a finite dimensional H-comodule Lie algebra over a field F of characteristic 0 where H is a Hopf algebra. Suppose R is an H-subcomodule and there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of H-subcomodules).

Invariant Levi theorems

The graded Levi theorem for finite dimensional Lie algebras over an algebraically closed field of characteristic 0, graded by a finite group, was proved by D. Pagon, D. Repovš, and M.V. Zaicev in 2011.

Theorem (A. S. Gordienko, 2012)

Let L be a finite dimensional H-comodule Lie algebra over a field F of characteristic 0 where H is a Hopf algebra. Suppose R is an H-subcomodule and there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of H-subcomodules).

Invariant Levi theorems

The graded Levi theorem for finite dimensional Lie algebras over an algebraically closed field of characteristic 0, graded by a finite group, was proved by D. Pagon, D. Repovš, and M.V. Zaicev in 2011.

Theorem (A. S. Gordienko, 2012)

Let L be a finite dimensional H-comodule Lie algebra over a field F of characteristic 0 where H is a Hopf algebra. Suppose R is an H-subcomodule and there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of H-subcomodules).

Invariant Levi theorems

The graded Levi theorem for finite dimensional Lie algebras over an algebraically closed field of characteristic 0, graded by a finite group, was proved by D. Pagon, D. Repovš, and M.V. Zaicev in 2011.

Theorem (A. S. Gordienko, 2012)

Let L be a finite dimensional H-comodule Lie algebra over a field F of characteristic 0 where H is a Hopf algebra. Suppose R is an H-subcomodule and there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of H-subcomodules).

Invariant Levi theorems

The graded Levi theorem for finite dimensional Lie algebras over an algebraically closed field of characteristic 0, graded by a finite group, was proved by D. Pagon, D. Repovš, and M.V. Zaicev in 2011.

Theorem (A. S. Gordienko, 2012)

Let L be a finite dimensional H-comodule Lie algebra over a field F of characteristic 0 where H is a Hopf algebra. Suppose R is an H-subcomodule and there exists an ad-invariant left integral $t \in H^*$ such that t(1) = 1. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of H-subcomodules).

Invariant Levi theorems

Corollary

Let L be a finite dimensional H-module Lie algebra over a field F of characteristic 0 where H is a finite dimensional (co)semisimple Hopf algebra. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of H-submodules).

Corollary

Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0, graded by an arbitrary group G. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of graded subspaces).

Invariant Levi theorems

Corollary

Let L be a finite dimensional H-module Lie algebra over a field F of characteristic 0 where H is a finite dimensional (co)semisimple Hopf algebra. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of H-submodules).

Corollary

Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0, graded by an arbitrary group G. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of graded subspaces).
Invariant Levi theorems

Corollary

Let L be a finite dimensional H-module Lie algebra over a field F of characteristic 0 where H is a finite dimensional (co)semisimple Hopf algebra. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of H-submodules).

Corollary

Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0, graded by an arbitrary group G. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of graded subspaces).

Invariant Levi theorems

Corollary

Let L be a finite dimensional H-module Lie algebra over a field F of characteristic 0 where H is a finite dimensional (co)semisimple Hopf algebra. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of H-submodules).

Corollary

Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0, graded by an arbitrary group G. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of graded subspaces).

Invariant Levi theorems

Corollary

Let L be a finite dimensional H-module Lie algebra over a field F of characteristic 0 where H is a finite dimensional (co)semisimple Hopf algebra. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of H-submodules).

Corollary

Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0, graded by an arbitrary group G. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of graded subspaces).

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Invariant Levi theorems

Corollary

Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0 and let G be a reductive affine algebraic group over F. Suppose L is endowed with a rational action of G by automorphisms. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of G-invariant subspaces).

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Invariant Levi theorems

Corollary

Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0 and let G be a reductive affine algebraic group over F. Suppose L is endowed with a rational action of G by automorphisms. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of G-invariant subspaces).

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Invariant Levi theorems

Corollary

Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0 and let G be a reductive affine algebraic group over F. Suppose L is endowed with a rational action of G by automorphisms. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of G-invariant subspaces).

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Invariant Levi theorems

Corollary

Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0 and let G be a reductive affine algebraic group over F. Suppose L is endowed with a rational action of G by automorphisms. Then there exists a maximal semisimple subalgebra B in L such that $L = B \oplus R$ (direct sum of G-invariant subspaces).

< 口 > < 同 > < 臣 > < 臣 >

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Example of an algebra without an *H*-invariant Levi decomposition

Let
$$L = \left\{ \begin{pmatrix} C & D \\ 0 & 0 \end{pmatrix} \middle| C \in \mathfrak{sl}_m(F), D \in M_m(F) \right\} \subseteq \mathfrak{sl}_{2m}(F),$$

 $m \ge 2$. Then
 $R = \left\{ \begin{pmatrix} 0 & D \\ 0 & 0 \end{pmatrix} \middle| D \in M_m(F) \right\}$

is the solvable (and nilpotent) radical of *L*.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Example of an algebra without an *H*-invariant Levi decomposition

Let
$$L = \left\{ \begin{pmatrix} C & D \\ 0 & 0 \end{pmatrix} \middle| C \in \mathfrak{sl}_m(F), D \in M_m(F) \right\} \subseteq \mathfrak{sl}_{2m}(F),$$

 $m \ge 2$. Then
 $R = \left\{ \begin{pmatrix} 0 & D \\ 0 & 0 \end{pmatrix} \middle| D \in M_m(F) \right\}$

is the solvable (and nilpotent) radical of L.

くロト (過) (目) (日)

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Example of an algebra without an *H*-invariant Levi decomposition

Consider $\varphi \in Aut(L)$ where

$$\varphi \left(\begin{array}{cc} C & D \\ 0 & 0 \end{array} \right) = \left(\begin{array}{cc} C & C+D \\ 0 & 0 \end{array} \right).$$

Then *L* is a *G*-algebra and an *FG*-module algebra where $G = \langle \varphi \rangle \cong \mathbb{Z}$. However there is no *FG*-invariant semisimple subalgebra *B* such that $L = B \oplus R$ (direct sum of *FG*-submodules).

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Example of an algebra without an *H*-invariant Levi decomposition

Consider $\varphi \in Aut(L)$ where

$$\varphi \left(\begin{array}{cc} C & D \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} C & C+D \\ 0 & 0 \end{array}\right)$$

Then *L* is a *G*-algebra and an *FG*-module algebra where $G = \langle \varphi \rangle \cong \mathbb{Z}$. However there is no *FG*-invariant semisimple subalgebra *B* such that $L = B \oplus R$ (direct sum of *FG*-submodules).

ヘロト ヘアト ヘビト ヘビト

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Example of an algebra without an *H*-invariant Levi decomposition

Consider $\varphi \in Aut(L)$ where

$$\varphi \left(\begin{array}{cc} C & D \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} C & C+D \\ 0 & 0 \end{array}\right)$$

Then *L* is a *G*-algebra and an *FG*-module algebra where $G = \langle \varphi \rangle \cong \mathbb{Z}$. However there is no *FG*-invariant semisimple subalgebra *B* such that $L = B \oplus R$ (direct sum of *FG*-submodules).

ヘロト ヘアト ヘビト ヘビト

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Example of an algebra without an *H*-invariant Levi decomposition

Consider now the adjoint action of

$$L = \left\{ \begin{pmatrix} C & D \\ 0 & 0 \end{pmatrix} \middle| C \in \mathfrak{sl}_m(F), D \in M_m(F) \right\} \subseteq \mathfrak{sl}_{2m}(F), m \ge 2,$$
on itself.

Then *L* is a U(L)-module algebra.

However there is no U(L)-invariant semisimple subalgebra B such that $L = B \oplus R$ (direct sum of U(L)-submodules) since and all U(L)-submodules of L are ideals and R is not a center of L.

Invariant Wedderburn — Mal'cev and Levi theorems

Example of an algebra without an H-invariant Levi decomposition

Consider now the adjoint action of

$$L = \left\{ \begin{pmatrix} C & D \\ 0 & 0 \end{pmatrix} \middle| C \in \mathfrak{sl}_m(F), D \in M_m(F) \right\} \subseteq \mathfrak{sl}_{2m}(F), m \ge 2,$$

on itself

Then L is a U(L)-module algebra.

Invariant Wedderburn — Mal'cev and Levi theorems

Example of an algebra without an H-invariant Levi decomposition

Consider now the adjoint action of

$$L = \left\{ \begin{pmatrix} C & D \\ 0 & 0 \end{pmatrix} \middle| C \in \mathfrak{sl}_m(F), D \in M_m(F) \right\} \subseteq \mathfrak{sl}_{2m}(F), m \ge 2,$$
on itself

011 113011.

Then *L* is a U(L)-module algebra.

However there is no U(L)-invariant semisimple subalgebra B such that $L = B \oplus R$ (direct sum of U(L)-submodules) since and

Invariant Wedderburn — Mal'cev and Levi theorems

Example of an algebra without an H-invariant Levi decomposition

Consider now the adjoint action of

$$L = \left\{ \begin{pmatrix} C & D \\ 0 & 0 \end{pmatrix} \middle| C \in \mathfrak{sl}_m(F), D \in M_m(F) \right\} \subseteq \mathfrak{sl}_{2m}(F), m \ge 2,$$

on itself

Then L is a U(L)-module algebra.

However there is no U(L)-invariant semisimple subalgebra B such that $L = B \oplus R$ (direct sum of U(L)-submodules) since and all U(L)-submodules of L are ideals and R is not a center of L.

Invariant Wedderburn — Mal'cev and Levi theorems

Example of an algebra without an H-invariant Levi decomposition

Consider now the adjoint action of

$$L = \left\{ \begin{pmatrix} C & D \\ 0 & 0 \end{pmatrix} \middle| C \in \mathfrak{sl}_m(F), D \in M_m(F) \right\} \subseteq \mathfrak{sl}_{2m}(F), m \ge 2,$$

on itself

Then L is a U(L)-module algebra.

However there is no U(L)-invariant semisimple subalgebra B such that $L = B \oplus R$ (direct sum of U(L)-submodules) since and all U(L)-submodules of L are ideals and R is not a center of L.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Cohomologies of Lie algebras

Let $\psi : L \to \mathfrak{gl}(V)$ be a representation of a Lie algebra *L* on some vector space *V* over a field *F*.

Denote by $C^k(L; V) \subseteq \text{Hom}_F(L^{\otimes k}; V)$, $k \in \mathbb{N}$, the subspace of all alternating multilinear maps, $C^0(L; V) := V$. Recall that the elements of $C^k(L; V)$ are called *k*-cochains with coefficients in *V*.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Cohomologies of Lie algebras

Let $\psi: L \to \mathfrak{gl}(V)$ be a representation of a Lie algebra L on some vector space V over a field F. Denote by $C^k(L; V) \subseteq \operatorname{Hom}_F(L^{\otimes k}; V), k \in \mathbb{N}$, the subspace of all alternating multilinear maps, $C^0(L; V) := V$. Recall that the elements of $C^k(L; V)$ are called *k*-cochains with coefficients in V.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Cohomologies of Lie algebras

Let $\psi : L \to \mathfrak{gl}(V)$ be a representation of a Lie algebra L on some vector space V over a field F. Denote by $C^k(L; V) \subseteq \operatorname{Hom}_F(L^{\otimes k}; V), k \in \mathbb{N}$, the subspace of all alternating multilinear maps, $C^0(L; V) := V$. Recall that the elements of $C^k(L; V)$ are called *k*-cochains with coefficients in V.

Cohomologies of Lie algebras

The coboundary operators $\partial: C^k(L; V) \to C^{k+1}(L; V)$ are defined on these spaces in such a way that $\partial^2 = 0$. $(\partial v)(x) = \psi(x)v$ if $v \in C^0(L; V)$,

$$(\partial \omega)(x_1,\ldots,x_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i+1} \psi(x_i) \omega(x_1,\ldots,\hat{x}_i,\ldots,x_{k_1}) +$$

$$\sum_{i< j} (-1)^{i+j} \omega([x_i, x_j], x_1, \ldots, \hat{x}_i, \ldots, \hat{x}_j, \ldots, x_{k+1})$$

for $\omega \in C^k(L; V)$, $k \in \mathbb{N}$.

イロン 不得 とくほ とくほとう

Cohomologies of Lie algebras

The coboundary operators $\partial: C^k(L; V) \to C^{k+1}(L; V)$ are defined on these spaces in such a way that $\partial^2 = 0$. $(\partial v)(x) = \psi(x)v$ if $v \in C^0(L; V)$,

$$(\partial \omega)(x_1,\ldots,x_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i+1} \psi(x_i) \omega(x_1,\ldots,\hat{x}_i,\ldots,x_{k_1}) +$$

$$\sum_{i< j} (-1)^{i+j} \omega([x_i, x_j], x_1, \ldots, \hat{x}_i, \ldots, \hat{x}_j, \ldots, x_{k+1})$$

for $\omega \in C^k(L; V)$, $k \in \mathbb{N}$.

Cohomologies of Lie algebras

The coboundary operators $\partial: C^k(L; V) \to C^{k+1}(L; V)$ are defined on these spaces in such a way that $\partial^2 = 0$. $(\partial v)(x) = \psi(x)v$ if $v \in C^0(L; V)$,

$$(\partial \omega)(x_1,\ldots,x_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i+1} \psi(x_i) \omega(x_1,\ldots,\hat{x}_i,\ldots,x_{k_1}) +$$

$$\sum_{i< j} (-1)^{i+j} \omega([x_i, x_j], x_1, \ldots, \hat{x}_i, \ldots, \hat{x}_j, \ldots, x_{k+1})$$

for $\omega \in C^k(L; V)$, $k \in \mathbb{N}$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Cohomologies of Lie algebras

The elements of the subspace

$$Z^{k}(L;\psi) := \ker(\partial \colon C^{k}(L;V) \to C^{k+1}(L;V)) \subseteq C^{k}(L;V)$$

are called k-cocycles and the elements of the subspace

$$B^{k}(L;\psi):=\partial(C^{k-1}(L;V))\subseteq C^{k}(L;V)$$

are called *k*-coboundaries.

The space $H^k(L; \psi) := Z^k(L; \psi)/B^k(L; \psi)$ is called the *k*th cohomology group.

イロン イボン イヨン イヨン

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Cohomologies of Lie algebras

The elements of the subspace

$$Z^{k}(L;\psi) := \ker(\partial \colon C^{k}(L;V) \to C^{k+1}(L;V)) \subseteq C^{k}(L;V)$$

are called k-cocycles and the elements of the subspace

$$B^{k}(L;\psi) := \partial(C^{k-1}(L;V)) \subseteq C^{k}(L;V)$$

are called k-coboundaries.

