
Solutions for the AAC Competition Problems 2012

1. Let A be a square matrix of odd size. Prove that A is singular if and only
if it can be carried to −A by elementary operations of adding a multiple of one
row to another row.

Solution: The indicated elementary operations preserve the determinant, so a
nonsingular matrix A cannot be carried to −A since det(−A) = (−1)n det(A) =
−det(A) 6= det(A), where n is the size of A.

Now assume that A is singular. Then Gaussian elimination allows us to carry
A to a matrix B that has a zero row at the bottom. Hence B = Es · · ·E1A
where Ek, k = 1, . . . , s, are elementary matrices corresponding to adding a
multiple of one row to another row. It is easy to carry B to −B. Indeed, for
each i = 1, . . . , n−1, we can add row i to the last row, then subtract the double
of the new last row from row i and finally add the new row i to the last row.
Thus −B = UB where U is the product of 3(n − 1) elementary matrices. It
remains to observe that −A = E−1

1 · · ·E−1
s (−B) and the matrices E−1

k are also
elementary. Hence

−A = E−1
1 · · ·E−1

s UEs · · ·E1A,

as required.

2. Let ξ be a primitive complex n-th root of unity, n ≥ 2. Determine the n-th
power of the following n× n matrix:

1 −1 0 0 0 . . . 0 0
0 ξ −1 0 0 . . . 0 0
0 0 ξ2 −1 0 . . . 0 0
. . .
0 0 0 0 0 . . . ξn−2 −1
−1 0 0 0 0 . . . 0 ξn−1

 .

Solution: Let us first compute the characteristic polynomial χ(t) of the given
matrix A:

χ(t) = det(A− tI) =

∣∣∣∣∣∣∣∣∣∣∣∣

1− t −1 0 0 0 . . . 0 0
0 ξ − t −1 0 0 . . . 0 0
0 0 ξ2 − t −1 0 . . . 0 0
. . .
0 0 0 0 0 . . . ξn−2 − t −1
−1 0 0 0 0 . . . 0 ξn−1 − t

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Using expansion down the last column, we obtain:

χ(t) =

∣∣∣∣∣∣∣∣∣∣∣∣

1− t −1 0 0 0 . . . 0
0 ξ − t −1 0 0 . . . 0
0 0 ξ2 − t −1 0 . . . 0
. . .
0 0 0 0 0 . . . −1
−1 0 0 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣

+ (ξn−1 − t)

∣∣∣∣∣∣∣∣∣∣∣∣

1− t −1 0 0 0 . . . 0
0 ξ − t −1 0 0 . . . 0
0 0 ξ2 − t −1 0 . . . 0
. . .
0 0 0 0 0 . . . −1
0 0 0 0 0 . . . ξn−2 − t

∣∣∣∣∣∣∣∣∣∣∣∣

=(−1)n+1

∣∣∣∣∣∣∣∣∣∣
−1 0 0 0 . . . 0
ξ − t −1 0 0 . . . 0

0 ξ2 − t −1 0 . . . 0
. . .
0 0 0 0 . . . −1

∣∣∣∣∣∣∣∣∣∣
+ (ξn−1 − t)(1− t)(ξ − t) · · · (ξn−2 − t)

=(−1)n+1(−1)n−2 + (−1)n(t− 1)(t− ξ) · · · (t− ξn−1).

Since ξ is a primitive n-th root of unity, the numbers 1, ξ, . . . , ξn−1 are precisely
all the n-th roots of unity, so we have

χ(t) = −1 + (−1)n(tn − 1) =

{
−tn if n is odd,
tn − 2 if n is even.

Now recall that, by Cayley–Hamilton Theorem, χ(A) = 0, which immediately
allows us to find An.

Answer: An = 0 if n is odd and An = 2I if n is even.

Remark. An alternative solution is to observe that A = X − Y where

X =


1 0 0 . . . 0 0
0 ξ 0 . . . 0 0
0 0 ξ2 . . . 0 0
. . .
0 0 0 . . . ξn−2 0
0 0 0 . . . 0 ξn−1

 and Y =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
. . .
0 0 0 0 . . . 1
1 0 0 0 . . . 0

 .

