Surface braids and mapping class group IV Surface braids vs knot theory in 3-manifolds

Paolo Bellingeri

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

Atlantic Algebra Centre

P. Bellingeri (LMNO - Caen)

Braids and knots

Closure(s) of classical braids :

Alexander closure :

From Alexander to plat closure.

- Markov Theorem : characterization braids having isotopic Alexander closure;
- Hilden Birman Theorem : characterization braids having isotopic plat closure.

P. Bellingeri (LMNO - Caen)

From braids to surface braids

Alexander and plat closure give rise to two different notions of closures for surface braids as links in generic 3-manifolds.

- Alexander closure corresponds to relate surface braids on surfaces with boundary to links in closed 3 manifolds via open book decomposition. There exist analogous of Alexander and Markov Theorems (Skora 1992, Sundheim 1993). Similar theorems relating surface braids on a closed surface Σ_g to links in Σ_g × S¹ have been proved using Birman exact sequence (Grant-Sienicka 2019).
- Plat closure can be generalized to a relation between braids on closed surfaces and links in 3-manifolds via *Heegard splitting* (B-Cattabriga 2012).

A third approach to relate surface braids and links in 3-manifolds is through mixed braids (Lambropoulou, Lambropolou-Holdenburg, Diamantis-Lambropolou-Przytycki...)

P. Bellingeri (LMNO - Caen)

An application to knot theory : Hilden groups

Let H_g be an oriented handlebody of genus $g \ge 0$ ($\Sigma_g := \partial H_g$).

Trivial system of *n* **arcs** : $A_n = \{A_1, ..., A_n\}$ set of disjoint unknotted arcs properly embedded in H_g with endpoints in $\Sigma_g := \partial H_g$.

An application to knot theory : Hilden groups Let H_g be an oriented handlebody of genus $g \ge 0$ ($\Sigma_g := \partial H_g$).

Trivial system of *n* **arcs** : $A_n = \{A_1, ..., A_n\}$ set of disjoint unknotted arcs properly embedded in H_g with endpoints in $\Sigma_g := \partial H_g$.

A trivial system of *n* arcs can be seen as a trivial *n*-bottom tangle in Σ_g × *I*.

P. Bellingeri (LMNO – Caen)

Hilden groups of genus g

Extending homeomorphisms from Σ_g to H_g :

$$\begin{split} \mathcal{E}_{g,n} &:= \{ \phi \in \mathcal{M}_{2n}(\Sigma_g) \, | \, \phi \text{ extends to } \tilde{\phi} : \mathsf{H}_g \to \mathsf{H}_g \text{ s.t. } \tilde{\phi}(\mathcal{A}_n) = \mathcal{A}_n \, \} \\ \mathcal{E}_g &:= \{ \phi \in \mathcal{M}(\Sigma_g) \, | \, \phi \text{ extends to } \tilde{\phi} : \mathsf{H}_g \to \mathsf{H}_g \, \} \end{split}$$

The forgetting map ψ_{g,2n} : M_{2n}(Σ_g) → M(Σ_g) restricts to ψ'_{g,n} : E_{g,n} → E_g.

Hilden groups of genus g

Extending homeomorphisms from Σ_g to H_g : $\mathcal{E}_{g,n} := \{ \phi \in \mathcal{M}_{2n}(\Sigma_g) \mid \phi \text{ extends to } \tilde{\phi} : H_g \to H_g \text{ s.t. } \tilde{\phi}(\mathcal{A}_n) = \mathcal{A}_n \}$ $\mathcal{E}_g := \{ \phi \in \mathcal{M}(\Sigma_g) \mid \phi \text{ extends to } \tilde{\phi} : H_g \to H_g \}$

The forgetting map ψ_{g,2n} : M_{2n}(Σ_g) → M(Σ_g) restricts to ψ'_{g,n} : E_{g,n} → E_g.

Definition (B.-Cattabriga). *n*th Hilden group of Σ_g : $Hil_n(\Sigma_g) := ker\psi'_{g,n}$

Hilden groups of genus g

Extending homeomorphisms from Σ_g to H_g :

 $\begin{aligned} \mathcal{E}_{g,n} &:= \{ \phi \in \mathcal{M}_{2n}(\Sigma_g) \, | \, \phi \text{ extends to } \tilde{\phi} : \mathsf{H}_g \to \mathsf{H}_g \text{ s.t. } \tilde{\phi}(\mathcal{A}_n) = \mathcal{A}_n \, \} \\ \mathcal{E}_g &:= \{ \phi \in \mathcal{M}(\Sigma_g) \, | \, \phi \text{ extends to } \tilde{\phi} : \mathsf{H}_g \to \mathsf{H}_g \, \} \end{aligned}$

The forgetting map ψ_{g,2n} : M_{2n}(Σ_g) → M(Σ_g) restricts to ψ'_{g,n} : E_{g,n} → E_g.