The space $H^k(L; \psi) := Z^k(L; \psi)/B^k(L; \psi)$ is called the *k*th cohomology group.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Cohomologies of Lie algebras

The elements of the subspace

$$Z^{k}(L;\psi) := \ker(\partial \colon C^{k}(L;V) \to C^{k+1}(L;V)) \subseteq C^{k}(L;V)$$

are called k-cocycles and the elements of the subspace

$$B^k(L;\psi) := \partial(C^{k-1}(L;V)) \subseteq C^k(L;V)$$

are called *k*-coboundaries. The space $H^k(L; \psi) := Z^k(L; \psi)/B^k(L; \psi)$ is called the *k*th cohomology group.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

(H, L)-modules

Suppose *L* is an *H*-comodule algebra for some Hopf algebra *H*. Consider a representation $\psi : L \to \mathfrak{gl}(V)$. We say that (V, ψ) is an (H, L)-module if *V* is an *H*-comodule and

 $\rho_V(\psi(a)v) = \psi(a_{(0)})v_{(0)} \otimes a_{(1)}v_{(1)} \text{ for all } a \in L, \ v \in V$

where $\rho_V \colon V \to V \otimes H$ is the comodule map.

イロン イボン イヨン イヨン

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

(H, L)-modules

Suppose *L* is an *H*-comodule algebra for some Hopf algebra *H*. Consider a representation $\psi \colon L \to \mathfrak{gl}(V)$. We say that (V, ψ) is an (H, L)-module if *V* is an *H*-comodule and

 $\rho_V(\psi(a)v) = \psi(a_{(0)})v_{(0)} \otimes a_{(1)}v_{(1)}$ for all $a \in L, v \in V$

where $\rho_V \colon V \to V \otimes H$ is the comodule map.

イロン イボン イヨン イヨン

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

(H, L)-modules

Suppose *L* is an *H*-comodule algebra for some Hopf algebra *H*. Consider a representation $\psi \colon L \to \mathfrak{gl}(V)$. We say that (V, ψ) is an (H, L)-module if *V* is an *H*-comodule and

$$\rho_V(\psi(a)v) = \psi(a_{(0)})v_{(0)} \otimes a_{(1)}v_{(1)} \text{ for all } a \in L, \ v \in V$$

where $\rho_V \colon V \to V \otimes H$ is the comodule map.

・ロト ・ ア・ ・ ヨト ・ ヨト

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-colinear cohomologies of Lie algebras

Denote by $\tilde{C}^k(L; V)$ the subspace of *H*-colinear cochains, i.e. such maps $\omega \in C^k(L; V)$ that

$$\rho_V(\omega(a_1, a_2, \dots, a_k)) = \omega(a_{1(0)}, a_{2(0)}, \dots, a_{k(0)}) \otimes a_{1(1)}a_{2(1)} \dots a_{k(1)}$$

for all $a_i \in L$.

If (V, ψ) is an (H, L)-module and H is commutative, then, clearly, the coboundary of an H-colinear cochain is again an H-colinear cochain.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-colinear cohomologies of Lie algebras

Denote by $\tilde{C}^k(L; V)$ the subspace of *H*-colinear cochains, i.e. such maps $\omega \in C^k(L; V)$ that

$$\rho_V(\omega(a_1, a_2, \dots, a_k)) = \omega(a_{1(0)}, a_{2(0)}, \dots, a_{k(0)}) \otimes a_{1(1)}a_{2(1)} \dots a_{k(1)}$$

for all $a_i \in L$. If (V, ψ) is an (H, L)-module and H is commutative, then, clearly, the coboundary of an H-colinear cochain is again an H-colinear cochain.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Symmetric (H, L)-modules

However, for 1-cochains and a symmetric (H, L)-module (V, ψ) this is true even if *H* is not commutative.

We say that (V, ψ) is a *symmetric* (H, L)-module if

 $\rho_V(\psi(a)v) = \psi(a_{(0)})v_{(0)} \otimes a_{(1)}v_{(1)} = \psi(a_{(0)})v_{(0)} \otimes v_{(1)}a_{(1)}$

for all $a \in L$, $v \in V$.

Example

If *L* is an *H*-comodule Lie algebra, then the adjoint representation ad: $L \rightarrow \mathfrak{gl}(L)$ defines on *L* the structure of a symmetric (H, L)-module.

<ロト <回 > < 注 > < 注 > 、

Symmetric (H, L)-modules

However, for 1-cochains and a symmetric (H, L)-module (V, ψ) this is true even if H is not commutative. We say that (V, ψ) is a *symmetric* (H, L)-module if

$$p_V(\psi(a)v) = \psi(a_{(0)})v_{(0)} \otimes a_{(1)}v_{(1)} = \psi(a_{(0)})v_{(0)} \otimes v_{(1)}a_{(1)}$$

for all $a \in L$, $v \in V$.

Example

If *L* is an *H*-comodule Lie algebra, then the adjoint representation ad: $L \rightarrow \mathfrak{gl}(L)$ defines on *L* the structure of a symmetric (*H*, *L*)-module.

イロン イボン イヨン イヨン

Symmetric (H, L)-modules

However, for 1-cochains and a symmetric (H, L)-module (V, ψ) this is true even if H is not commutative. We say that (V, ψ) is a *symmetric* (H, L)-module if

$$v_V(\psi(a)v) = \psi(a_{(0)})v_{(0)} \otimes a_{(1)}v_{(1)} = \psi(a_{(0)})v_{(0)} \otimes v_{(1)}a_{(1)}$$

for all $a \in L$, $v \in V$.

Example

If *L* is an *H*-comodule Lie algebra, then the adjoint representation ad: $L \rightarrow \mathfrak{gl}(L)$ defines on *L* the structure of a symmetric (*H*, *L*)-module.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-colinear cohomologies of Lie algebras

Lemma

If (V, ψ) is a symmetric (H, L)-module, then $\partial(\tilde{C}^1(L; V)) \subseteq \tilde{C}^2(L; V)$.

Let
$$\tilde{Z}^2(L; \psi) := Z^2(L; \psi) \cap \tilde{C}^2(L; V)$$
 and $\tilde{B}^2(L; \psi) := \partial(\tilde{C}^1(L; V)).$

The lemma above enables us to define the second H-colinear cohomology group $\tilde{H}^2(L; \psi) := \tilde{Z}^2(L; \psi) / \tilde{B}^2(L; \psi)$.

イロト イポト イヨト イヨト

ъ

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-colinear cohomologies of Lie algebras

Lemma

If (V, ψ) is a symmetric (H, L)-module, then $\partial(\tilde{C}^{1}(L; V)) \subseteq \tilde{C}^{2}(L; V)$.

Let
$$\tilde{Z}^2(L; \psi) := Z^2(L; \psi) \cap \tilde{C}^2(L; V)$$
 and $\tilde{B}^2(L; \psi) := \partial(\tilde{C}^1(L; V)).$

The lemma above enables us to define the second H-colinear cohomology group $\tilde{H}^2(L; \psi) := \tilde{Z}^2(L; \psi) / \tilde{B}^2(L; \psi)$.

イロト イポト イヨト イヨト

ъ
H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-colinear cohomologies of Lie algebras

Lemma

If (V, ψ) is a symmetric (H, L)-module, then $\partial(\tilde{C}^{1}(L; V)) \subseteq \tilde{C}^{2}(L; V)$.

Let
$$\tilde{Z}^2(L; \psi) := Z^2(L; \psi) \cap \tilde{C}^2(L; V)$$
 and $\tilde{B}^2(L; \psi) := \partial(\tilde{C}^1(L; V)).$

The lemma above enables us to define the second H-colinear cohomology group $\tilde{H}^2(L; \psi) := \tilde{Z}^2(L; \psi) / \tilde{B}^2(L; \psi)$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Maschke's trick for cosemisimple Hopf algebras

Lemma

Let $r: V \to W$ be a linear map where V and W are H-comodules for a Hopf algebra H. Let $t \in H^*$ be a left integral on H. Then $\tilde{r}: V \to W$ where

$\tilde{r}(x) = t(r(x_{(0)})_{(1)}S(x_{(1)}))r(x_{(0)})_{(0)}$ for $x \in V$,

is an H-colinear map. If, in addition, $\pi \circ r = id_V$ for some H-colinear map $\pi \colon W \to V$ and t(1) = 1, then $\pi \circ \tilde{r} = id_V$ too.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Maschke's trick for cosemisimple Hopf algebras

Lemma

Let $r: V \to W$ be a linear map where V and W are H-comodules for a Hopf algebra H. Let $t \in H^*$ be a left integral on H. Then $\tilde{r}: V \to W$ where

$$\tilde{r}(x) = t(r(x_{(0)})_{(1)}S(x_{(1)}))r(x_{(0)})_{(0)}$$
 for $x \in V$,

is an H-colinear map. If, in addition, $\pi \circ r = id_V$ for some H-colinear map $\pi: W \to V$ and t(1) = 1, then $\pi \circ \tilde{r} = id_V$ too.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Maschke's trick for cosemisimple Hopf algebras

Lemma

Let $r: V \to W$ be a linear map where V and W are H-comodules for a Hopf algebra H. Let $t \in H^*$ be a left integral on H. Then $\tilde{r}: V \to W$ where

$$\widetilde{r}(x) = t(r(x_{(0)})_{(1)}S(x_{(1)}))r(x_{(0)})_{(0)}$$
 for $x \in V$

is an H-colinear map. If, in addition, $\pi \circ r = id_V$ for some H-colinear map $\pi \colon W \to V$ and t(1) = 1, then $\pi \circ \tilde{r} = id_V$ too.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Maschke's trick for cosemisimple Hopf algebras

Remark

If *G* is an arbitrary group and H = FG, then $V = \bigoplus_{g \in G} V^{(g)}$ and $W = \bigoplus_{g \in G} W^{(g)}$ are graded spaces. Suppose $t(g) = \begin{cases} 0 & \text{if } g \neq 1, \\ 1 & \text{if } g = 1. \end{cases}$ Then $\tilde{r}(x) = \sum_{g \in G} p_{W,g} r(p_{V,g}x)$ for $x \in V$ and this is a graded map. Here $p_{V,g}$ is the projection of *V* on $V^{(g)}$ along $\bigoplus_{\substack{h \in G, \\ h \neq g}} V^{(h)}$ and $p_{W,g}$ is the projection of *W* on $W^{(g)}$ along $\bigoplus_{\substack{h \in G, \\ h \neq g}} W^{(h)}$.

ヘロト ヘアト ヘビト ヘビト

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Maschke's trick for cosemisimple Hopf algebras

Remark

If *G* is an arbitrary group and H = FG, then $V = \bigoplus_{g \in G} V^{(g)}$ and $W = \bigoplus_{g \in G} W^{(g)}$ are graded spaces. Suppose $t(g) = \begin{cases} 0 & \text{if } g \neq 1, \\ 1 & \text{if } g = 1. \end{cases}$ Then $\tilde{r}(x) = \sum_{g \in G} p_{W,g} r(p_{V,g}x)$ for $x \in V$ and this is a graded map. Here $p_{V,g}$ is the projection of *V* on $V^{(g)}$ along $\bigoplus_{\substack{h \in G, \\ h \neq g}} V^{(h)}$ and $p_{W,g}$ is the projection of *W* on $W^{(g)}$ along $\bigoplus_{\substack{h \in G, \\ h \neq g}} W^{(h)}$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Maschke's trick for cosemisimple Hopf algebras

Remark

If *G* is an arbitrary group and H = FG, then $V = \bigoplus_{g \in G} V^{(g)}$ and $W = \bigoplus_{g \in G} W^{(g)}$ are graded spaces. Suppose $t(g) = \begin{cases} 0 & \text{if } g \neq 1, \\ 1 & \text{if } g = 1. \end{cases}$ Then $\tilde{r}(x) = \sum_{g \in G} p_{W,g} r(p_{V,g}x)$ for $x \in V$ and this is a graded map. Here $p_{V,g}$ is the projection of *V* on $V^{(g)}$ along $\bigoplus_{\substack{h \in G, \\ h \neq g}} V^{(h)}$ and $p_{W,g}$ is the projection of *W* on $W^{(g)}$ along $\bigoplus_{\substack{h \in G, \\ h \neq g}} W^{(h)}$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Maschke's trick for cosemisimple Hopf algebras

Remark

If *G* is an arbitrary group and H = FG, then $V = \bigoplus_{g \in G} V^{(g)}$ and $W = \bigoplus_{g \in G} W^{(g)}$ are graded spaces. Suppose $t(g) = \begin{cases} 0 & \text{if } g \neq 1, \\ 1 & \text{if } g = 1. \end{cases}$ Then $\tilde{r}(x) = \sum_{g \in G} p_{W,g} r(p_{V,g}x)$ for $x \in V$ and this is a graded map. Here $p_{V,g}$ is the projection of *V* on $V^{(g)}$ along $\bigoplus_{\substack{h \in G, \\ h \neq g}} V^{(h)}$ and $p_{W,g}$ is the projection of *W* on $W^{(g)}$ along $\bigoplus_{\substack{h \in G, \\ h \neq g}} W^{(h)}$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-colinear cohomologies of Lie algebras

Lemma

Let (V, ψ) be a finite dimensional symmetric (H, L)-module where L is a finite dimensional H-comodule semisimple Lie algebra over a field F of characteristic 0 and H is a Hopf algebra with an ad-invariant left integral $t \in H^*$, t(1) = 1. Then $\tilde{H}^2(L; \psi) = 0$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-colinear cohomologies of Lie algebras

Lemma

Let (V, ψ) be a finite dimensional symmetric (H, L)-module where L is a finite dimensional H-comodule semisimple Lie algebra over a field F of characteristic 0 and H is a Hopf algebra with an ad-invariant left integral $t \in H^*$, t(1) = 1. Then $\tilde{H}^2(L; \psi) = 0$.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-colinear cohomologies of Lie algebras

Lemma

Let (V, ψ) be a finite dimensional symmetric (H, L)-module where L is a finite dimensional H-comodule semisimple Lie algebra over a field F of characteristic 0 and H is a Hopf algebra with an ad-invariant left integral $t \in H^*$, t(1) = 1. Then $\tilde{H}^2(L; \psi) = 0$.

ヘロト ヘアト ヘビト ヘビト

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-colinear cohomologies of Lie algebras

Lemma

Let (V, ψ) be a finite dimensional symmetric (H, L)-module where L is a finite dimensional H-comodule semisimple Lie algebra over a field F of characteristic 0 and H is a Hopf algebra with an ad-invariant left integral $t \in H^*$, t(1) = 1. Then $\tilde{H}^2(L; \psi) = 0$.

ヘロト ヘアト ヘビト ヘビト

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems **Stability of radicals** Other invariant decompositions

Background

An important condition in the invariant Levi and Wedderburn — Mal'cev theorems is the stability of the radicals.

