Solutions for the AAC Competition Problems 2009

1. The sum 1 + 3 +--- +
divisible by 1201.

—12100 is rewritten as a fraction “*. Prove that m is

We pair up the terms of the sum as follows:

1200 600

1 1 1
=3 (=)
k=1 k=1
which yields = = 2(1)1 % = 1201 - ;555; where a is an integer. Hence

m - 1200! is divisible by 1201. Since 1201 is a prime, it follows that m is
divisible by 1201.

2. A square matrix will be called magic if all row sums, column sums and
diagonal sums (i.e., for the main diagonal and for the secondary diagonal)
are equal to each other. Find the dimension of the space of all magic n x n
matrices.

Let K be the field that contains the entries of matrices in question. The
answer may depend on char K.

For an n x n matrix A = (a;)';-,, consider the i-th row sum: r;(A) =
> iy @ij, the j-th column sum: c¢;(A) = 37", a;, and the two diagonal
sums: d(A) = Y7 a; (the main diagonal) and ¢(A) = > " | @iny1-; (the
secondary diagonal). Thus r;, ¢;, d and ¢ are linear functionals on the space
Mat,, (K) of n x n matrices. Then the subspace M C Mat, (K) of all magic

n X n matrices is determined by the equations:

7‘1(14) - Q(A) = 0,
ra(A) = q(A) = 0,
q ca(A)—q(A) = 0,

ea(A) — g(A) = 0,
d(A) — g(A) = 0.

\

Define the linear functionals 7; = 7, —q (i = 1,...,n), & = ¢; —q (j =
1,...,n), and d = d — q. Let S be the subspace of the dual space Mat,, (K)*

1



spanned by these functionals. Then the above system of equations says that
M = S8+, Therefore, dim M = dim Mat,,(K) — dim S, so it suffices to find
dim S.

Note that the functionals 71, ...,7,, C1,...,Cn, d are linearly dependent:

the obvious relation
DorA) =) ay = ¢(A)
,J J

(2

implies
n n
d o=y =0 (1)
i=1 j=1
We will now explore all possible linear relations among the functionals 7, . . ., 7,
Cly...,Cp, d.

Define €;;(A) = a;;. Then {e;; | 7,7 = 1,...,n} is a basis for the space
Mat,, (K)*, and we have

n n
Ti =i €y G = Do iy

n n
d= Zizl €i, (4= Zizl €nt1—iyi-

Now consider a linear relation

i=1 j=1
Equivalently,
Z ;T + Z Bic; +yd — g = 0, (3)
i=1 j=1

where 6 =Y a; + Y. 3 + 7.
Expanding the left-hand side of (3) and using the notation m = (n+1)/2
and

A=A{(,j)li=joritj=n+1},

we obtain

Z (a; + B)es;

(i,5)¢A
+ Z(O@ + B+ 7)€ + Z(Oéi + Bpt1—i — 0)€imt1—i

+ (am—l—ﬂm—l—/y_é)em,m - 07
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where the last term should be omitted if n is even. Since the elements ¢, ; for
j =2,...,n—1appear in the first sum, it follows that gy = --- = 3,1 = —a.
Similarly, we obtain o = --- =3, 1 = —a,and as = - =, 1 = —( =
—0,. Thus all a’s and 3’s can be expressed through, say, a; and «s.

If n > 4, then, say, €33 appears in the first sum, so 3 = —a9, which
yields a3 = ay. We conclude that a; = o1 and 3; = —a; for all ¢, 5. Looking
at €11 in the second sum, we see that v = 0. Therefore, relation (2) is a
scalar multiple of relation (1). Hence in this case dimnS = (2n+1) — 1 =2n
and dim M = n? — 2n, regardless of char K.

If n = 4, then looking at € ; and €y (in the second sum), we obtain
a1+ 81 = —v = ag + (B2, which yields a; — as = ap — . If char K # 2, then
this implies or; = ap and hence relation (2) is a scalar multiple of relation
(1), as before. If charK = 2, then «; and ay remain independent. Since
7 = a; — az, we see that relation (2) is a linear combination of (1) and the
following relation: .

T1+ T4+ C+cE3+d=0, (4

)
which is obtained by setting oy = 1 and ay = 0. It is easy to verify that (4)
indeed holds if char K = 2. So in this case dimS = 2n+1) —2 =2n —1
and dimM =n? —2n+1=09.
If n = 3, then looking at €;; and ¢; 3, we obtain:

041—0624—’7:@1—0[2—(5:0,

whence 7 = —0 = ag — a;. Now recall that 6 = > a; + > 5; + . It follows
that 0 = a3 — as +v = 0 and hence v = 0 and «; = ay. Therefore, relation
(2) is a scalar multiple of relation (1), and dim M = n? — 2n = 3, regardless
of char K.

If n <2, it is easy to see that dim M = 1.

Answer: dimM =1ifn=1or 2; dimM =9 if n =4 and charK = 2;
dim M = n? — 2n in all other cases.

