Solutions for the AAC Competition Problems 2012

1. Let A be a square matrix of odd size. Prove that A is singular if and only
if it can be carried to —A by elementary operations of adding a multiple of one
row to another row.

Solution: The indicated elementary operations preserve the determinant, so a
nonsingular matrix A cannot be carried to —A since det(—A) = (—=1)"det(A) =
—det(A) # det(A), where n is the size of A.

Now assume that A is singular. Then Gaussian elimination allows us to carry
A to a matrix B that has a zero row at the bottom. Hence B = E,---E{A

where Fy, k = 1,...,s, are elementary matrices corresponding to adding a
multiple of one row to another row. It is easy to carry B to —B. Indeed, for
eachi=1,...,n—1, we can add row 7 to the last row, then subtract the double

of the new last row from row 4 and finally add the new row ¢ to the last row.
Thus —B = UB where U is the product of 3(n — 1) elementary matrices. It
remains to observe that —A = E!-.. E71(—B) and the matrices Elzl are also
elementary. Hence

~A=FE;'  E]'UE,---EA,

as required.

2. Let £ be a primitive complex n-th root of unity, n > 2. Determine the n-th
power of the following n x n matrix:

1 -1 0 0 0 ... 0 0
0 & -1 0 0 ... 0 0
0 0 & -1 0 ... 0 0
0 0 0 0 0 ez 1
-1 0 0 0 0 0 ¢t

Solution: Let us first compute the characteristic polynomial x(¢) of the given
matrix A:

-t -1 0 0 0 .. 0 0
0 §—t -1 0O 0 ... 0 0
2— —
() = det(A—t1y = | Y 0 &€—t -1 0 ... 0 0
o 0 0 0 0 ... ¢&2—¢ -1
-1 0 0 0 0 ... 0 ety




Using expansion down the last column, we obtain:

1—t -1 0 0 0 ... 0
0 &—t -1 0 0 ... 0
0 0 2t -1 0 ... 0
=] " ¢
0 0 0 0 0 ... -1
-1 0 0 0 0 ... 0
1—t -1 0 0 0 0
0 ¢&—t -1 0 0 0
_ 0 0 2_¢t -1 0 0
+(£n 1—t) 5
0 0 0 0 0 -1
0 0 0 0 0 2t
-1 0 0 0 . 0
E—t -1 0 0 . 0
="t o0 &-t -1 0 . 0
0 0 0 0 -1

FET (L —t)(E—t) - (€2 —1)
=(-1)" (=) ()" =)= &) (=€),

Since ¢ is a primitive n-th root of unity, the numbers 1,&,...,£" ! are precisely
all the n-th roots of unity, so we have

nan =t if n is odd,
X(H) = -1+ (=D)"(t" - 1) = { t" —2 if nis even.
Now recall that, by Cayley—Hamilton Theorem, x(A) = 0, which immediately
allows us to find A™.

Answer: A" =0 if n is odd and A" = 27 if n is even.

Remark. An alternative solution is to observe that A = X — Y where

1 00 ... 0 0 0 100 0
0 €0 ... 0 0 0 010 0

2
|0 0o oo 0 dy— |0 001 0
0 0 0 ... &2 0 000 ...1
0 0 0 ... 0 ¢t 1 000 ...0

One immediately verifies that Y X = £XY, hence we can apply the Quantum
Binomial Formula to compute:

n—1
n
A" = X*Yn:Xn+ ~1 anfkykr+ —1)"y™"
(xX-) >[4 (1)



where [Z] ¢ are the Gaussian binomial coefficients. Since £ is a primitive n-th

root of unity, all these coefficients vanish for £k = 1,...,n — 1. It remains to
observe that X" =Y" = 1.

3. Harry Potter and Voldemort are playing a game by filling the squares of a
chess board with integers as follows. First Voldemort fills the dark squares and
then Harry must fill the light squares so that the resulting 8 x 8 matrix has rank
r. For what values of r does Harry have a winning strategy?

Solution: It is easier to see what is going on if we permute the rows and columns
of the chessboard so it looks like

11
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where 0 stands for a light square and 1 for a dark square. Thus, during the
game, Voldemort replaces the 1’s by integers of his choice and Harry does the
same with the 0’s.

Now it is clear that, for r < 4, Harry does not have a winning strategy
because Voldemort can create a nonzero minor of size 4. Let us show that, for
any r > 4, Harry does have a winning strategy. For a given r > 4 and any
4 x 4 matrices A and B, Harry must find 4 x 4 matrices X and Y such that

rk[ é ); } = r. One solution is X = [ and Y = C 4+ BA where C is any

4 x 4 matrix of rank r — 4. Indeed,

We have used the fact that multiplication by a nonsingular matrix on the left
or on the right does not change the rank.

Answer: Harry has a winning strategy if and only if 4 <7 < 8.

4. Let f(z) be a polynomial function with complex coefficients. Prove that if f
maps the set of all complex roots of unity to itself, then f is a monomial.

Solution: Write f(z) = >, axz". For any root of unity ¢, the value f(£) is also

a root of unity, so f(£)f(€) = 1. We have f(&) = f(£) where f(z) = Y, apz"




is the conjugate polynomial. Also, & = ¢~ !. Consider the Laurent polynomial
g(2) = f(2)f(z71) — 1. By the above argument, all complex roots of unity are
roots of g(z). It follows that g(z) is identically zero. Hence f(z)f(z71) = 1.

For a Laurent polynomial h(z) = Z};:S cpz® with ¢ # 0 and ¢; # 0, let
HT(h) = ¢;2% (highest term) and LT(h) = cs2® (lowest term). Then we have
HT(h1hs) = HT(hy)HT(hs) and LT(h1hs) = LT(h1)LT(hs). Applying this to
the equation f(z)f(z7!) = 1, we conclude that HT(f) = LT(f), that is, f(2) is
a monomial.

5. Let p be a prime. For any integers ag, a1, ..., ap, prove that
Zail -ova;, =a} (mod p),
where the summation is over all 41, ...,%, > 0 such that iy +--- 44, = p.

Solution: It will be convenient to work in the field Z,, of integers modulo p. Let
t be an indeterminate and let f = Y% _, ayt® € Zy[t]. Then thesum Y a;, -~ a;,
equals the coefficient of t* in the polynomial fP. But we have (a + )P = aP + bP
in characteristic p, hence, by induction, f? = >7_, aztk”, so the coefficient of
tP equals af.

6. Let G be a finite simple group. Suppose G contains a subgroup of prime
index p. Prove that p is the largest prime divisor of |G| and, moreover, p* does
not divide |G].

Solution: Let H C G be a subgroup of index p and let X = G/H be the set of
left cosets of G with respect to H. Then G acts on X by left translations. Since
| X| = p, this action yields a homomorphism from G to S,, the symmetric group
on p symbols. Since the action of G on X is nontrivial (in fact, transitive), the
kernel of the homomorphism G — S, cannot be the entire G, hence it must be
trivial by simplicity. Therefore, G is isomorphic to a subgroup of S,,. Hence |G|
is a divisor of p!. The result follows.