In the case of *G*-algebras the stability is clear since the radicals are invariant under automorphisms and anti-automorphisms. In 1984 M. Cohen and S. Montgomery proved that the Jacobson radical of a *G*-graded associative algebra is graded if $|G|^{-1}$ belongs to the base field.

Background

An important condition in the invariant Levi and Wedderburn — Mal'cev theorems is the stability of the radicals. In the case of *G*-algebras the stability is clear since the radicals are invariant under automorphisms and anti-automorphisms. In 1984 M. Cohen and S. Montgomery proved that the Jacobson radical of a *G*-graded associative algebra is graded if $|G|^{-1}$ belongs to the base field.

Background

An important condition in the invariant Levi and Wedderburn — Mal'cev theorems is the stability of the radicals. In the case of *G*-algebras the stability is clear since the radicals are invariant under automorphisms and anti-automorphisms. In 1984 M. Cohen and S. Montgomery proved that the Jacobson radical of a *G*-graded associative algebra is graded if $|G|^{-1}$ belongs to the base field.

Background

In 2001 V. Linchenko proved the stability of the Jacobson radical of a finite dimensional *H*-module associative algebra over a field of characteristic 0 for a finite dimensional semisimple Hopf algebra *H*.

This result was later generalized by V. Linchenko,

S. Montgomery and L.W. Small.

In 2011 D. Pagon, D. Repovš, and M.V. Zaicev proved that the solvable radical of a finite dimensional Lie algebra over an algebraically closed field of characteristic 0, graded by any group, is graded.

Background

In 2001 V. Linchenko proved the stability of the Jacobson radical of a finite dimensional *H*-module associative algebra over a field of characteristic 0 for a finite dimensional semisimple Hopf algebra *H*.

This result was later generalized by V. Linchenko,

S. Montgomery and L.W. Small.

In 2011 D. Pagon, D. Repovš, and M.V. Zaicev proved that the solvable radical of a finite dimensional Lie algebra over an algebraically closed field of characteristic 0, graded by any group, is graded.

Background

In 2001 V. Linchenko proved the stability of the Jacobson radical of a finite dimensional *H*-module associative algebra over a field of characteristic 0 for a finite dimensional semisimple Hopf algebra *H*.

This result was later generalized by V. Linchenko,

S. Montgomery and L.W. Small.

In 2011 D. Pagon, D. Repovš, and M.V. Zaicev proved that the solvable radical of a finite dimensional Lie algebra over an algebraically closed field of characteristic 0, graded by any group, is graded.

Stability of radicals

Theorem

Let L be a finite dimensional H-module Lie algebra over a field F of characteristic 0 and H be a finite dimensional (co)semisimple Hopf algebra. Then the solvable and the nilpotent radicals R and N of L are H-invariant.

If A is a finite dimensional associative algebra over a field F of characteristic 0, then J(A) is invariant under all derivations of A (see e.g. J. Dixmier's book).

If L is a finite dimensional Lie algebra over a field F of characteristic 0, then N and R are invariant under all derivations of L (see e.g. N. Jacobson's book).

Stability of radicals

Theorem

Let L be a finite dimensional H-module Lie algebra over a field F of characteristic 0 and H be a finite dimensional (co)semisimple Hopf algebra. Then the solvable and the nilpotent radicals R and N of L are H-invariant.

If A is a finite dimensional associative algebra over a field F of characteristic 0, then J(A) is invariant under all derivations of A (see e.g. J. Dixmier's book).

If L is a finite dimensional Lie algebra over a field F of characteristic 0, then N and R are invariant under all derivations of L (see e.g. N. Jacobson's book).

Stability of radicals

Theorem

Let L be a finite dimensional H-module Lie algebra over a field F of characteristic 0 and H be a finite dimensional (co)semisimple Hopf algebra. Then the solvable and the nilpotent radicals R and N of L are H-invariant.

If A is a finite dimensional associative algebra over a field F of characteristic 0, then J(A) is invariant under all derivations of A (see e.g. J. Dixmier's book).

If L is a finite dimensional Lie algebra over a field F of characteristic 0, then N and R are invariant under all derivations of L (see e.g. N. Jacobson's book).

Stability of radicals

Theorem

Let L be a finite dimensional H-module Lie algebra over a field F of characteristic 0 and H be a finite dimensional (co)semisimple Hopf algebra. Then the solvable and the nilpotent radicals R and N of L are H-invariant.

If A is a finite dimensional associative algebra over a field F of characteristic 0, then J(A) is invariant under all derivations of A (see e.g. J. Dixmier's book).

If L is a finite dimensional Lie algebra over a field F of characteristic 0, then N and R are invariant under all derivations of L (see e.g. N. Jacobson's book).

ヘロト ヘワト ヘビト ヘビト

Stability of radicals

Theorem

Let L be a finite dimensional H-module Lie algebra over a field F of characteristic 0 and H be a finite dimensional (co)semisimple Hopf algebra. Then the solvable and the nilpotent radicals R and N of L are H-invariant.

If A is a finite dimensional associative algebra over a field F of characteristic 0, then J(A) is invariant under all derivations of A (see e.g. J. Dixmier's book).

If L is a finite dimensional Lie algebra over a field F of characteristic 0, then N and R are invariant under all derivations of L (see e.g. N. Jacobson's book).

Let $H = \langle 1, g, x, gx \rangle_F$ be the 4-dimensional Sweedler's Hopf algebra over a field F of characteristic 0. Here $g^2 = 1, x^2 = 0$, $xg = -gx, \Delta(g) = g \otimes g, \Delta(x) = g \otimes x + x \otimes 1, \varepsilon(g) = 1$, $\varepsilon(x) = 0, S(g) = g, S(x) = -gx$. Note that $J(H) = \langle x, gx \rangle_F \neq 0$, i.e. H is not semisimple. Let V be a three-dimensional vector space. Fix some linear isomorphism $\varphi: \mathfrak{sl}_2(F) \rightarrow V$. Consider the Lie algebra $L = \mathfrak{sl}_2(F) \oplus V$ with the Lie commutator

 $[a+\varphi(b), c+\varphi(u)] = [a, c]+\varphi([a, u]+[b, c])$ where $a, b, c, u \in \mathfrak{sl}_2(F)$,

Let $H = \langle 1, g, x, gx \rangle_F$ be the 4-dimensional Sweedler's Hopf algebra over a field F of characteristic 0. Here $g^2 = 1, x^2 = 0$, $xg = -gx, \Delta(g) = g \otimes g, \Delta(x) = g \otimes x + x \otimes 1, \varepsilon(g) = 1$, $\varepsilon(x) = 0, S(g) = g, S(x) = -gx$. Note that $J(H) = \langle x, gx \rangle_F \neq 0$, i.e. H is not semisimple. Let V be a three-dimensional vector space. Fix some linear isomorphism $\varphi: \mathfrak{sl}_2(F) \to V$. Consider the Lie algebra $L = \mathfrak{sl}_2(F) \oplus V$ with the Lie commutator

 $[a+\varphi(b), c+\varphi(u)] = [a, c]+\varphi([a, u]+[b, c])$ where $a, b, c, u \in \mathfrak{sl}_2(F)$,

Let $H = \langle 1, g, x, gx \rangle_F$ be the 4-dimensional Sweedler's Hopf algebra over a field F of characteristic 0. Here $g^2 = 1, x^2 = 0$, $xg = -gx, \Delta(g) = g \otimes g, \Delta(x) = g \otimes x + x \otimes 1, \varepsilon(g) = 1$, $\varepsilon(x) = 0, S(g) = g, S(x) = -gx$. Note that $J(H) = \langle x, gx \rangle_F \neq 0$, i.e. H is not semisimple. Let V be a three-dimensional vector space. Fix some linear isomorphism $\varphi : \mathfrak{sl}_2(F) \to V$. Consider the Lie algebra $L = \mathfrak{sl}_2(F) \oplus V$ with the Lie commutator

 $[a+\varphi(b), c+\varphi(u)] = [a, c]+\varphi([a, u]+[b, c])$ where $a, b, c, u \in \mathfrak{sl}_2(F)$,

Let $H = \langle 1, g, x, gx \rangle_F$ be the 4-dimensional Sweedler's Hopf algebra over a field F of characteristic 0. Here $g^2 = 1, x^2 = 0$, $xg = -gx, \Delta(g) = g \otimes g, \Delta(x) = g \otimes x + x \otimes 1, \varepsilon(g) = 1$, $\varepsilon(x) = 0, S(g) = g, S(x) = -gx$. Note that $J(H) = \langle x, gx \rangle_F \neq 0$, i.e. H is not semisimple. Let V be a three-dimensional vector space. Fix some linear isomorphism $\varphi : \mathfrak{sl}_2(F) \to V$. Consider the Lie algebra $L = \mathfrak{sl}_2(F) \oplus V$ with the Lie commutator

 $[a+\varphi(b), c+\varphi(u)] = [a, c]+\varphi([a, u]+[b, c])$ where $a, b, c, u \in \mathfrak{sl}_2(F)$,

Let $H = \langle 1, g, x, gx \rangle_F$ be the 4-dimensional Sweedler's Hopf algebra over a field F of characteristic 0. Here $g^2 = 1, x^2 = 0$, $xg = -gx, \Delta(g) = g \otimes g, \Delta(x) = g \otimes x + x \otimes 1, \varepsilon(g) = 1$, $\varepsilon(x) = 0, S(g) = g, S(x) = -gx$. Note that $J(H) = \langle x, gx \rangle_F \neq 0$, i.e. H is not semisimple. Let V be a three-dimensional vector space. Fix some linear isomorphism $\varphi \colon \mathfrak{sl}_2(F) \to V$. Consider the Lie algebra $L = \mathfrak{sl}_2(F) \oplus V$ with the Lie commutator

 $[a+\varphi(b), c+\varphi(u)] = [a, c]+\varphi([a, u]+[b, c]) \text{ where } a, b, c, u \in \mathfrak{sl}_2(F),$

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-(co)invariant decompositions of semisimple algebras

Theorem

Let B be a finite dimensional semisimple H-module Lie algebra over a field of characteristic 0 where H is an arbitrary Hopf algebra. Then $B = B_1 \oplus B_2 \oplus \ldots \oplus B_s$ (direct sum of ideals and H-submodules) for some H-simple subalgebras B_i .

Theorem

Let B be a finite dimensional semisimple H-comodule Lie algebra over a field of characteristic 0 where H is an arbitrary Hopf algebra. Then $B = B_1 \oplus B_2 \oplus \ldots \oplus B_s$ (direct sum of ideals and H-subcomodules) for some H-simple subalgebras B_i .

ヘロト ヘワト ヘビト ヘビト

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-(co)invariant decompositions of semisimple algebras

Theorem

Let B be a finite dimensional semisimple H-module Lie algebra over a field of characteristic 0 where H is an arbitrary Hopf algebra. Then $B = B_1 \oplus B_2 \oplus \ldots \oplus B_s$ (direct sum of ideals and H-submodules) for some H-simple subalgebras B_i .

Theorem

Let B be a finite dimensional semisimple H-comodule Lie algebra over a field of characteristic 0 where H is an arbitrary Hopf algebra. Then $B = B_1 \oplus B_2 \oplus \ldots \oplus B_s$ (direct sum of ideals and H-subcomodules) for some H-simple subalgebras B_i .

・ロト ・ 同ト ・ ヨト ・ ヨト

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-(co)invariant decompositions of semisimple algebras

Theorem

Let B be a finite dimensional semisimple H-module Lie algebra over a field of characteristic 0 where H is an arbitrary Hopf algebra. Then $B = B_1 \oplus B_2 \oplus \ldots \oplus B_s$ (direct sum of ideals and H-submodules) for some H-simple subalgebras B_i .

Theorem

Let B be a finite dimensional semisimple H-comodule Lie algebra over a field of characteristic 0 where H is an arbitrary Hopf algebra. Then $B = B_1 \oplus B_2 \oplus \ldots \oplus B_s$ (direct sum of ideals and H-subcomodules) for some H-simple subalgebras B_i .

We say that an (H, L)-module (V, ψ) is *irreducible* if it has no nontrivial *L*-submodules that are *H*-subcomodules at the same time.

Theorem

Let L be an H-comodule Lie algebra over a field of characteristic 0, let H be a Hopf algebra with an ad-invariant integral $t \in H^*$, t(1) = 1, and let (V, ψ) be a finite dimensional (H, L)-module completely reducible as an L-module disregarding the H-coaction. Then $V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$ for some irreducible (H, L)-submodules V_i .

We say that an (H, L)-module (V, ψ) is *irreducible* if it has no nontrivial *L*-submodules that are *H*-subcomodules at the same time.

Theorem

Let L be an H-comodule Lie algebra over a field of characteristic 0, let H be a Hopf algebra with an ad-invariant integral $t \in H^*$, t(1) = 1, and let (V, ψ) be a finite dimensional (H, L)-module completely reducible as an L-module disregarding the H-coaction. Then $V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$ for some irreducible (H, L)-submodules V_i .

We say that an (H, L)-module (V, ψ) is *irreducible* if it has no nontrivial *L*-submodules that are *H*-subcomodules at the same time.

Theorem

Let L be an H-comodule Lie algebra over a field of characteristic 0, let H be a Hopf algebra with an ad-invariant integral $t \in H^*$, t(1) = 1, and let (V, ψ) be a finite dimensional (H, L)-module completely reducible as an L-module disregarding the H-coaction. Then $V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$ for some irreducible (H, L)-submodules V_i .

We say that an (H, L)-module (V, ψ) is *irreducible* if it has no nontrivial *L*-submodules that are *H*-subcomodules at the same time.

Theorem

Let L be an H-comodule Lie algebra over a field of characteristic 0, let H be a Hopf algebra with an ad-invariant integral $t \in H^*$, t(1) = 1, and let (V, ψ) be a finite dimensional (H, L)-module completely reducible as an L-module disregarding the H-coaction. Then $V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$ for some irreducible (H, L)-submodules V_i .

We say that an (H, L)-module (V, ψ) is *irreducible* if it has no nontrivial *L*-submodules that are *H*-subcomodules at the same time.

Theorem

Let L be an H-comodule Lie algebra over a field of characteristic 0, let H be a Hopf algebra with an ad-invariant integral $t \in H^*$, t(1) = 1, and let (V, ψ) be a finite dimensional (H, L)-module completely reducible as an L-module disregarding the H-coaction. Then $V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$ for some irreducible (H, L)-submodules V_i .
H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Graded analog of the Weyl theorem

Again, we have the variants of the theorem for H = FG and for finite dimensional H.