3. Let K be a field.

a) For any f, g € K[z], prove that f(x)g(y)—f(y)g(x) € Kz, y] is divisible
by x —y.

b) Define [f, g] = %ﬂy)g(m)hzy. Show that K|[x] with operation [f, g]
is a Lie algebra, i.e., the antisymmetry identity [f, f] = 0 and Jacobi

identity [[f,g], h] + [lg, hl, f] + [[h, f], 9] = 0 hold.
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c¢) Prove that if K has characteristic zero, then the Lie algebra L = K][z]
defined in (b) is simple, i.e., for any ideal I of L (a subspace I C L
with [L, I] C I), we have either I =0 or I = L.

a) Denote {f,g} = f(x)g(y) — f(y)g(x). Clearly, this expression is linear
in f and in g, so we can expand: {} a;z’, > b’} = 37, caibi{a’, 2’}
Therefore, it suffices to prove that {f, g} is divisible by  — y in the case
f=2a"and g = 27. But then

Py - i<
{f.g}=a"y) =2y’ =1 0 if Q= j;
piyd (2 — ) i >

In all cases, the result is divisible by x — y.

Another way to see that {f, g} is divisible by  — y is to consider the
natural homomorphism 7 : K[z, y] — K[z, y]/(x — y). Since 7(z) = w(y), it
follows that 7(h(x)) = m(h(y)) for any polynomial h. Hence w({f,g}) = 0,
which means that {f, ¢} is divisible by x — y

b) The antisymmetry identity [f, f] = 0 is clear, because if g = f, then
f(@)g(y) — f(y)g(x) = 0. To prove Jacobi identity, we can use linearity in f,
g and h. Hence it suffices to consider the case f = 2%, ¢ = 2/ and h = z*.

Then using the formula in part (a), we obtain:

—xty b lyd =ik i < g

@) — fgle) [ ~HV Time T i i<y
= 0 if i=y;

Ty wlyd S ah ik i >

In all cases, substituting y = x yields (i — j)x"™7 =1, so we obtain:
(', 27) = (i = j)z" 7
Now we can verify Jacobi identity:

(£, 91,1+ [[g. 1), 1 + [[h, £1.)
(= )2 4 [ = B ]+ [ — ) o

(z—i—]—i—k—l)(z—]—l—]—k—i—k—z)—2(@—])k—2(j_k)z_2(k )j) i+j+k—2
= (0 — 2ik + 25k — 2ij + 2ik — 2jk + 2ij)x Hitk=2 ),
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It is useful to note that
[f.9l=fg9—fd (5)
where f’ denotes the derivative of f. Indeed, using linearity of both sides in
f and in g, it suffices to consider the case f = 2' and g = 2/. Then both
sides equal (i — j)z"H1
Another way to obtain (5) is to use the following fact: over any com-
mutative ring R, for any polynomial ¢(y) € R[y] and any a € R, we have
ey) = ¢(a) + ¢'(a)(y — a) + ¥(y)(y — a)?, where 9(y) is a polynomial
depending on ¢ and a. It follows that ¢(y) — ¢(a) is divisible by y — a
in R[y], with the quotient equal to ¢'(a) + ¥ (y)(y — a). Now we regard
f(@)g(y) — f(y)g(x) as a polynomial in y with coefficients in R = K[z], and

take a = z. Since (f(2)g(y) — f(y)g9(x)) = f(2)d'(y) — f'(y)g(x), we ob-

tain: ARSI — f(2)g'(x) - f'(x)g(x) +1(y)(y — ) for some ¢ € R[y).

Substituting y = x yields: —[f, g] = f(x)g' () — f'(x)g(z), as desired.
Using (5), Jacobi identity is easy to verify:

[[f, 9], h] + [lg; hl, £1 + [[R, ], 9]

=[f'g—fd W +I[gh—gh', fl+[Nf—Nfg]
— (f//g/_fg”)h_ (f/g_fg/)h/

+(g"h —gh") f — (g'h — gh") f'

+ (W' f =nhf")g— (W' f—=hf)d

0.

c) Observe that (5) implies [f,1] = f’ for all f € L. Suppose I C L is
a nonzero ideal. Pick a nonzero element f € I. By our observation, all
derivatives of f are in I. Let n be the degree of f, so f = a,z" + --- where
0 # a, € K and the dots denote terms of lower degree. Then the n-th
derivative of f is f™ = nla,, so nla, € I. Since we assume char K = 0, it
follows that 1 € I. Finally, for any g € L there exists h € L such that b’ = ¢
(here we again use the assumption charK = 0), so g = [h, 1] € I. We have
proved that [ = L.

4. A finite abelian group will be called balanced if the sum of its elements is
equal to zero. Which is greater: the number of balanced groups or unbalanced
groups of order < 20097



If A is a finite abelian group, we let A; = {a € A | 2a = 0}. Since an element
plus its inverse equals 0, we see that

A is balanced <= A, is balanced.