One immediately verifies that Y X = ξXY , hence we can apply the Quantum
Binomial Formula to compute:

An = (X − Y )n = Xn +

n−1∑
k=1

[
n

k

]
ξ

(−1)kXn−kY k + (−1)nY n
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where
[
n
k

]
ξ

are the Gaussian binomial coefficients. Since ξ is a primitive n-th

root of unity, all these coefficients vanish for k = 1, . . . , n − 1. It remains to
observe that Xn = Y n = I.

3. Harry Potter and Voldemort are playing a game by filling the squares of a
chess board with integers as follows. First Voldemort fills the dark squares and
then Harry must fill the light squares so that the resulting 8×8 matrix has rank
r. For what values of r does Harry have a winning strategy?

Solution: It is easier to see what is going on if we permute the rows and columns
of the chessboard so it looks like

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1


,

where 0 stands for a light square and 1 for a dark square. Thus, during the
game, Voldemort replaces the 1’s by integers of his choice and Harry does the
same with the 0’s.

Now it is clear that, for r < 4, Harry does not have a winning strategy
because Voldemort can create a nonzero minor of size 4. Let us show that, for
any r ≥ 4, Harry does have a winning strategy. For a given r ≥ 4 and any
4 × 4 matrices A and B, Harry must find 4 × 4 matrices X and Y such that

rk

[
A X
Y B

]
= r. One solution is X = I and Y = C + BA where C is any

4× 4 matrix of rank r − 4. Indeed,

rk

[
A I

C +BA B

]
= rk

([
A I

C +BA B

] [
I 0
−A I

])
= rk

[
0 I
C B

]
= rk

([
I 0
−B I

] [
0 I
C B

])
= rk

[
0 I
C 0

]
= 4 + rkC

= r.

We have used the fact that multiplication by a nonsingular matrix on the left
or on the right does not change the rank.

Answer: Harry has a winning strategy if and only if 4 ≤ r ≤ 8.

4. Let f(z) be a polynomial function with complex coefficients. Prove that if f
maps the set of all complex roots of unity to itself, then f is a monomial.

Solution: Write f(z) =
∑
k akz

k. For any root of unity ξ, the value f(ξ) is also

a root of unity, so f(ξ)f(ξ) = 1. We have f(ξ) = f̄(ξ̄) where f̄(z) =
∑
k ākz

k
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is the conjugate polynomial. Also, ξ̄ = ξ−1. Consider the Laurent polynomial
g(z) = f(z)f̄(z−1)− 1. By the above argument, all complex roots of unity are
roots of g(z). It follows that g(z) is identically zero. Hence f(z)f̄(z−1) = 1.

For a Laurent polynomial h(z) =
∑t
k=s ckz

k with cs 6= 0 and ct 6= 0, let
HT(h) = ctz

t (highest term) and LT(h) = csz
s (lowest term). Then we have

HT(h1h2) = HT(h1)HT(h2) and LT(h1h2) = LT(h1)LT(h2). Applying this to
the equation f(z)f̄(z−1) = 1, we conclude that HT(f) = LT(f), that is, f(z) is
a monomial.

5. Let p be a prime. For any integers a0, a1, . . . , ap, prove that∑
ai1 · · · aip ≡ a

p
1 (mod p),

where the summation is over all i1, . . . , ip ≥ 0 such that i1 + · · ·+ ip = p.

Solution: It will be convenient to work in the field Zp of integers modulo p. Let
t be an indeterminate and let f =

∑p
k=0 akt

k ∈ Zp[t]. Then the sum
∑
ai1 · · · aip

equals the coefficient of tp in the polynomial fp. But we have (a+ b)p = ap + bp

in characteristic p, hence, by induction, fp =
∑p
k=0 a

p
kt
kp, so the coefficient of

tp equals ap1.

6. Let G be a finite simple group. Suppose G contains a subgroup of prime
index p. Prove that p is the largest prime divisor of |G| and, moreover, p2 does
not divide |G|.

Solution: Let H ⊂ G be a subgroup of index p and let X = G/H be the set of
left cosets of G with respect to H. Then G acts on X by left translations. Since
|X| = p, this action yields a homomorphism from G to Sp, the symmetric group
on p symbols. Since the action of G on X is nontrivial (in fact, transitive), the
kernel of the homomorphism G→ Sp cannot be the entire G, hence it must be
trivial by simplicity. Therefore, G is isomorphic to a subgroup of Sp. Hence |G|
is a divisor of p!. The result follows.
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