Let *G* be a group, let $L = \bigoplus_{g \in G} L^{(g)}$ be a graded Lie algebra, and let $V = \bigoplus_{g \in G} V^{(g)}$ be a *G*-graded vector space. We say that (V, ψ) , where $\psi : L \to \mathfrak{gl}(V)$, is a graded *L*-module if $\psi(a^{(g)})v^{(h)} \in V^{(gh)}$ for all $g, h \in G, a^{(g)} \in L^{(g)}, v^{(h)} \in V^{(h)}$. We say that an graded *L*-module (V, ψ) is *irreducible* if it has no nontrivial graded *L*-submodules.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Graded analog of the Weyl theorem

Again, we have the variants of the theorem for H = FG and for finite dimensional H. Let G be a group, let $L = \bigoplus_{g \in G} L^{(g)}$ be a graded Lie algebra, and let $V = \bigoplus_{g \in G} V^{(g)}$ be a G-graded vector space. We say that (V, ψ) , where $\psi : L \to \mathfrak{gl}(V)$, is a graded *L*-module if $\psi(a^{(g)})v^{(h)} \in V^{(gh)}$ for all $g, h \in G, a^{(g)} \in L^{(g)}, v^{(h)} \in V^{(h)}$. We say that an graded *L*-module (V, ψ) is *irreducible* if it has no nontrivial graded *L*-submodules.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Graded analog of the Weyl theorem

Again, we have the variants of the theorem for H = FG and for finite dimensional H.

Let *G* be a group, let $L = \bigoplus_{g \in G} L^{(g)}$ be a graded Lie algebra, and let $V = \bigoplus_{g \in G} V^{(g)}$ be a *G*-graded vector space. We say that (V, ψ) , where $\psi : L \to \mathfrak{gl}(V)$, is a *graded L-module* if $\psi(a^{(g)})v^{(h)} \in V^{(gh)}$ for all $g, h \in G, a^{(g)} \in L^{(g)}, v^{(h)} \in V^{(h)}$. We say that an graded *L*-module (V, ψ) is *irreducible* if it has no nontrivial graded *L*-submodules.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Graded analog of the Weyl theorem

Again, we have the variants of the theorem for H = FG and for finite dimensional H.

Let *G* be a group, let $L = \bigoplus_{g \in G} L^{(g)}$ be a graded Lie algebra, and let $V = \bigoplus_{g \in G} V^{(g)}$ be a *G*-graded vector space. We say that (V, ψ) , where $\psi \colon L \to \mathfrak{gl}(V)$, is a *graded L-module* if $\psi(a^{(g)})v^{(h)} \in V^{(gh)}$ for all $g, h \in G$, $a^{(g)} \in L^{(g)}$, $v^{(h)} \in V^{(h)}$. We say that an graded *L*-module (V, ψ) is *irreducible* if it has no nontrivial graded *L*-submodules.

< 口 > < 同 > < 臣 > < 臣 >

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Graded analog of the Weyl theorem

Theorem

Let L be a Lie algebra over a field of characteristic 0 graded by any group, and let (V, ψ) be a finite dimensional graded L-module completely reducible as an L-module disregarding the grading. Then

$V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$

for some irreducible graded L-submodules V_i.

イロン イボン イヨン イヨン

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Graded analog of the Weyl theorem

Theorem

Let L be a Lie algebra over a field of characteristic 0 graded by any group, and let (V, ψ) be a finite dimensional graded L-module completely reducible as an L-module disregarding the grading. Then

$V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$

for some irreducible graded L-submodules V_i.

ヘロト ヘアト ヘビト ヘビト

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Graded analog of the Weyl theorem

Theorem

Let L be a Lie algebra over a field of characteristic 0 graded by any group, and let (V, ψ) be a finite dimensional graded L-module completely reducible as an L-module disregarding the grading. Then

$$V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$$

for some irreducible graded L-submodules V_i.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-invariant analog of the Weyl theorem

Let *L* be an *H*-module Lie algebra and *V* be an *H*-module for some Hopf algebra *H*. We say that (V, ψ) , where $\psi : L \to \mathfrak{gl}(V)$, is a (H, L)-module if $h(\psi(a)v) = \psi(h_{(1)}a)(h_{(2)}v)$ for all $a \in L$, $h \in H, v \in V$. We say that an (H, L)-module (V, ψ) is *irreducible* if it has no nontrivial *L*-submodules that are *H*-submodules at the same time.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-invariant analog of the Weyl theorem

Let *L* be an *H*-module Lie algebra and *V* be an *H*-module for some Hopf algebra *H*.We say that (V, ψ) , where $\psi : L \to \mathfrak{gl}(V)$, is a (H, L)-module if $h(\psi(a)v) = \psi(h_{(1)}a)(h_{(2)}v)$ for all $a \in L$, $h \in H$, $v \in V$. We say that an (H, L)-module (V, ψ) is *irreducible* if it has no nontrivial *L*-submodules that are *H*-submodules at the same time.

< 口 > < 同 > < 臣 > < 臣 >

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-invariant analog of the Weyl theorem

Let *L* be an *H*-module Lie algebra and *V* be an *H*-module for some Hopf algebra *H*.We say that (V, ψ) , where $\psi : L \to \mathfrak{gl}(V)$, is a (H, L)-module if $h(\psi(a)v) = \psi(h_{(1)}a)(h_{(2)}v)$ for all $a \in L$, $h \in H$, $v \in V$. We say that an (H, L)-module (V, ψ) is *irreducible* if it has no nontrivial *L*-submodules that are *H*-submodules at the same time.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-invariant analog of the Weyl theorem

Theorem

Let L be an H-(co)module Lie algebra over a field of characteristic 0, let H be a finite dimensional (co)semisimple Hopf algebra, and let (V, ψ) be a finite dimensional (H, L)-module completely reducible as an L-module disregarding the H-action. Then

 $V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$

for some irreducible (H, L)-submodules V_i .

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-invariant analog of the Weyl theorem

Theorem

Let L be an H-(co)module Lie algebra over a field of characteristic 0, let H be a finite dimensional (co)semisimple Hopf algebra, and let (V, ψ) be a finite dimensional (H, L)-module completely reducible as an L-module disregarding the H-action. Then

 $V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$

for some irreducible (H, L)-submodules V_i .

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-invariant analog of the Weyl theorem

Theorem

Let L be an H-(co)module Lie algebra over a field of characteristic 0, let H be a finite dimensional (co)semisimple Hopf algebra, and let (V, ψ) be a finite dimensional (H, L)-module completely reducible as an L-module disregarding the H-action. Then

 $V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$

for some irreducible (H, L)-submodules V_i .

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

H-invariant analog of the Weyl theorem

Theorem

Let L be an H-(co)module Lie algebra over a field of characteristic 0, let H be a finite dimensional (co)semisimple Hopf algebra, and let (V, ψ) be a finite dimensional (H, L)-module completely reducible as an L-module disregarding the H-action. Then

$$V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$$

for some irreducible (H, L)-submodules V_i .

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Analog of the Weyl theorem for *G*-algebras

Let *L* be a Lie *G*-algebra and let *V* be an *FG*-module for some group *G*. We say that (V, ψ) , where $\psi : L \to \mathfrak{gl}(V)$, is a (G, L)-module if $g(\psi(a)v) = \psi(ga)(gv)$ for all $a \in L, g \in G$, $v \in V$. We say that a (G, L)-module (V, ψ) is *irreducible* if it has no nontrivial *G*-invariant *L*-submodules.

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Analog of the Weyl theorem for *G*-algebras

Let *L* be a Lie *G*-algebra and let *V* be an *FG*-module for some group *G*. We say that (V, ψ) , where $\psi \colon L \to \mathfrak{gl}(V)$, is a (G, L)-module if $g(\psi(a)v) = \psi(ga)(gv)$ for all $a \in L, g \in G$, $v \in V$. We say that a (G, L)-module (V, ψ) is *irreducible* if it has no nontrivial *G*-invariant *L*-submodules.

< 口 > < 同 > < 臣 > < 臣 >

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Analog of the Weyl theorem for *G*-algebras

Let *L* be a Lie *G*-algebra and let *V* be an *FG*-module for some group *G*. We say that (V, ψ) , where $\psi : L \to \mathfrak{gl}(V)$, is a (G, L)-module if $g(\psi(a)v) = \psi(ga)(gv)$ for all $a \in L, g \in G$, $v \in V$. We say that a (G, L)-module (V, ψ) is *irreducible* if it has no nontrivial *G*-invariant *L*-submodules.

< 口 > < 同 > < 臣 > < 臣 >

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Analog of the Weyl theorem for *G*-algebras

Theorem

Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0 and let G be a reductive affine algebraic group over F.Suppose L is endowed with a rational action of G by automorphisms.Let (V, ψ) be a finite dimensional (G, L)-module with a rational G-action, completely reducible as an L-module disregarding the G-action.Then

 $V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$

for some irreducible (G, L)-submodules V_i .

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Analog of the Weyl theorem for *G*-algebras

Theorem

Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0 and let G be a reductive affine algebraic group over F.Suppose L is endowed with a rational action of G by automorphisms.Let (V, ψ) be a finite dimensional (G, L)-module with a rational G-action, completely reducible as an L-module disregarding the G-action.Then

 $V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$

for some irreducible (G, L)-submodules V_i .

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Analog of the Weyl theorem for *G*-algebras

Theorem

Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0 and let G be a reductive affine algebraic group over F.Suppose L is endowed with a rational action of G by automorphisms. Let (V, ψ) be a finite dimensional (G, L)-module with a rational G-action, completely reducible as an L-module disregarding the G-action. Then

 $V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$

for some irreducible (G, L)-submodules V_i .

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Analog of the Weyl theorem for *G*-algebras

Theorem

Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0 and let G be a reductive affine algebraic group over F.Suppose L is endowed with a rational action of G by automorphisms.Let (V, ψ) be a finite dimensional (G, L)-module with a rational G-action, completely reducible as an L-module disregarding the G-action.Then

 $V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$

for some irreducible (G, L)-submodules V_i .

H-(co)module algebras Invariant Wedderburn — Mal'cev and Levi theorems Stability of radicals Other invariant decompositions

Analog of the Weyl theorem for *G*-algebras

Theorem

Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0 and let G be a reductive affine algebraic group over F.Suppose L is endowed with a rational action of G by automorphisms.Let (V, ψ) be a finite dimensional (G, L)-module with a rational G-action, completely reducible as an L-module disregarding the G-action.Then

$$V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$$

for some irreducible (G, L)-submodules V_i .

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Polynomial identities

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Ordinary polynomial identities

• Let F be a field of characteristic 0.

- Let *F* ⟨*X*⟩ be the free associative algebra on the countable set *X* = {*x*₁, *x*₂,...}, i.e. the algebra of polynomials without constant term in the noncommuting variables *X*.
- Let *A* be an associative *F*-algebra and $f = f(x_1, \ldots, x_n) \in F \langle X \rangle$.
- We say that *f* is a polynomial identity of *A* if $f(a_1, \ldots, a_n) = 0$ for all $a_1, \ldots, a_n \in A$.
- The set Id(A) of polynomial identities of A is a *T*-ideal of F ⟨X⟩, i.e. ψ(Id(A)) ⊆ Id(A) for all ψ ∈ End(F⟨X⟩).
- E.g., [x, y] = xy yx ≡ 0 is a polynomial identity for all commutative algebras.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Ordinary polynomial identities

- Let *F* be a field of characteristic 0.
- Let *F* ⟨*X*⟩ be the free associative algebra on the countable set *X* = {*x*₁, *x*₂,...}, i.e. the algebra of polynomials without constant term in the noncommuting variables *X*.
- Let *A* be an associative *F*-algebra and $f = f(x_1, ..., x_n) \in F \langle X \rangle$.
- We say that *f* is a polynomial identity of *A* if $f(a_1, \ldots, a_n) = 0$ for all $a_1, \ldots, a_n \in A$.
- The set Id(A) of polynomial identities of A is a *T*-ideal of F ⟨X⟩, i.e. ψ(Id(A)) ⊆ Id(A) for all ψ ∈ End(F⟨X⟩).
- E.g., [x, y] = xy yx ≡ 0 is a polynomial identity for all commutative algebras.

イロト 不得 とくほ とくほとう

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Ordinary polynomial identities

- Let *F* be a field of characteristic 0.
- Let *F* ⟨*X*⟩ be the free associative algebra on the countable set *X* = {*x*₁, *x*₂,...}, i.e. the algebra of polynomials without constant term in the noncommuting variables *X*.
- Let *A* be an associative *F*-algebra and $f = f(x_1, \ldots, x_n) \in F \langle X \rangle$.
- We say that *f* is a polynomial identity of *A* if $f(a_1, \ldots, a_n) = 0$ for all $a_1, \ldots, a_n \in A$.
- The set Id(A) of polynomial identities of A is a *T*-ideal of F ⟨X⟩, i.e. ψ(Id(A)) ⊆ Id(A) for all ψ ∈ End(F⟨X⟩).
- E.g., [x, y] = xy yx ≡ 0 is a polynomial identity for all commutative algebras.

イロト 不得 とくほと くほとう

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Ordinary polynomial identities

- Let *F* be a field of characteristic 0.
- Let *F* ⟨*X*⟩ be the free associative algebra on the countable set *X* = {*x*₁, *x*₂,...}, i.e. the algebra of polynomials without constant term in the noncommuting variables *X*.
- Let *A* be an associative *F*-algebra and $f = f(x_1, \ldots, x_n) \in F \langle X \rangle$.
- We say that *f* is a polynomial identity of *A* if $f(a_1, \ldots, a_n) = 0$ for all $a_1, \ldots, a_n \in A$.
- The set Id(A) of polynomial identities of A is a T-ideal of F ⟨X⟩, i.e. ψ(Id(A)) ⊆ Id(A) for all ψ ∈ End(F⟨X⟩).
- E.g., [x, y] = xy yx ≡ 0 is a polynomial identity for all commutative algebras.

イロト 不得 とくほと くほとう

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Ordinary polynomial identities

- Let *F* be a field of characteristic 0.
- Let *F* ⟨*X*⟩ be the free associative algebra on the countable set *X* = {*x*₁, *x*₂,...}, i.e. the algebra of polynomials without constant term in the noncommuting variables *X*.
- Let *A* be an associative *F*-algebra and $f = f(x_1, \ldots, x_n) \in F \langle X \rangle$.
- We say that *f* is a polynomial identity of *A* if $f(a_1, \ldots, a_n) = 0$ for all $a_1, \ldots, a_n \in A$.
- The set Id(A) of polynomial identities of A is a *T*-ideal of F ⟨X⟩, i.e. ψ(Id(A)) ⊆ Id(A) for all ψ ∈ End(F⟨X⟩).
- E.g., [x, y] = xy yx ≡ 0 is a polynomial identity for all commutative algebras.

