
Solutions for the AAC Competition Problems 2009

1. The sum 1
1

+ 1
2

+ · · ·+ 1
1200

is rewritten as a fraction m
n
. Prove that m is

divisible by 1201.

We pair up the terms of the sum as follows:

1200∑
k=1

1

k
=

600∑
k=1

(
1

k
+

1

1201− k

)
,

which yields m
n

=
∑600

k=1
1201

k(1201−k)
= 1201 · a

1200!
where a is an integer. Hence

m · 1200! is divisible by 1201. Since 1201 is a prime, it follows that m is
divisible by 1201.

2. A square matrix will be called magic if all row sums, column sums and
diagonal sums (i.e., for the main diagonal and for the secondary diagonal)
are equal to each other. Find the dimension of the space of all magic n× n
matrices.

Let K be the field that contains the entries of matrices in question. The
answer may depend on char K.

For an n × n matrix A = (aij)
n
i,j=1, consider the i-th row sum: ri(A) =∑n

j=1 aij, the j-th column sum: cj(A) =
∑n

i=1 aij, and the two diagonal
sums: d(A) =

∑n
i=1 aii (the main diagonal) and q(A) =

∑n
i=1 ai,n+1−i (the

secondary diagonal). Thus ri, cj, d and q are linear functionals on the space
Matn(K) of n × n matrices. Then the subspace M ⊂ Matn(K) of all magic
n× n matrices is determined by the equations:

r1(A)− q(A) = 0,
. . .

rn(A)− q(A) = 0,
c1(A)− q(A) = 0,

. . .
cn(A)− q(A) = 0,
d(A)− q(A) = 0.

Define the linear functionals r̃i = ri − q (i = 1, . . . , n), c̃j = cj − q (j =
1, . . . , n), and d̃ = d− q. Let S be the subspace of the dual space Matn(K)∗
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spanned by these functionals. Then the above system of equations says that
M = S⊥. Therefore, dimM = dim Matn(K) − dimS, so it suffices to find
dimS.

Note that the functionals r̃1, . . . , r̃n, c̃1, . . . , c̃n, d̃ are linearly dependent:
the obvious relation ∑

i

ri(A) =
∑
i,j

aij =
∑

j

cj(A)

implies
n∑

i=1

r̃i −
n∑

j=1

c̃j = 0. (1)

We will now explore all possible linear relations among the functionals r̃1, . . . , r̃n,
c̃1, . . . , c̃n, d̃.

Define εij(A) = aij. Then {εij | i, j = 1, . . . , n} is a basis for the space
Matn(K)∗, and we have

ri =
∑n

j=1 εij, cj =
∑n

i=1 εij,

d =
∑n

i=1 εii, q =
∑n

i=1 εn+1−i,i.

Now consider a linear relation
n∑

i=1

αir̃i +
n∑

j=1

βj c̃j + γd̃ = 0. (2)

Equivalently,
n∑

i=1

αiri +
n∑

j=1

βjcj + γd− δq = 0, (3)

where δ =
∑
αi +

∑
βj + γ.

Expanding the left-hand side of (3) and using the notation m = (n+1)/2
and

∆ = {(i, j) | i = j or i+ j = n+ 1},
we obtain ∑

(i,j)/∈∆

(αi + βj)εij

+
∑
i6=m

(αi + βi + γ)εii +
∑
i6=m

(αi + βn+1−i − δ)εi,n+1−i

+ (αm + βm + γ − δ)εm,m = 0,
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where the last term should be omitted if n is even. Since the elements ε1,j for
j = 2, . . . , n−1 appear in the first sum, it follows that β2 = · · · = βn−1 = −α1.
Similarly, we obtain β2 = · · · = βn−1 = −αn and α2 = · · · = αn−1 = −β1 =
−βn. Thus all α’s and β’s can be expressed through, say, α1 and α2.

If n > 4, then, say, ε2,3 appears in the first sum, so β3 = −α2, which
yields α1 = α2. We conclude that αi = α1 and βi = −α1 for all i, j. Looking
at ε1,1 in the second sum, we see that γ = 0. Therefore, relation (2) is a
scalar multiple of relation (1). Hence in this case dimS = (2n+ 1)− 1 = 2n
and dimM = n2 − 2n, regardless of char K.