Now Ay =2 Cy @ - -+ @ Cy where Cy denotes the cyclic group of order 2. If
the number of summands is n > 1, then A, is balanced. This can be shown
by induction on n, with basis n = 2. Assuming the result for n = k > 2, we
have for n = k + 1 that Ay = (z) ® B where B is balanced. Then the sum of
the elements of A, is equal to |B|z, which is zero since |B| is even. Clearly,
(5 is unbalanced. We have shown the following:

A is unbalanced <= A, = (.

Using the Fundamental Theorem on finite abelian groups, this can be restated
as follows:

A is unbalanced <= A = Cym @ B where m > 1 and |B| is odd.

Let U, resp. B, be the set of (isomorphism classes of) unbalanced, resp.
balanced, abelian groups of order < 2009. Define a map o : U4 — B by

B if m=1,;

Oé(CQm D B) = { 02 D 02""71 & B if m > 1.

The Fundamental Theorem on finite abelian groups implies that « is injec-
tive. However, « is not surjective, since, for example, the cyclic group of
order 1005 is not in a(U). We conclude that there are more balanced groups
than unbalanced.

5.

a) Help Professor A. B. Normal to prove the following important result:
Theorem 3. If a finite group contains exactly 3 non-normal subgroups,
then its order is divisible by 3.

b) Can one replace the 3’s in this theorem by 4’s?

¢) The groups S3 and D, have, respectively, 3 and 4 non-normal sub-
groups. Does there exist a finite group with exactly 2 non-normal
subgroups?



a) Assume a finite group G contains a non-normal subgroup H. This means
that H has a conjugate, gHg~! # H, which is also non-normal. It follows
that if G contains exactly 3 non-normal subgroups, then they must all be
conjugates of each other. Hence [G : Ng(H)| = 3, and the result follows.

b) Yes. If the 4 non-normal subgroups are conjugate to each other and
H is one of them, then [G : Ng(H)] = 4 and we are done. So assume
that the 4 non-normal subgroups are not all conjugate. Then they fall into
two conjugacy classes: H; with its conjugate H, and H, with its conjugate
H,. Note that the normalizers of these 4 groups have index 2. Since the
intersection of two distinct subgroups of index 2 is a subgroup of index 4, we
may assume without loss of generality that Ng(H;) = Ng(H,) = Ng(Hs) =
N¢(H,). Denote this subgroup by N. If |N| is even, we are done. Assume
that |V| is odd. Pick an element z ¢ N. Since [G : N] = 2, the element
x has even order. Then some power of x has order 2. So let x € G be an
element of order 2. It follows that © ¢ N. The cyclic group (z) cannot be
one of the 4 non-normal subgroups of G (they are all contained in N), so (z)
is normal. It follows that z is a central element and hence normalizes Hi,
i.e., z € N. This is a contradiction, which shows that |N| cannot be odd.

c) We will construct a group G of order 16 that has exactly 2 non-normal
subgroups. Let H be a cyclic group of order 8 and let o be a generator of
H. Let G be the semidirect product H x (z) where x has order 2 and acts
on H by sending o to ¢°. (Note that 52 = 1 mod 8, so this is a well-defined
action of (z) by automorphisms of H.) In other words,

G={ox|o®=12"=1200"" =0°.

Every element of G can be written uniquely in the form o'z’ where 0 <
i<8and 0 < j <2 Lety=oc' Theny = cxo !, so (z) and (y) are
two conjugate (non-normal) subgroups of G. We will show that all other
subgroups are normal.

Since H is normal in G and contains a unique subgroup of each order
dividing 8, all subgroups of H are normal in G. One checks that the cyclic
subgroups (c‘r) are normal for i # 0,4. We have proved that all cyclic
subgroups except (x) and (y) are normal. Since any subgroup of index 2 is
normal, the only remaining possibility for a non-normal subgroup of G is to
be isomorphic to Cy x (5. But the only elements of order 2 in G are z, y



and o*. Hence G has a unique subgroup isomorphic to Cy x Cy, and this
subgroup is normal.

6. Show that for real matrices A the following implication holds:

AQOOS — AT S A2010 — A

Since A is real, the Hermitian adjoint is equal to the transpose: A* = AT,
It follows that AA* = A2 = A*A so A is normal. By Spectral Theorem,
A is unitarily diagonalizable, i.e., there exists a unitary matrix U such that
U'AU = D where D = diag(A1,...,\,) and Ay,..., )\, are the eigenval-
ues of A (repeated according to multiplicity). Now it suffices to show that
D20 = D ie., that every eigenvalue of A satisfies the equation

DY (6)

Since U™ = U*, we have U 'A*U = D* (i.e., A and A* are diagonalized
with respect to the same basis). Therefore, A% = AT implies D*%® = D*
which in its turn yields

M\2008 — ) (7)

Since A28 = (AT)T = A, we see that for any eigenvalue A of A, either
A= 0or |\| = 1. In either case, A*A = \. Equation (6) now follows from (7).