・ロト ・ 理 ト ・ ヨ ト ・

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Ordinary polynomial identities

- Let *F* be a field of characteristic 0.
- Let *F* ⟨*X*⟩ be the free associative algebra on the countable set *X* = {*x*₁, *x*₂,...}, i.e. the algebra of polynomials without constant term in the noncommuting variables *X*.
- Let *A* be an associative *F*-algebra and $f = f(x_1, \ldots, x_n) \in F \langle X \rangle$.
- We say that *f* is a polynomial identity of *A* if $f(a_1, \ldots, a_n) = 0$ for all $a_1, \ldots, a_n \in A$.
- The set Id(A) of polynomial identities of A is a T-ideal of F ⟨X⟩, i.e. ψ(Id(A)) ⊆ Id(A) for all ψ ∈ End(F⟨X⟩).
- E.g., [x, y] = xy yx ≡ 0 is a polynomial identity for all commutative algebras.

イロト 不得 とくほ とくほとう

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Ordinary codimensions

- Let P_n be the space of multilinear polynomials in the noncommuting variables x₁, x₂, ..., x_n.
- The non-negative integer $c_n(A) = \dim \frac{P_n}{P_n \cap Id(A)}$ is called the *n*th *codimension* of the algebra *A*.
- Analogously for polynomial identities of Lie algebras. Instead of associative polynomials we use Lie polynomials.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Ordinary codimensions

- Let P_n be the space of multilinear polynomials in the noncommuting variables x₁, x₂, ..., x_n.
- The non-negative integer $c_n(A) = \dim \frac{P_n}{P_n \cap Id(A)}$ is called the *n*th *codimension* of the algebra *A*.
- Analogously for polynomial identities of Lie algebras. Instead of associative polynomials we use Lie polynomials.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Ordinary codimensions

- Let P_n be the space of multilinear polynomials in the noncommuting variables x₁, x₂, ..., x_n.
- The non-negative integer $c_n(A) = \dim \frac{P_n}{P_n \cap Id(A)}$ is called the *n*th *codimension* of the algebra *A*.
- Analogously for polynomial identities of Lie algebras. Instead of associative polynomials we use Lie polynomials.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Polynomial G-identities

Analogously for graded, G- and H-identities.

Example

Let $M_2(F)$ be the algebra of 2 × 2 matrices. Consider $\psi \in Aut(M_2(F))$ defined by the formula

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\psi} := \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}^{\psi}$$

Then $[x + x^{\psi}, y + y^{\psi}] \in Id^G(M_2(F))$ where $G = \langle \psi \rangle \cong \mathbb{Z}_2$. Here [x, y] := xy - yx.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Polynomial G-identities

Analogously for graded, G- and H-identities.

Example

Let $M_2(F)$ be the algebra of 2 × 2 matrices. Consider $\psi \in Aut(M_2(F))$ defined by the formula

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\psi} := \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$$

Then $[x + x^{\psi}, y + y^{\psi}] \in Id^G(M_2(F))$ where $G = \langle \psi \rangle \cong \mathbb{Z}_2$. Here [x, y] := xy - yx.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Polynomial G-identities

Analogously for graded, G- and H-identities.

Example

Let $M_2(F)$ be the algebra of 2 × 2 matrices. Consider $\psi \in Aut(M_2(F))$ defined by the formula

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\psi} := \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$$

Then $[x + x^{\psi}, y + y^{\psi}] \in \mathrm{Id}^{G}(M_{2}(F))$ where $G = \langle \psi \rangle \cong \mathbb{Z}_{2}$. Here [x, y] := xy - yx.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Polynomial G-identities

Analogously for graded, G- and H-identities.

Example

Let $M_2(F)$ be the algebra of 2 × 2 matrices. Consider $\psi \in Aut(M_2(F))$ defined by the formula

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\psi} := \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$$

Then $[x + x^{\psi}, y + y^{\psi}] \in \mathrm{Id}^{G}(M_{2}(F))$ where $G = \langle \psi \rangle \cong \mathbb{Z}_{2}$. Here [x, y] := xy - yx.
Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Polynomial G-identities

Example

Consider $\psi \in \operatorname{Aut}^*(M_2(F))$ defined by the formula

$$\left(egin{array}{c} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{array}
ight)^{\psi} := \left(egin{array}{c} \mathbf{a} & \mathbf{c} \\ \mathbf{b} & \mathbf{d} \end{array}
ight),$$

i.e. ψ is the transposition. Then $[x - x^{\psi}, y - y^{\psi}] \in Id^G(M_2(F))$ where $G = \langle \psi \rangle \cong \mathbb{Z}_2$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Polynomial G-identities

Example

Consider $\psi \in \operatorname{Aut}^*(M_2(F))$ defined by the formula

$$\left(egin{array}{c} {a} & {b} \\ {c} & {d} \end{array}
ight)^\psi := \left(egin{array}{c} {a} & {c} \\ {b} & {d} \end{array}
ight),$$

i.e. ψ is the transposition. Then $[x - x^{\psi}, y - y^{\psi}] \in \mathsf{Id}^{G}(M_{2}(F))$ where $G = \langle \psi \rangle \cong \mathbb{Z}_{2}$.

イロト イポト イヨト イヨト

1

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Graded polynomial identities

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Graded polynomial identities

 $\chi((12)) \chi((23))$

Consider
$$L = \left\{ \begin{pmatrix} \mathfrak{gl}_2(F) & 0 \\ 0 & \mathfrak{gl}_2(F) \end{pmatrix} \right\} \subseteq \mathfrak{gl}_4(F)$$
 with the following grading by the third symmetric group S_3 :

the other components are zero, $\alpha, \beta, \gamma, \lambda \in F$. Then

Definitions, examples, conjecture

Graded polynomial identities

Consider
$$L = \left\{ \begin{pmatrix} \mathfrak{gl}_2(F) & 0 \\ 0 & \mathfrak{gl}_2(F) \end{pmatrix} \right\} \subseteq \mathfrak{gl}_4(F)$$
 with the following grading by the third symmetric group S_3 :

→ < Ξ →</p>

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

S.A. Amitsur's conjecture

Conjecture

There exists $\lim_{n\to\infty} \sqrt[n]{c_n(A)} \in \mathbb{Z}_+$.

Example (A. Regev)

 $\lim_{n\to\infty} \sqrt[n]{c_n(M_k(F))} = k^2 \text{ where } M_k(F) \text{ is the algebra of } k \times k \text{ matrices.}$

イロト 不得 とくほと くほとう

3

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

S.A. Amitsur's conjecture

Conjecture

There exists
$$\lim_{n\to\infty} \sqrt[n]{c_n(A)} \in \mathbb{Z}_+$$
.

Example (A. Regev)

 $\lim_{n\to\infty} \sqrt[n]{c_n(M_k(F))} = k^2 \text{ where } M_k(F) \text{ is the algebra of } k \times k \text{ matrices.}$

イロト イポト イヨト イヨト

3

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

S.A. Amitsur's conjecture

- I.B. Volichenko gave an example of an infinite dimensional Lie algebra L with a nontrivial polynomial identity for which the growth of codimensions c_n(L) of ordinary polynomial identities is overexponential.
- M.V. Zaicev and S.P. Mishchenko gave an example of an infinite dimensional Lie algebra *L* with a nontrivial polynomial identity such that there exists fractional $Plexp(L) := \lim_{n \to \infty} \sqrt[n]{c_n(L)}.$

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

S.A. Amitsur's conjecture

- I.B. Volichenko gave an example of an infinite dimensional Lie algebra L with a nontrivial polynomial identity for which the growth of codimensions c_n(L) of ordinary polynomial identities is overexponential.
- M.V. Zaicev and S.P. Mishchenko gave an example of an infinite dimensional Lie algebra *L* with a nontrivial polynomial identity such that there exists fractional $Plexp(L) := \lim_{n \to \infty} \sqrt[n]{c_n(L)}$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

S.A. Amitsur's conjecture

- S.A. Amitsur's conjecture was proved
 - in 1999 by A. Giambruno and M.V. Zaicev for codimensions of associative algebras;
 - in 2002 by M.V. Zaicev for codimensions of finite dimensional Lie algebras;
 - in 2010–2011 by E. Aljadeff, A. Giambruno, and
 D. La Mattina for codimensions of graded identities for all associative PI-algebras graded by a finite group;

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

S.A. Amitsur's conjecture

- S.A. Amitsur's conjecture was proved
 - in 1999 by A. Giambruno and M.V. Zaicev for codimensions of associative algebras;
 - in 2002 by M.V. Zaicev for codimensions of finite dimensional Lie algebras;
 - in 2010–2011 by E. Aljadeff, A. Giambruno, and
 D. La Mattina for codimensions of graded identities for all associative PI-algebras graded by a finite group;

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

S.A. Amitsur's conjecture

- S.A. Amitsur's conjecture was proved
 - in 1999 by A. Giambruno and M.V. Zaicev for codimensions of associative algebras;
 - in 2002 by M.V. Zaicev for codimensions of finite dimensional Lie algebras;
 - in 2010–2011 by E. Aljadeff, A. Giambruno, and
 D. La Mattina for codimensions of graded identities for all associative PI-algebras graded by a finite group;

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

S.A. Amitsur's conjecture

- as a consequence, they proved the analog of the conjecture for *G*-codimensions for any associative PI-algebra with an action of a finite Abelian group *G* by automorphisms;
- the case when G = Z₂ acts on a finite dimensional associative algebra by automorphisms and anti-automorphisms (i.e. polynomial identities with involution) was considered by A. Giambruno and M.V. Zaicev in 1999.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

S.A. Amitsur's conjecture

- as a consequence, they proved the analog of the conjecture for *G*-codimensions for any associative PI-algebra with an action of a finite Abelian group *G* by automorphisms;
- the case when G = Z₂ acts on a finite dimensional associative algebra by automorphisms and anti-automorphisms (i.e. polynomial identities with involution) was considered by A. Giambruno and M.V. Zaicev in 1999.

<ロト <問 > < 臣 > < 臣 >

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Theorems for associative algebras

Theorem

Let A be a finite dimensional non-nilpotent associative algebra over a field F of characteristic 0. Suppose a finite not necessarily Abelian group G acts on A by automorphisms and anti-automorphisms. Then there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^G(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let A be a finite dimensional non-nilpotent H-module associative algebra over a field F of characteristic 0, where H is a finite dimensional semisimple Hopf algebra. Then there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$, $d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Theorems for associative algebras

Theorem

Let A be a finite dimensional non-nilpotent associative algebra over a field F of characteristic 0. Suppose a finite not necessarily Abelian group G acts on A by automorphisms and anti-automorphisms. Then there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^G(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let A be a finite dimensional non-nilpotent H-module associative algebra over a field F of characteristic 0, where H is a finite dimensional semisimple Hopf algebra. Then there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$, $d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Theorems for associative algebras

Theorem

Let A be a finite dimensional non-nilpotent associative algebra over a field F of characteristic 0. Suppose a finite not necessarily Abelian group G acts on A by automorphisms and anti-automorphisms. Then there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$, $d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^G(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let A be a finite dimensional non-nilpotent H-module associative algebra over a field F of characteristic 0, where H is a finite dimensional semisimple Hopf algebra. Then there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$, $d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Theorems for associative algebras

Theorem

Let A be a finite dimensional non-nilpotent associative algebra over a field F of characteristic 0. Suppose a finite not necessarily Abelian group G acts on A by automorphisms and anti-automorphisms. Then there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^G(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let A be a finite dimensional non-nilpotent H-module associative algebra over a field F of characteristic 0, where H is a finite dimensional semisimple Hopf algebra. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

200

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Theorems for associative algebras

Theorem

Let A be a finite dimensional non-nilpotent associative algebra over a field F of characteristic 0. Suppose a finite not necessarily Abelian group G acts on A by automorphisms and anti-automorphisms. Then there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^G(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let A be a finite dimensional non-nilpotent H-module associative algebra over a field F of characteristic 0, where H is a finite dimensional semisimple Hopf algebra. Then there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$, $d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

200

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Generalized Hopf action

Let *H* be an associative algebra with 1. We say that an associative algebra *A* is an algebra with a *generalized H*-action if *A* is endowed with a homomorphism $H \rightarrow \text{End}_F(A)$ and for every $h \in H$ there exist $h'_i, h''_i, h'''_i \in H$ such that

$$h(ab) = \sum_{i} \left((h'_i a)(h''_i b) + (h'''_i b)(h'''_i a) \right) \text{ for all } a, b \in A.$$

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Generalized Hopf action

Let *H* be an associative algebra with 1. We say that an associative algebra *A* is an algebra with a *generalized H*-action if *A* is endowed with a homomorphism $H \rightarrow \text{End}_F(A)$ and for every $h \in H$ there exist $h'_i, h''_i, h'''_i \in H$ such that

$$h(ab) = \sum_i \left((h'_i a)(h''_i b) + (h'''_i b)(h'''_i a) \right)$$
 for all $a, b \in A$.