If n = 4, then looking at ε1,1 and ε2,2 (in the second sum), we obtain
α1 + β1 = −γ = α2 + β2, which yields α1−α2 = α2−α1. If char K 6= 2, then
this implies α1 = α2 and hence relation (2) is a scalar multiple of relation
(1), as before. If char K = 2, then α1 and α2 remain independent. Since
γ = α1 − α2, we see that relation (2) is a linear combination of (1) and the
following relation:

r̃1 + r̃4 + c̃2 + c̃3 + d̃ = 0, (4)

which is obtained by setting α1 = 1 and α2 = 0. It is easy to verify that (4)
indeed holds if char K = 2. So in this case dimS = (2n + 1) − 2 = 2n − 1
and dimM = n2 − 2n+ 1 = 9.

If n = 3, then looking at ε1,1 and ε1,3, we obtain:

α1 − α2 + γ = α1 − α2 − δ = 0,

whence γ = −δ = α2 − α1. Now recall that δ =
∑
αi +

∑
βj + γ. It follows

that δ = α1 − α2 + γ = 0 and hence γ = 0 and α1 = α2. Therefore, relation
(2) is a scalar multiple of relation (1), and dimM = n2 − 2n = 3, regardless
of char K.

If n ≤ 2, it is easy to see that dimM = 1.

Answer: dimM = 1 if n = 1 or 2; dimM = 9 if n = 4 and char K = 2;
dimM = n2 − 2n in all other cases.

3. Let K be a field.

a) For any f, g ∈ K[x], prove that f(x)g(y)−f(y)g(x) ∈ K[x, y] is divisible
by x− y.

b) Define [f, g] = f(x)g(y)−f(y)g(x)
x−y

|x=y. Show that K[x] with operation [f, g]

is a Lie algebra, i.e., the antisymmetry identity [f, f ] = 0 and Jacobi
identity [[f, g], h] + [[g, h], f ] + [[h, f ], g] = 0 hold.
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c) Prove that if K has characteristic zero, then the Lie algebra L = K[x]
defined in (b) is simple, i.e., for any ideal I of L (a subspace I ⊂ L
with [L, I] ⊂ I), we have either I = 0 or I = L.

a) Denote {f, g} = f(x)g(y) − f(y)g(x). Clearly, this expression is linear
in f and in g, so we can expand: {

∑
i aix

i,
∑

j bjx
j} =

∑
i,j aibj{xi, xj}.

Therefore, it suffices to prove that {f, g} is divisible by x − y in the case
f = xi and g = xj. But then

{f, g} = xiyj − xjyi =


xiyi(yj−i − xj−i) if i < j;
0 if i = j;
xjyj(xi−j − yi−j) if i > j.

In all cases, the result is divisible by x− y.
Another way to see that {f, g} is divisible by x − y is to consider the

natural homomorphism π : K[x, y] → K[x, y]/(x − y). Since π(x) = π(y), it
follows that π(h(x)) = π(h(y)) for any polynomial h. Hence π({f, g}) = 0,
which means that {f, g} is divisible by x− y.

b) The antisymmetry identity [f, f ] = 0 is clear, because if g = f , then
f(x)g(y)− f(y)g(x) = 0. To prove Jacobi identity, we can use linearity in f ,
g and h. Hence it suffices to consider the case f = xi, g = xj and h = xk.
Then using the formula in part (a), we obtain:

f(x)g(y)− f(y)g(x)

x− y
=


−xiyi

∑j−i
k=1 x

k−1yj−i−k if i < j;
0 if i = j;

xjyj
∑i−j

k=1 x
k−1yi−j−k if i > j.

In all cases, substituting y = x yields (i− j)xi+j−1, so we obtain:

[xi, xj] = (i− j)xi+j−1.