・ロト ・同ト ・ヨト ・ヨ

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Generalized Hopf action

Theorem

Let A be a finite dimensional non-nilpotent associative algebra with a generalized H-action over an algebraically closed field F of characteristic 0. Here H is a finite dimensional associative algebra with 1 acting on A in such a way that the Jacobson radical J := J(A) is H-invariant and $A = B \oplus J$ (direct sum of H-submodules) where $B = B_1 \oplus \ldots \oplus B_q$ (direct sum of H-invariant ideals), B_i are H-simple semisimple algebras. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

In fact, $d = \operatorname{Plexp}^{H}(A) = \max(\dim(B_{i_1} \oplus B_{i_2} \oplus \ldots \oplus B_{i_r}) | B_{i_1}JB_{i_2}J\ldots JB_{i_r} \neq 0, 1 \leq i_k \leq q, 1 \leq k \leq r; 0 \leq r \leq q).$

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Generalized Hopf action

Theorem

Let A be a finite dimensional non-nilpotent associative algebra with a generalized H-action over an algebraically closed field F of characteristic 0. Here H is a finite dimensional associative algebra with 1 acting on A in such a way that the Jacobson radical J := J(A) is H-invariant and $A = B \oplus J$ (direct sum of H-submodules) where $B = B_1 \oplus \ldots \oplus B_q$ (direct sum of H-invariant ideals), B_i are H-simple semisimple algebras. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

In fact, $d = \operatorname{Plexp}^{H}(A) = \max(\dim(B_{i_1} \oplus B_{i_2} \oplus \ldots \oplus B_{i_r}) | B_{i_1}JB_{i_2}J\ldots JB_{i_r} \neq 0, 1 \leq i_k \leq q, 1 \leq k \leq r; 0 \leq r \leq q).$

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Generalized Hopf action

Theorem

Let A be a finite dimensional non-nilpotent associative algebra with a generalized H-action over an algebraically closed field F of characteristic 0. Here H is a finite dimensional associative algebra with 1 acting on A in such a way that the Jacobson radical J := J(A) is H-invariant and $A = B \oplus J$ (direct sum of H-submodules) where $B = B_1 \oplus \ldots \oplus B_q$ (direct sum of H-invariant ideals), B_i are H-simple semisimple algebras. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

In fact, $d = \text{Plexp}^H(A) = \max(\dim(B_{i_1} \oplus B_{i_2} \oplus \ldots \oplus B_{i_r}) | B_{i_1}JB_{i_2}J\ldots JB_{i_r} \neq 0, 1 \leq i_k \leq q, 1 \leq k \leq r; 0 \leq r \leq q).$

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Generalized Hopf action

Theorem

Let A be a finite dimensional non-nilpotent associative algebra with a generalized H-action over an algebraically closed field F of characteristic 0. Here H is a finite dimensional associative algebra with 1 acting on A in such a way that the Jacobson radical J := J(A) is H-invariant and $A = B \oplus J$ (direct sum of H-submodules) where $B = B_1 \oplus \ldots \oplus B_q$ (direct sum of H-invariant ideals), B_i are H-simple semisimple algebras. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

In fact, $d = \text{Plexp}^H(A) = \max(\dim(B_{i_1} \oplus B_{i_2} \oplus \ldots \oplus B_{i_r}) | B_{i_1}JB_{i_2}J\ldots JB_{i_r} \neq 0, 1 \leq i_k \leq q, 1 \leq k \leq r; 0 \leq r \leq q).$

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be an algebra with a generalized *H*-action, where B_i are finite dimensional *H*-simple semisimple algebras and *H* is a finite dimensional associative algebra with 1. Let $d := \max_{1 \le k \le q} \dim B_k$. Then there exist $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$ such that

 $C_1 n^{r_1} d^n \leqslant c_n^H(A) \leqslant C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be an algebra with a generalized *H*-action, where B_i are finite dimensional *H*-simple semisimple algebras and *H* is a finite dimensional associative algebra with 1. Let $d := \max_{1 \le k \le q} \dim B_k$. Then there exist $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$ such that

 $C_1 n^{r_1} d^n \leqslant c_n^H(A) \leqslant C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}.$

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be an algebra with a generalized *H*-action, where B_i are finite dimensional *H*-simple semisimple algebras and *H* is a finite dimensional associative algebra with 1. Let $d := \max_{1 \le k \le q} \dim B_k$. Then there exist $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$ such that

 $C_1 n^{r_1} d^n \leqslant c_n^H(A) \leqslant C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be a semisimple algebra graded by a finite group, where B_i are finite dimensional graded simple algebras. Let $d := \max_{1 \le k \le q} \dim B_k$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^{gr}(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be a semisimple *G*-algebra where B_i are finite dimensional *G*-simple algebras.Let $d := \max_{1 \le k \le q} \dim B_k$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^G(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

ヘロト ヘワト ヘビト ヘビト

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be a semisimple algebra graded by a finite group, where B_i are finite dimensional graded simple algebras. Let $d := \max_{1 \le k \le q} \dim B_k$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^{gr}(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be a semisimple *G*-algebra where B_i are finite dimensional *G*-simple algebras.Let $d := \max_{1 \le k \le q} \dim B_k$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^G(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

ヘロト ヘワト ヘビト ヘビト

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be a semisimple algebra graded by a finite group, where B_i are finite dimensional graded simple algebras. Let $d := \max_{1 \le k \le q} \dim B_k$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^{\text{gr}}(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be a semisimple *G*-algebra where B_i are finite dimensional *G*-simple algebras.Let $d := \max_{1 \le k \le q} \dim B_k$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^G(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

ヘロト ヘワト ヘビト ヘビト

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be a semisimple algebra graded by a finite group, where B_i are finite dimensional graded simple algebras. Let $d := \max_{1 \le k \le q} \dim B_k$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^{\text{gr}}(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be a semisimple *G*-algebra where B_i are finite dimensional *G*-simple algebras.Let

 $d := \max_{1 \leqslant k \leqslant q} \dim B_k$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \leqslant c_n^G(A) \leqslant C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be a semisimple algebra graded by a finite group, where B_i are finite dimensional graded simple algebras. Let $d := \max_{1 \le k \le q} \dim B_k$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^{\text{gr}}(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be a semisimple *G*-algebra where B_i are finite dimensional *G*-simple algebras.Let $d := \max_{1 \le k \le q} \dim B_k$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^G(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be a semisimple algebra graded by a finite group, where B_i are finite dimensional graded simple algebras. Let $d := \max_{1 \le k \le q} \dim B_k$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^{\text{gr}}(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Example

Let $A = B_1 \oplus B_2 \oplus \ldots \oplus B_q$ be a semisimple *G*-algebra where B_i are finite dimensional *G*-simple algebras.Let $d := \max_{1 \le k \le q} \dim B_k$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^G(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $G = S_3$ and $A = M_2(F) \oplus M_2(F)$. Consider the following *G*-grading on *A*:

$$A^{(e)} = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \right\} \oplus \left\{ \begin{pmatrix} \gamma & 0 \\ 0 & \mu \end{pmatrix} \right\},$$
$$A^{((12))} = \left\{ \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} \right\} \oplus 0, \qquad A^{((23))} = 0 \oplus \left\{ \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} \right\},$$

the other components are zero. Then there exist $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$ such that

 $C_1 n^{r_1} 4^n \leqslant c_n^{\mathrm{gr}}(A) \leqslant C_2 n^{r_2} 4^n$ for all $n \in \mathbb{N}$.

< 口 > < 四 > < 三 > < 三 > < 三 >

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let A = FG where G is a finite group. Consider the natural G-grading $A = \bigoplus_{g \in G} A^{(g)}$ where $A^{(g)} = Fg$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that

 $C_1 n^{r_1} |G|^n \leqslant c_n^{\mathrm{gr}}(A) \leqslant C_2 n^{r_2} |G|^n$ for all $n \in \mathbb{N}$.
Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = Fe_1 \oplus \ldots \oplus Fe_m$ (direct sum of ideals) where $e_i^2 = e_i$, $m \in \mathbb{N}$. Suppose $G \subseteq S_m$ acts on A by the formula $\sigma e_i := e_{\sigma(i)}$, $\sigma \in G$. Let $\{1, 2, \ldots, m\} = \coprod_{i=1}^q O_i$ where O_i are orbits of the G-action on $\{1, 2, \ldots, m\}$. Let $d := \max_{1 \le i \le q} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^G(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = Fe_1 \oplus \ldots \oplus Fe_m$ (direct sum of ideals) where $e_i^2 = e_i$, $m \in \mathbb{N}$. Suppose $G \subseteq S_m$ acts on A by the formula $\sigma e_i := e_{\sigma(i)}$, $\sigma \in G$. Let $\{1, 2, \ldots, m\} = \coprod_{i=1}^q O_i$ where O_i are orbits of the G-action on $\{1, 2, \ldots, m\}$. Let $d := \max_{1 \le i \le q} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^G(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = Fe_1 \oplus \ldots \oplus Fe_m$ (direct sum of ideals) where $e_i^2 = e_i$, $m \in \mathbb{N}$. Suppose $G \subseteq S_m$ acts on A by the formula $\sigma e_i := e_{\sigma(i)}$, $\sigma \in G$. Let $\{1, 2, \ldots, m\} = \coprod_{i=1}^q O_i$ where O_i are orbits of the G-action on $\{1, 2, \ldots, m\}$. Let $d := \max_{1 \le i \le q} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^G(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

ヘロト 人間 ト ヘヨト ヘヨト

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = Fe_1 \oplus \ldots \oplus Fe_m$ (direct sum of ideals) where $e_i^2 = e_i$, $m \in \mathbb{N}$. Suppose $G \subseteq S_m$ acts on A by the formula $\sigma e_i := e_{\sigma(i)}$, $\sigma \in G$. Let $\{1, 2, \ldots, m\} = \coprod_{i=1}^q O_i$ where O_i are orbits of the G-action on $\{1, 2, \ldots, m\}$. Let $d := \max_{1 \leq i \leq q} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \leq c_n^G(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

ヘロト 人間 ト ヘヨト ヘヨト

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = A_1 \oplus \ldots \oplus A_m$ (direct sum of ideals), $A_i \cong M_k(F)$, $1 \leq i \leq m$, and $k, m \in \mathbb{N}$. The group $\operatorname{Aut}^*(M_k(F)) \times S_m$ acts on A in the following way: if $(\varphi, \sigma) \in \operatorname{Aut}^*(M_k(F)) \times S_m$ and $(a_1, \ldots, a_m) \in A$, then

$$(\varphi,\sigma)\cdot(a_1,\ldots,a_m):=(a^{\varphi}_{\sigma^{-1}(1)},\ldots,a^{\varphi}_{\sigma^{-1}(m)}).$$

Suppose $G \subseteq \operatorname{Aut}^*(M_k(F)) \times S_m$ is a subgroup. Denote by $\pi : \operatorname{Aut}^*(M_k(F)) \times S_m \to S_m$ the natural projection on the second component. Let $\{1, 2, \ldots, m\} = \coprod_{i=1}^q O_i$ where O_i are orbits of the $\pi(G)$ -action on $\{1, 2, \ldots, m\}$. Let $d := k^2 \max_{1 \le i \le q} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le C_n^G(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

200

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = A_1 \oplus \ldots \oplus A_m$ (direct sum of ideals), $A_i \cong M_k(F)$, $1 \leq i \leq m$, and $k, m \in \mathbb{N}$. The group $\operatorname{Aut}^*(M_k(F)) \times S_m$ acts on A in the following way: if $(\varphi, \sigma) \in \operatorname{Aut}^*(M_k(F)) \times S_m$ and $(a_1, \ldots, a_m) \in A$, then

$$(\varphi,\sigma)\cdot(a_1,\ldots,a_m):=(a^{\varphi}_{\sigma^{-1}(1)},\ldots,a^{\varphi}_{\sigma^{-1}(m)}).$$

Suppose $G \subseteq \operatorname{Aut}^*(M_k(F)) \times S_m$ is a subgroup. Denote by $\pi : \operatorname{Aut}^*(M_k(F)) \times S_m \to S_m$ the natural projection on the second component. Let $\{1, 2, \ldots, m\} = \coprod_{i=1}^q O_i$ where O_i are orbits of the $\pi(G)$ -action on $\{1, 2, \ldots, m\}$. Let $d := k^2 \max_{1 \le i \le q} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^G(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = A_1 \oplus \ldots \oplus A_m$ (direct sum of ideals), $A_i \cong M_k(F)$, $1 \leq i \leq m$, and $k, m \in \mathbb{N}$. The group $\operatorname{Aut}^*(M_k(F)) \times S_m$ acts on A in the following way: if $(\varphi, \sigma) \in \operatorname{Aut}^*(M_k(F)) \times S_m$ and $(a_1, \ldots, a_m) \in A$, then

$$(\varphi,\sigma)\cdot(a_1,\ldots,a_m):=(a^{\varphi}_{\sigma^{-1}(1)},\ldots,a^{\varphi}_{\sigma^{-1}(m)}).$$

Suppose $G \subseteq \operatorname{Aut}^*(M_k(F)) \times S_m$ is a subgroup. Denote by $\pi : \operatorname{Aut}^*(M_k(F)) \times S_m \to S_m$ the natural projection on the second component. Let $\{1, 2, \ldots, m\} = \coprod_{i=1}^q O_i$ where O_i are orbits of the $\pi(G)$ -action on $\{1, 2, \ldots, m\}$. Let $d := k^2 \max_{1 \le i \le q} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^G(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = A_1 \oplus \ldots \oplus A_m$ (direct sum of ideals), $A_i \cong M_k(F)$, $1 \leq i \leq m$, and $k, m \in \mathbb{N}$. The group $\operatorname{Aut}^*(M_k(F)) \times S_m$ acts on A in the following way: if $(\varphi, \sigma) \in \operatorname{Aut}^*(M_k(F)) \times S_m$ and $(a_1, \ldots, a_m) \in A$, then

$$(\varphi,\sigma)\cdot(a_1,\ldots,a_m):=(a^{\varphi}_{\sigma^{-1}(1)},\ldots,a^{\varphi}_{\sigma^{-1}(m)}).$$

Suppose $G \subseteq \operatorname{Aut}^*(M_k(F)) \times S_m$ is a subgroup. Denote by $\pi : \operatorname{Aut}^*(M_k(F)) \times S_m \to S_m$ the natural projection on the second component. Let $\{1, 2, \dots, m\} = \prod_{i=1}^q O_i$ where O_i are orbits of the $\pi(G)$ -action on $\{1, 2, \dots, m\}$. Let $d := k^2 \max_{1 \le i \le q} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^G(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = A_1 \oplus \ldots \oplus A_m$ (direct sum of ideals), $A_i \cong M_k(F)$, $1 \leq i \leq m$, and $k, m \in \mathbb{N}$. The group $\operatorname{Aut}^*(M_k(F)) \times S_m$ acts on A in the following way: if $(\varphi, \sigma) \in \operatorname{Aut}^*(M_k(F)) \times S_m$ and $(a_1, \ldots, a_m) \in A$, then

$$(\varphi,\sigma)\cdot(a_1,\ldots,a_m):=(a^{\varphi}_{\sigma^{-1}(1)},\ldots,a^{\varphi}_{\sigma^{-1}(m)}).$$

Suppose $G \subseteq \operatorname{Aut}^*(M_k(F)) \times S_m$ is a subgroup. Denote by $\pi : \operatorname{Aut}^*(M_k(F)) \times S_m \to S_m$ the natural projection on the second component. Let $\{1, 2, \ldots, m\} = \coprod_{i=1}^q O_i$ where O_i are orbits of the $\pi(G)$ -action on $\{1, 2, \ldots, m\}$. Let $d := k^2 \max_{1 \le i \le q} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \le c_n^G(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = A_1 \oplus \ldots \oplus A_m$ (direct sum of ideals), $A_i \cong M_k(F)$, $1 \leq i \leq m$, and $k, m \in \mathbb{N}$. The group $\operatorname{Aut}^*(M_k(F)) \times S_m$ acts on A in the following way: if $(\varphi, \sigma) \in \operatorname{Aut}^*(M_k(F)) \times S_m$ and $(a_1, \ldots, a_m) \in A$, then

$$(\varphi,\sigma)\cdot(a_1,\ldots,a_m):=(a^{\varphi}_{\sigma^{-1}(1)},\ldots,a^{\varphi}_{\sigma^{-1}(m)}).$$

Suppose $G \subseteq \operatorname{Aut}^*(M_k(F)) \times S_m$ is a subgroup. Denote by $\pi : \operatorname{Aut}^*(M_k(F)) \times S_m \to S_m$ the natural projection on the second component. Let $\{1, 2, \ldots, m\} = \coprod_{i=1}^q O_i$ where O_i are orbits of the $\pi(G)$ -action on $\{1, 2, \ldots, m\}$. Let $d := k^2 \max_{1 \le i \le q} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^r d^n \le c_n^G(A) \le C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = A_1 \oplus \ldots \oplus A_m$ (direct sum of ideals), $A_i \cong M_k(F)$, $1 \leq i \leq m$, and $k, m \in \mathbb{N}$. The group $\operatorname{Aut}^*(M_k(F)) \times S_m$ acts on A in the following way: if $(\varphi, \sigma) \in \operatorname{Aut}^*(M_k(F)) \times S_m$ and $(a_1, \ldots, a_m) \in A$, then

$$(\varphi,\sigma)\cdot(a_1,\ldots,a_m):=(a^{\varphi}_{\sigma^{-1}(1)},\ldots,a^{\varphi}_{\sigma^{-1}(m)}).$$

Suppose $G \subseteq \operatorname{Aut}^*(M_k(F)) \times S_m$ is a subgroup. Denote by $\pi : \operatorname{Aut}^*(M_k(F)) \times S_m \to S_m$ the natural projection on the second component. Let $\{1, 2, \ldots, m\} = \coprod_{i=1}^q O_i$ where O_i are orbits of the $\pi(G)$ -action on $\{1, 2, \ldots, m\}$. Let $d := k^2 \max_{1 \leq i \leq q} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that $C_1 n^{r_1} d^n \leq c_n^G(A) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Examples

Example

Let $A = A_1 \oplus \ldots \oplus A_m$ (direct sum of ideals) where $A_i \cong UT_k(F)$, $1 \leq i \leq m$; $k, m \in \mathbb{N}$; and $UT_k(F)$ is the associative algebra of $k \times k$ upper-triangular matrices. Suppose $G \subseteq S_m$ acts on A in the following way: if $\sigma \in G$ and $(a_1, \ldots, a_m) \in A$, then

$$\sigma \cdot (\mathbf{a}_1, \ldots, \mathbf{a}_m) := (\mathbf{a}_{\sigma^{-1}(1)}, \ldots, \mathbf{a}_{\sigma^{-1}(m)}).$$

Let $\{1, 2, ..., m\} = \coprod_{i=1}^{s} O_i$ where O_i are orbits of the *G*-action on $\{1, 2, ..., m\}$. Let $d := k \cdot \max_{1 \le i \le s} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that

 $C_1 n^{r_1} d^n \leqslant c_n^G(A) \leqslant C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}.$

Examples

Example

Let $A = A_1 \oplus \ldots \oplus A_m$ (direct sum of ideals) where $A_i \cong UT_k(F)$, $1 \leq i \leq m$; $k, m \in \mathbb{N}$; and $UT_k(F)$ is the associative algebra of $k \times k$ upper-triangular matrices. Suppose $G \subseteq S_m$ acts on A in the following way: if $\sigma \in G$ and $(a_1, \ldots, a_m) \in A$, then

$$\sigma \cdot (\mathbf{a}_1, \ldots, \mathbf{a}_m) := (\mathbf{a}_{\sigma^{-1}(1)}, \ldots, \mathbf{a}_{\sigma^{-1}(m)}).$$

Let $\{1, 2, ..., m\} = \coprod_{i=1}^{s} O_i$ where O_i are orbits of the *G*-action on $\{1, 2, ..., m\}$. Let $d := k \cdot \max_{1 \le i \le s} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that

 $C_1 n^{r_1} d^n \leqslant c_n^G(A) \leqslant C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}.$

Examples

Example

Let $A = A_1 \oplus \ldots \oplus A_m$ (direct sum of ideals) where $A_i \cong UT_k(F)$, $1 \leq i \leq m$; $k, m \in \mathbb{N}$; and $UT_k(F)$ is the associative algebra of $k \times k$ upper-triangular matrices. Suppose $G \subseteq S_m$ acts on A in the following way: if $\sigma \in G$ and $(a_1, \ldots, a_m) \in A$, then

$$\sigma \cdot (\mathbf{a}_1, \ldots, \mathbf{a}_m) := (\mathbf{a}_{\sigma^{-1}(1)}, \ldots, \mathbf{a}_{\sigma^{-1}(m)}).$$

Let $\{1, 2, ..., m\} = \coprod_{i=1}^{s} O_i$ where O_i are orbits of the *G*-action on $\{1, 2, ..., m\}$. Let $d := k \cdot \max_{1 \le i \le s} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that

 $C_1 n^{r_1} d^n \leqslant c_n^G(A) \leqslant C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}.$

Examples

Example

Let $A = A_1 \oplus \ldots \oplus A_m$ (direct sum of ideals) where $A_i \cong UT_k(F)$, $1 \leq i \leq m$; $k, m \in \mathbb{N}$; and $UT_k(F)$ is the associative algebra of $k \times k$ upper-triangular matrices. Suppose $G \subseteq S_m$ acts on A in the following way: if $\sigma \in G$ and $(a_1, \ldots, a_m) \in A$, then

$$\sigma \cdot (\mathbf{a}_1, \ldots, \mathbf{a}_m) := (\mathbf{a}_{\sigma^{-1}(1)}, \ldots, \mathbf{a}_{\sigma^{-1}(m)}).$$

Let $\{1, 2, ..., m\} = \coprod_{i=1}^{s} O_i$ where O_i are orbits of the *G*-action on $\{1, 2, ..., m\}$. Let $d := k \cdot \max_{1 \le i \le s} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that

 $C_1 n^{r_1} d^n \leqslant c_n^G(A) \leqslant C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Examples

Example

Let $A = A_1 \oplus \ldots \oplus A_m$ (direct sum of ideals) where $A_i \cong UT_k(F)$, $1 \leq i \leq m$; $k, m \in \mathbb{N}$; and $UT_k(F)$ is the associative algebra of $k \times k$ upper-triangular matrices. Suppose $G \subseteq S_m$ acts on A in the following way: if $\sigma \in G$ and $(a_1, \ldots, a_m) \in A$, then

$$\sigma \cdot (\mathbf{a}_1, \ldots, \mathbf{a}_m) := (\mathbf{a}_{\sigma^{-1}(1)}, \ldots, \mathbf{a}_{\sigma^{-1}(m)}).$$

Let $\{1, 2, ..., m\} = \coprod_{i=1}^{s} O_i$ where O_i are orbits of the *G*-action on $\{1, 2, ..., m\}$. Let $d := k \cdot \max_{1 \le i \le s} |O_i|$. Then there exist $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that

 $C_1 n^{r_1} d^n \leqslant c_n^G(A) \leqslant C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Sweedler's algebra with the action of its dual

Let *H* be the 4-dimensional Sweedler's Hopf algebra. Then *H* is a left *H*^{*}-module with the action defined by $gh = g(h_{(2)})h_{(1)}$, $h \in H, g \in H^*$. We prove

Theorem

Let F be a field of characteristic 0. There exist C > 0 and $r \in \mathbb{R}$ such that $Cn^r 4^n \leq c_n^{H^*}(H) \leq 4^{n+1}$ for all $n \in \mathbb{N}$.

イロト イポト イヨト イヨト

1

Definitions, examples, conjecture *H*-identities of associative algebras *H*-identities of Lie algebras Criteria for *H*-simplicity

Sweedler's algebra with the action of its dual

Let *H* be the 4-dimensional Sweedler's Hopf algebra. Then *H* is a left *H*^{*}-module with the action defined by $gh = g(h_{(2)})h_{(1)}$, $h \in H, g \in H^*$. We prove

Theorem

Let F be a field of characteristic 0. There exist C > 0 and $r \in \mathbb{R}$ such that $Cn^r 4^n \leq c_n^{H^*}(H) \leq 4^{n+1}$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Theorems for Lie algebras

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0, graded by an arbitrary group G. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^{\text{gr}}(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over an algebraically closed field F of characteristic 0. Suppose a reductive affine algebraic group G acts on L rationally by automorphisms and anti-automorphisms. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^G(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Theorems for Lie algebras

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0, graded by an arbitrary group G. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^{\text{gr}}(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over an algebraically closed field F of characteristic 0. Suppose a reductive affine algebraic group G acts on L rationally by automorphisms and anti-automorphisms. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^G(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Theorems for Lie algebras

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0, graded by an arbitrary group G. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^{\text{gr}}(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over an algebraically closed field F of characteristic 0. Suppose a reductive affine algebraic group G acts on L rationally by automorphisms and anti-automorphisms. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^{q}(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Theorems for Lie algebras

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0, graded by an arbitrary group G. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^{\text{gr}}(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over an algebraically closed field F of characteristic 0. Suppose a reductive affine algebraic group G acts on L rationally by automorphisms and anti-automorphisms. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^{r_2} (L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Theorems for Lie algebras

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0, graded by an arbitrary group G. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^{\text{gr}}(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over an algebraically closed field F of characteristic 0. Suppose a reductive affine algebraic group G acts on L rationally by automorphisms and anti-automorphisms. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^G(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

H-identities of Lie algebras

Theorems for Lie algebras

In particular,

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0. Suppose a finite group G acts on L

dimensional semisimple Hopf algebra. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Theorems for Lie algebras

In particular,

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0. Suppose a finite group G acts on L by automorphisms and anti-automorphisms. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^n d^n \leq c_n^G(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let *L* be a finite dimensional non-nilpotent *H*-module Lie algebra over a field *F* of characteristic 0 where *H* is a finite dimensional semisimple Hopf algebra. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Theorems for Lie algebras

In particular,

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0. Suppose a finite group G acts on L by automorphisms and anti-automorphisms. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^G(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let L be a finite dimensional non-nilpotent H-module Lie algebra over a field F of characteristic 0 where H is a finite dimensional semisimple Hopf algebra. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

200

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Theorems for Lie algebras

In particular,

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0. Suppose a finite group G acts on L by automorphisms and anti-automorphisms. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^G(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let L be a finite dimensional non-nilpotent H-module Lie algebra over a field F of characteristic 0 where H is a finite dimensional semisimple Hopf algebra. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Theorems for Lie algebras

In particular,

Theorem

Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0. Suppose a finite group G acts on L by automorphisms and anti-automorphisms. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^G(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let L be a finite dimensional non-nilpotent H-module Lie algebra over a field F of characteristic 0 where H is a finite dimensional semisimple Hopf algebra. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

H-nice Lie algebras

Let *L* be a finite dimensional *H*-module Lie algebra where *H* is a Hopf algebra over an algebraically closed field *F* of characteristic 0. We say that *L* is *H*-nice if either *L* is semisimple or the following conditions hold:

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

H-nice Lie algebras

Let *L* be a finite dimensional *H*-module Lie algebra where *H* is a Hopf algebra over an algebraically closed field *F* of characteristic 0. We say that *L* is *H*-nice if either *L* is semisimple or the following conditions hold:

<ロト <問 > < 臣 > < 臣 >

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

H-nice Lie algebras

the nilpotent radical N and the solvable radical R of L are H-invariant;

2 (Levi decomposition) there exists an H-invariant maximal semisimple subalgebra $B \subseteq L$ such that $L = B \oplus R$ (direct sum of H-modules);

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

H-nice Lie algebras

- the nilpotent radical N and the solvable radical R of L are H-invariant;
- ② (Levi decomposition) there exists an H-invariant maximal semisimple subalgebra B ⊆ L such that L = B ⊕ R (direct sum of H-modules);

H-nice Lie algebras

- 3 (Wedderburn Mal'cev decompositions) for any H-submodule $W \subseteq L$ and associative H-module subalgebra $A_1 \subseteq \operatorname{End}_F(W)$, the Jacobson radical $J(A_1)$ is H-invariant and there exists an H-invariant maximal semisimple associative subalgebra $\tilde{A}_1 \subseteq A_1$ such that $A_1 = \tilde{A}_1 \oplus J(A_1)$ (direct sum of H-submodules);
- 4 for any *H*-invariant Lie subalgebra $L_0 \subseteq \mathfrak{gl}(L)$ such that L_0 is an *H*-module algebra and *L* is a completely reducible L_0 -module disregarding *H*-action, *L* is a completely reducible (*H*, L_0)-module.

H-nice Lie algebras

- 3 (Wedderburn Mal'cev decompositions) for any H-submodule $W \subseteq L$ and associative H-module subalgebra $A_1 \subseteq \operatorname{End}_F(W)$, the Jacobson radical $J(A_1)$ is H-invariant and there exists an H-invariant maximal semisimple associative subalgebra $\tilde{A}_1 \subseteq A_1$ such that $A_1 = \tilde{A}_1 \oplus J(A_1)$ (direct sum of H-submodules);
- 4 for any *H*-invariant Lie subalgebra $L_0 \subseteq \mathfrak{gl}(L)$ such that L_0 is an *H*-module algebra and *L* is a completely reducible L_0 -module disregarding *H*-action, *L* is a completely reducible (*H*, L_0)-module.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

H-nice Lie algebras

Theorem

Let L be an H-nice Lie algebra over an algebraically closed field F of characteristic 0. Then there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}, d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let $L = L_1 \oplus \ldots \oplus L_s$ (direct sum of H-invariant ideals) be an H-module Lie algebra over an algebraically closed field F of characteristic 0 where H is a Hopf algebra. Suppose L_i are H-nice algebras. Then there exists $\operatorname{Plexp}^H(L) = \max_{1 \le i \le s} \operatorname{Plexp}^H(L_i)$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

H-nice Lie algebras

Theorem

Let L be an H-nice Lie algebra over an algebraically closed field F of characteristic 0. Then there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$, $d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let $L = L_1 \oplus \ldots \oplus L_s$ (direct sum of H-invariant ideals) be an H-module Lie algebra over an algebraically closed field F of characteristic 0 where H is a Hopf algebra. Suppose L_i are H-nice algebras. Then there exists $\operatorname{Plexp}^H(L) = \max_{1 \le i \le s} \operatorname{Plexp}^H(L_i)$.

(I) (II) (II) (II) (II) (III)
Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

H-nice Lie algebras

Theorem

Let L be an H-nice Lie algebra over an algebraically closed field F of characteristic 0. Then there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$, $d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let $L = L_1 \oplus ... \oplus L_s$ (direct sum of H-invariant ideals) be an H-module Lie algebra over an algebraically closed field F of characteristic 0 where H is a Hopf algebra. Suppose L_i are H-nice algebras. Then there exists $Plexp^H(L) = max_{1 \le i \le s} Plexp^H(L_i)$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

H-nice Lie algebras

Theorem

Let L be an H-nice Lie algebra over an algebraically closed field F of characteristic 0. Then there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$, $d \in \mathbb{N}$ such that $C_1 n^{r_1} d^n \leq c_n^H(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$.