Now we can verify Jacobi identity:

[[f, g], h] + [[g, h], f ] + [[h, f ], g]

= [(i− j)xi+j−1, xk] + [(j − k)xj+k−1, xi] + [(k − i)xk+i−1, xj]

=
(
(i− j)(i+ j − k − 1) + (j − k)(−i+ j + k − 1) + (k − i)(i− j + k − 1)

)
xi+j+k−2

=
(
(i+ j + k − 1)(i− j + j − k + k − i)− 2(i− j)k − 2(j − k)i− 2(k − i)j

)
xi+j+k−2

=
(
0− 2ik + 2jk − 2ij + 2ik − 2jk + 2ij

)
xi+j+k−2 = 0.
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It is useful to note that
[f, g] = f ′g − fg′ (5)

where f ′ denotes the derivative of f . Indeed, using linearity of both sides in
f and in g, it suffices to consider the case f = xi and g = xj. Then both
sides equal (i− j)xi+j−1.

Another way to obtain (5) is to use the following fact: over any com-
mutative ring R, for any polynomial ϕ(y) ∈ R[y] and any a ∈ R, we have
ϕ(y) = ϕ(a) + ϕ′(a)(y − a) + ψ(y)(y − a)2, where ψ(y) is a polynomial
depending on ϕ and a. It follows that ϕ(y) − ϕ(a) is divisible by y − a
in R[y], with the quotient equal to ϕ′(a) + ψ(y)(y − a). Now we regard
f(x)g(y)− f(y)g(x) as a polynomial in y with coefficients in R = K[x], and
take a = x. Since d

dy
(f(x)g(y) − f(y)g(x)) = f(x)g′(y) − f ′(y)g(x), we ob-

tain: f(x)g(y)−f(y)g(x)
y−x

= f(x)g′(x)−f ′(x)g(x)+ψ(y)(y−x) for some ψ ∈ R[y].

Substituting y = x yields: −[f, g] = f(x)g′(x)− f ′(x)g(x), as desired.
Using (5), Jacobi identity is easy to verify:

[[f, g], h] + [[g, h], f ] + [[h, f ], g]

= [f ′g − fg′, h] + [g′h− gh′, f ] + [h′f − hf ′, g]

= (f ′′g′ − fg′′)h− (f ′g − fg′)h′

+ (g′′h− gh′′)f − (g′h− gh′)f ′

+ (h′′f − hf ′′)g − (h′f − hf ′)g′

= 0.

c) Observe that (5) implies [f, 1] = f ′ for all f ∈ L. Suppose I ⊂ L is
a nonzero ideal. Pick a nonzero element f ∈ I. By our observation, all
derivatives of f are in I. Let n be the degree of f , so f = anx

n + · · · where
0 6= an ∈ K and the dots denote terms of lower degree. Then the n-th
derivative of f is f (n) = n!an, so n!an ∈ I. Since we assume char K = 0, it
follows that 1 ∈ I. Finally, for any g ∈ L there exists h ∈ L such that h′ = g
(here we again use the assumption char K = 0), so g = [h, 1] ∈ I. We have
proved that I = L.

4. A finite abelian group will be called balanced if the sum of its elements is
equal to zero. Which is greater: the number of balanced groups or unbalanced
groups of order ≤ 2009?
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If A is a finite abelian group, we let A2 = {a ∈ A | 2a = 0}. Since an element
plus its inverse equals 0, we see that

A is balanced ⇐⇒ A2 is balanced.

Now A2
∼= C2 ⊕ · · · ⊕ C2 where C2 denotes the cyclic group of order 2. If

the number of summands is n > 1, then A2 is balanced. This can be shown
by induction on n, with basis n = 2. Assuming the result for n = k ≥ 2, we
have for n = k+ 1 that A2

∼= 〈x〉⊕B where B is balanced. Then the sum of
the elements of A2 is equal to |B|x, which is zero since |B| is even. Clearly,
C2 is unbalanced. We have shown the following:

A is unbalanced ⇐⇒ A2
∼= C2.

Using the Fundamental Theorem on finite abelian groups, this can be restated
as follows:

A is unbalanced ⇐⇒ A ∼= C2m ⊕B where m ≥ 1 and |B| is odd.

Let U , resp. B, be the set of (isomorphism classes of) unbalanced, resp.
balanced, abelian groups of order ≤ 2009. Define a map α : U → B by

α(C2m ⊕B) =

{
B if m = 1;
C2 ⊕ C2m−1 ⊕B if m > 1.

The Fundamental Theorem on finite abelian groups implies that α is injec-
tive. However, α is not surjective, since, for example, the cyclic group of
order 1005 is not in α(U). We conclude that there are more balanced groups
than unbalanced.