Theorem

Let $L = L_1 \oplus \ldots \oplus L_s$ (direct sum of H-invariant ideals) be an H-module Lie algebra over an algebraically closed field F of characteristic 0 where H is a Hopf algebra. Suppose L_i are H-nice algebras. Then there exists $\operatorname{Plexp}^H(L) = \max_{1 \leq i \leq s} \operatorname{Plexp}^H(L_i)$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Formula for the Hopf PI-exponent of Lie algebras

Suppose *L* is an *H*-nice Lie algebra.

Consider *H*-invariant ideals $I_1, I_2, ..., I_r, J_1, J_2, ..., J_r, r \in \mathbb{Z}_+$, of the algebra *L* such that $J_k \subseteq I_k$, satisfying the conditions

1. I_k/J_k is an irreducible (H, L)-module;

(2) for any *H*-invariant *B*-submodules T_k such that $I_k = J_k \oplus T_k$, there exist numbers $q_i \ge 0$ such that

$$\left[[T_1, \underbrace{L, \ldots, L}_{q_1}], [T_2, \underbrace{L, \ldots, L}_{q_2}], \ldots, [T_r, \underbrace{L, \ldots, L}_{q_r}]\right] \neq 0.$$

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Formula for the Hopf PI-exponent of Lie algebras

Suppose *L* is an *H*-nice Lie algebra.

Consider *H*-invariant ideals $I_1, I_2, ..., I_r, J_1, J_2, ..., J_r, r \in \mathbb{Z}_+$, of the algebra *L* such that $J_k \subseteq I_k$, satisfying the conditions

• I_k/J_k is an irreducible (H, L)-module;

(2) for any *H*-invariant *B*-submodules T_k such that $I_k = J_k \oplus T_k$, there exist numbers $q_i \ge 0$ such that

$$\left[[T_1, \underbrace{L, \ldots, L}_{q_1}], [T_2, \underbrace{L, \ldots, L}_{q_2}], \ldots, [T_r, \underbrace{L, \ldots, L}_{q_r}]\right] \neq 0.$$

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Formula for the Hopf PI-exponent of Lie algebras

Suppose *L* is an *H*-nice Lie algebra.

Consider *H*-invariant ideals $I_1, I_2, ..., I_r, J_1, J_2, ..., J_r, r \in \mathbb{Z}_+$, of the algebra *L* such that $J_k \subseteq I_k$, satisfying the conditions

- I_k/J_k is an irreducible (H, L)-module;
- ② for any *H*-invariant *B*-submodules T_k such that $I_k = J_k \oplus T_k$, there exist numbers $q_i ≥ 0$ such that

$$\left[[T_1, \underbrace{L, \ldots, L}_{q_1}], [T_2, \underbrace{L, \ldots, L}_{q_2}], \ldots, [T_r, \underbrace{L, \ldots, L}_{q_r}]\right] \neq 0.$$

ヘロト 人間 ト ヘヨト ヘヨト

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Formula for the Hopf PI-exponent of Lie algebras

Let *M* be an *L*-module. Denote by Ann *M* its annihilator in *L*. Let

$$d(L) := \max\left(\dim \frac{L}{\operatorname{Ann}(I_1/J_1) \cap \cdots \cap \operatorname{Ann}(I_r/J_r)}\right)$$

where the maximum is found among all $r \in \mathbb{Z}_+$ and all I_1, \ldots, I_r , J_1, \ldots, J_r satisfying Conditions 1–2. Then that $\operatorname{Plexp}^H(L) = d(L)$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Formula for the Hopf PI-exponent of Lie algebras

Let *M* be an *L*-module. Denote by Ann *M* its annihilator in *L*. Let

$$d(L) := \max\left(\dim \frac{L}{\operatorname{Ann}(I_1/J_1) \cap \dots \cap \operatorname{Ann}(I_r/J_r)}\right)$$

where the maximum is found among all $r \in \mathbb{Z}_+$ and all l_1, \ldots, l_r , J_1, \ldots, J_r satisfying Conditions 1–2. Then that $\operatorname{Plexp}^H(L) = d(L)$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Formula for the Hopf PI-exponent of Lie algebras

Let *M* be an *L*-module. Denote by Ann *M* its annihilator in *L*. Let

$$d(L) := \max\left(\dim \frac{L}{\operatorname{Ann}(I_1/J_1) \cap \dots \cap \operatorname{Ann}(I_r/J_r)}\right)$$

where the maximum is found among all $r \in \mathbb{Z}_+$ and all I_1, \ldots, I_r , J_1, \ldots, J_r satisfying Conditions 1–2. Then that $\text{Plexp}^H(L) = d(L)$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Example

Example

Let $G = S_3$ and $L = \mathfrak{gl}_2(F) \oplus \mathfrak{gl}_2(F)$.Consider the following *G*-grading on *L*:

$$L^{(e)} = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \right\} \oplus \left\{ \begin{pmatrix} \gamma & 0 \\ 0 & \mu \end{pmatrix} \right\},$$
$$L^{((12))} = \left\{ \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} \right\} \oplus 0, \qquad L^{((23))} = 0 \oplus \left\{ \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} \right\},$$

the other components are zero. Then there exist $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$ such that

$C_1 n^{r_1} 3^n \leqslant c_n^{\text{gr}}(L) \leqslant C_2 n^{r_2} 3^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Example

Example

Let $G = S_3$ and $L = \mathfrak{gl}_2(F) \oplus \mathfrak{gl}_2(F)$.Consider the following *G*-grading on *L*:

$$L^{(e)} = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \right\} \oplus \left\{ \begin{pmatrix} \gamma & 0 \\ 0 & \mu \end{pmatrix} \right\},$$
$$L^{((12))} = \left\{ \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} \right\} \oplus 0, \qquad L^{((23))} = 0 \oplus \left\{ \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} \right\},$$

the other components are zero. Then there exist $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$ such that

$C_1 n^{r_1} 3^n \leqslant c_n^{\text{gr}}(L) \leqslant C_2 n^{r_2} 3^n$ for all $n \in \mathbb{N}$.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Example

Example

Let $G = S_3$ and $L = \mathfrak{gl}_2(F) \oplus \mathfrak{gl}_2(F)$.Consider the following *G*-grading on *L*:

$$L^{(e)} = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \right\} \oplus \left\{ \begin{pmatrix} \gamma & 0 \\ 0 & \mu \end{pmatrix} \right\},$$
$$L^{((12))} = \left\{ \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} \right\} \oplus 0, \qquad L^{((23))} = 0 \oplus \left\{ \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} \right\},$$

the other components are zero. Then there exist $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$ such that

$C_1 n^{r_1} 3^n \leqslant c_n^{\text{gr}}(L) \leqslant C_2 n^{r_2} 3^n$ for all $n \in \mathbb{N}$.

1 1

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Example

Example

Let $G = S_3$ and $L = \mathfrak{gl}_2(F) \oplus \mathfrak{gl}_2(F)$.Consider the following *G*-grading on *L*:

$$L^{(e)} = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \right\} \oplus \left\{ \begin{pmatrix} \gamma & 0 \\ 0 & \mu \end{pmatrix} \right\},$$
$$L^{((12))} = \left\{ \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} \right\} \oplus 0, \qquad L^{((23))} = 0 \oplus \left\{ \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} \right\},$$

the other components are zero. Then there exist $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$ such that

 $C_1 n^{r_1} 3^n \leqslant c_n^{\mathrm{gr}}(L) \leqslant C_2 n^{r_2} 3^n$ for all $n \in \mathbb{N}$.

< 口 > < 四 > < 三 > < 三 > < 三 >

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Example

Example

Let $m \in \mathbb{N}$, $G \subseteq S_m$ and O_i be the orbits of *G*-action on $\{1, 2, ..., m\} = \coprod_{i=1}^{s} O_i$. Denote $d := \max_{1 \le i \le s} |O_i|$. Let *L* be the Lie algebra over any field *F* of characteristic 0 with basis $a_1, ..., a_m, b_1, ..., b_m$, dim L = 2m, and multiplication defined by formulas $[a_i, a_j] = [b_i, b_j] = 0$ and

$$[a_i, b_j] = \begin{cases} b_j & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

$$C_1 n^{r_1} d^n \leqslant c_n^G(L) \leqslant C_2 n^{r_2} d^n.$$

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Example

Example

Let $m \in \mathbb{N}$, $G \subseteq S_m$ and O_i be the orbits of G-action on $\{1, 2, \ldots, m\} = \coprod_{i=1}^{s} O_i$. Denote $d := \max_{1 \le i \le s} |O_i|$. Let L be the Lie algebra over any field F of characteristic 0 with basis $a_1, \ldots, a_m, b_1, \ldots, b_m$, dim L = 2m, and multiplication defined by formulas $[a_i, a_j] = [b_i, b_j] = 0$ and

$$[a_i, b_j] = \begin{cases} b_j & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

$$C_1 n^{r_1} d^n \leqslant c_n^G(L) \leqslant C_2 n^{r_2} d^n.$$

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Example

Example

Let $m \in \mathbb{N}$, $G \subseteq S_m$ and O_i be the orbits of *G*-action on $\{1, 2, \ldots, m\} = \coprod_{i=1}^{s} O_i$. Denote $d := \max_{1 \leq i \leq s} |O_i|$. Let *L* be the Lie algebra over any field *F* of characteristic 0 with basis $a_1, \ldots, a_m, b_1, \ldots, b_m$, dim L = 2m, and multiplication defined by formulas $[a_i, a_j] = [b_i, b_j] = 0$ and

$$[a_i, b_j] = \begin{cases} b_j & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

$$C_1 n^{r_1} d^n \leqslant c_n^G(L) \leqslant C_2 n^{r_2} d^n.$$

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Example

Example

Let $m \in \mathbb{N}$, $G \subseteq S_m$ and O_i be the orbits of *G*-action on $\{1, 2, \ldots, m\} = \coprod_{i=1}^{s} O_i$. Denote $d := \max_{1 \leq i \leq s} |O_i|$. Let *L* be the Lie algebra over any field *F* of characteristic 0 with basis $a_1, \ldots, a_m, b_1, \ldots, b_m$, dim L = 2m, and multiplication defined by formulas $[a_i, a_j] = [b_i, b_j] = 0$ and

$$[a_i, b_j] = \begin{cases} b_j & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

$$C_1 n^{r_1} d^n \leqslant c_n^G(L) \leqslant C_2 n^{r_2} d^n.$$

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Example

Example

Let $m \in \mathbb{N}$, $G \subseteq S_m$ and O_i be the orbits of *G*-action on $\{1, 2, \ldots, m\} = \coprod_{i=1}^{s} O_i$. Denote $d := \max_{1 \leq i \leq s} |O_i|$. Let *L* be the Lie algebra over any field *F* of characteristic 0 with basis $a_1, \ldots, a_m, b_1, \ldots, b_m$, dim L = 2m, and multiplication defined by formulas $[a_i, a_j] = [b_i, b_j] = 0$ and

$$[a_i, b_j] = \begin{cases} b_j & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

$$C_1 n^{r_1} d^n \leqslant c_n^G(L) \leqslant C_2 n^{r_2} d^n.$$

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Example

In particular, if

$$G = \langle \tau \rangle \cong \mathbb{Z}_m = \mathbb{Z}/(m\mathbb{Z}) = \{\overline{0}, \overline{1}, \ldots, \overline{m-1}\}$$

where $\tau = (1 \, 2 \, 3 \, \dots \, m)$ (a cycle), then

$$C_1 n^{r_1} m^n \leqslant c_n^G(L) \leqslant C_2 n^{r_2} m^n.$$

However, $c_n(L) = n - 1$ for all $n \in \mathbb{N}$.

イロト 不得 とくほ とくほとう

ъ

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Example

In particular, if

$$G = \langle \tau \rangle \cong \mathbb{Z}_m = \mathbb{Z}/(m\mathbb{Z}) = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$$

where $\tau = (1 \, 2 \, 3 \, \dots \, m)$ (a cycle), then

$$C_1 n^{r_1} m^n \leqslant c_n^G(L) \leqslant C_2 n^{r_2} m^n.$$

However, $c_n(L) = n - 1$ for all $n \in \mathbb{N}$.

・ロト ・ ア・ ・ ヨト ・ ヨト

э

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Example

Example

Let $m \in \mathbb{N}$, $L = \bigoplus_{\bar{k} \in \mathbb{Z}_m} L^{(\bar{k})}$ be the \mathbb{Z}_m -graded Lie algebra with $L^{(\bar{k})} = \langle c_{\bar{k}}, d_{\bar{k}} \rangle_F$, dim $L^{(\bar{k})} = 2$, multiplication $[c_{\bar{\imath}}, c_{\bar{\jmath}}] = [d_{\bar{\imath}}, d_{\bar{\jmath}}] = 0$ and $[c_{\bar{\imath}}, d_{\bar{\jmath}}] = d_{\bar{\imath}+\bar{\jmath}}$ where F is any field of characteristic 0. Then there exist $C_1, C_2 > 0$ and $r_1, r_2 \in \mathbb{R}$ such that

 $C_1 n^{r_1} m^n \leqslant c_n^{\operatorname{gr}}(L) \leqslant C_2 n^{r_2} m^n.$

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Example

Example

Let $m \in \mathbb{N}$, $L = \bigoplus_{\bar{k} \in \mathbb{Z}_m} L^{(\bar{k})}$ be the \mathbb{Z}_m -graded Lie algebra with $L^{(\bar{k})} = \langle c_{\bar{k}}, d_{\bar{k}} \rangle_F$, dim $L^{(\bar{k})} = 2$, multiplication $[c_{\bar{\iota}}, c_{\bar{\jmath}}] = [d_{\bar{\iota}}, d_{\bar{\jmath}}] = 0$ and $[c_{\bar{\iota}}, d_{\bar{\jmath}}] = d_{\bar{\iota}+\bar{\jmath}}$ where F is any field of characteristic 0. Then there exist $C_1, C_2 > 0$ and $r_1, r_2 \in \mathbb{R}$ such that

$$C_1 n^{r_1} m^n \leqslant c_n^{\operatorname{gr}}(L) \leqslant C_2 n^{r_2} m^n.$$

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Theorem

Let L be an H-nice Lie algebra where H is a Hopf algebra over F. Then $\operatorname{Plexp}^{H}(L) = \dim L$ if and only if L is semisimple and H-simple.

Theorem

Let L be a finite dimensional Lie algebra over F graded by an arbitrary group. Then $Plexp^{gr}(L) = \dim L$ if and only if L is a graded simple algebra.

Definitions, examples, conjecture H-identities of associative algebras H-identities of Lie algebras Criteria for H-simplicity

Theorem

Let L be an H-nice Lie algebra where H is a Hopf algebra over F. Then $\operatorname{Plexp}^{H}(L) = \dim L$ if and only if L is semisimple and H-simple.

Theorem

Let L be a finite dimensional Lie algebra over F graded by an arbitrary group. Then $Plexp^{gr}(L) = \dim L$ if and only if L is a graded simple algebra.