5.

a) Help Professor A. B. Normal to prove the following important result:
Theorem 3. If a finite group contains exactly 3 non-normal subgroups,
then its order is divisible by 3.

b) Can one replace the 3’s in this theorem by 4’s?

c) The groups S3 and D4 have, respectively, 3 and 4 non-normal sub-
groups. Does there exist a finite group with exactly 2 non-normal
subgroups?
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a) Assume a finite group G contains a non-normal subgroup H. This means
that H has a conjugate, gHg−1 6= H, which is also non-normal. It follows
that if G contains exactly 3 non-normal subgroups, then they must all be
conjugates of each other. Hence [G : NG(H)] = 3, and the result follows.

b) Yes. If the 4 non-normal subgroups are conjugate to each other and
H is one of them, then [G : NG(H)] = 4 and we are done. So assume
that the 4 non-normal subgroups are not all conjugate. Then they fall into
two conjugacy classes: H1 with its conjugate H̃1 and H2 with its conjugate
H̃2. Note that the normalizers of these 4 groups have index 2. Since the
intersection of two distinct subgroups of index 2 is a subgroup of index 4, we
may assume without loss of generality that NG(H1) = NG(H̃1) = NG(H2) =
NG(H̃2). Denote this subgroup by N . If |N | is even, we are done. Assume
that |N | is odd. Pick an element x /∈ N . Since [G : N ] = 2, the element
x has even order. Then some power of x has order 2. So let x ∈ G be an
element of order 2. It follows that x /∈ N . The cyclic group 〈x〉 cannot be
one of the 4 non-normal subgroups of G (they are all contained in N), so 〈x〉
is normal. It follows that x is a central element and hence normalizes H1,
i.e., x ∈ N . This is a contradiction, which shows that |N | cannot be odd.

c) We will construct a group G of order 16 that has exactly 2 non-normal
subgroups. Let H be a cyclic group of order 8 and let σ be a generator of
H. Let G be the semidirect product H o 〈x〉 where x has order 2 and acts
on H by sending σ to σ5. (Note that 52 ≡ 1 mod 8, so this is a well-defined
action of 〈x〉 by automorphisms of H.) In other words,

G = 〈σ, x | σ8 = 1, x2 = 1, xσx−1 = σ5〉.

Every element of G can be written uniquely in the form σixj where 0 ≤
i < 8 and 0 ≤ j < 2. Let y = σ4x. Then y = σxσ−1, so 〈x〉 and 〈y〉 are
two conjugate (non-normal) subgroups of G. We will show that all other
subgroups are normal.

Since H is normal in G and contains a unique subgroup of each order
dividing 8, all subgroups of H are normal in G. One checks that the cyclic
subgroups 〈σix〉 are normal for i 6= 0, 4. We have proved that all cyclic
subgroups except 〈x〉 and 〈y〉 are normal. Since any subgroup of index 2 is
normal, the only remaining possibility for a non-normal subgroup of G is to
be isomorphic to C2 × C2. But the only elements of order 2 in G are x, y
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and σ4. Hence G has a unique subgroup isomorphic to C2 × C2, and this
subgroup is normal.

6. Show that for real matrices A the following implication holds:

A2008 = AT =⇒ A2010 = A.

Since A is real, the Hermitian adjoint is equal to the transpose: A∗ = AT .
It follows that AA∗ = A2009 = A∗A, so A is normal. By Spectral Theorem,
A is unitarily diagonalizable, i.e., there exists a unitary matrix U such that
U−1AU = D where D = diag(λ1, . . . , λn) and λ1, . . . , λn are the eigenval-
ues of A (repeated according to multiplicity). Now it suffices to show that
D2010 = D, i.e., that every eigenvalue of A satisfies the equation

λ2010 = λ. (6)

Since U−1 = U∗, we have U−1A∗U = D∗ (i.e., A and A∗ are diagonalized
with respect to the same basis). Therefore, A2008 = AT implies D2008 = D∗,
which in its turn yields

λ2008 = λ̄. (7)

Since A20082
= (AT )T = A, we see that for any eigenvalue λ of A, either

λ = 0 or |λ| = 1. In either case, λ2λ̄ = λ. Equation (6) now follows from (7).

8