Definition (B.-Cattabriga). *n*th Hilden group of Σ_g : $Hil_n(\Sigma_g) := ker\psi'_{g,n}$

Remark. $Hil_n(\Sigma_g)$ is related to links in closed manifolds via Heegard splitting (extension of plate closures of links in S^3 to (g, n)-decompositions of links in closed manifolds)

$$\begin{split} & \ker \psi_{g,n} \simeq B_n(\Sigma_g) \text{ if } g > 1 \text{ ;} \\ & \ker \psi_{g,n} \simeq B_n(\Sigma_g) / ZB_n(\Sigma_g) \text{ if } \Sigma_g = \mathbb{S}^2 \text{ or } \mathbb{T}^2 \text{ ,} \\ & \text{where } \psi_{g,n} : \mathcal{M}_n(\Sigma_g) \to \mathcal{M}(\Sigma_g) \text{ is the forgetting map.} \\ & \text{Hil}_n(\Sigma_g) := \{ \phi \in \frac{B_{2n}(\Sigma_g)}{ZB_{2n}(\Sigma_g)} \, | \, \phi \text{ extends to } \tilde{\phi} : \mathsf{H}_g \to \mathsf{H}_g \text{ s.t. } \tilde{\phi}(\mathcal{A}_n) = \mathcal{A}_n \, \} \end{split}$$

- ▶ Hilden (1976) : Finite set of generators for $Hil_n(S^2)$.
- ► Tawn (2008) Brendle-Hatcher (2011) : Finite type group presentation for *Hil*_n(*S*²).

Proposition (B.-Cattabriga) Let g > 0. The framed braid group $FB_n(\Sigma_g)$ embeds into $Hil_n(\Sigma_g)$.

P. Bellingeri (LMNO - Caen)

$$\begin{split} & \ker \psi_{g,n} \simeq B_n(\Sigma_g) \text{ if } g > 1 \text{ ;} \\ & \ker \psi_{g,n} \simeq B_n(\Sigma_g) / Z B_n(\Sigma_g) \text{ if } \Sigma_g = \mathbb{S}^2 \text{ or } \mathbb{T}^2 \text{ ,} \\ & \text{where } \psi_{g,n} : \mathcal{M}_n(\Sigma_g) \to \mathcal{M}(\Sigma_g) \text{ is the forgetting map.} \\ & \text{\it Hil}_n(\Sigma_g) := \{ \phi \in \frac{B_{2n}(\Sigma_g)}{Z B_{2n}(\Sigma_g)} \, | \, \phi \text{ extends to } \tilde{\phi} : \mathsf{H}_g \to \mathsf{H}_g \text{ s.t. } \tilde{\phi}(\mathcal{A}_n) = \mathcal{A}_n \, \} \end{split}$$

▶ Hilden (1976) : Finite set of generators for $Hil_n(S^2)$.

► Tawn (2008) Brendle-Hatcher (2011) : Finite type group presentation for *Hil*_n(*S*²).

Proposition (B.-Cattabriga) Let g > 0. The framed braid group $FB_n(\Sigma_g)$ embeds into $Hil_n(\Sigma_g)$.

$$\begin{split} & \ker \psi_{g,n} \simeq B_n(\Sigma_g) \text{ if } g > 1 \text{ ;} \\ & \ker \psi_{g,n} \simeq B_n(\Sigma_g) / Z B_n(\Sigma_g) \text{ if } \Sigma_g = \mathbb{S}^2 \text{ or } \mathbb{T}^2 \text{ ,} \\ & \text{where } \psi_{g,n} : \mathcal{M}_n(\Sigma_g) \to \mathcal{M}(\Sigma_g) \text{ is the forgetting map.} \\ & \text{Hil}_n(\Sigma_g) := \{ \phi \in \frac{B_{2n}(\Sigma_g)}{Z B_{2n}(\Sigma_g)} \, | \, \phi \text{ extends to } \tilde{\phi} : \mathsf{H}_g \to \mathsf{H}_g \text{ s.t. } \tilde{\phi}(\mathcal{A}_n) = \mathcal{A}_n \, \} \end{split}$$

- Hilden (1976) : Finite set of generators for $Hil_n(S^2)$.
- ► Tawn (2008) Brendle-Hatcher (2011) : Finite type group presentation for *Hil_n(S²*).

Proposition (B.-Cattabriga) Let g > 0. The framed braid group $FB_n(\Sigma_g)$ embeds into $Hil_n(\Sigma_g)$.

• a set of generators of $FB_n(\Sigma_g)$.

- a set of generators of $FB_n(\Sigma_g)$.
- Admissible meridian slides;

- a set of generators of $FB_n(\Sigma_g)$.
- Admissible meridian slides;

The slide $M_{i,C} = T_{C_1}^{-1} T_{C_2} T_{b_i}^{-1}$ of the meridian disk B_i along the curve C.

- a set of generators of $FB_n(\Sigma_g)$.
- Admissible meridian slides;
- ▶ slides of arc a_1 around $P_{i,1}$ for i = 2, ..., n.

Generalized Hilden groups and (g, b)-links

(g, n)-decomposition of a link :

Let *L* be a link in a 3-manifold *M*. *L* is a (g, n)-link if there exists a genus *g*

Heegaard surface *S* for *M* (i. e. $M = H_g \cup_{\phi} \bar{H}_g$) s. t. :

- (i) L intersects S transversally and
- (ii) $L \cap H_g$ and $L \cap \overline{H}_g$ are trivial systems of *n* arcs.

Let (H_g, A_n) and (\bar{H}_g, \bar{A}_n) be handlebodies of genus g. Let $\tau : H_g \to \bar{H}_g$ s t. $\tau(A_i) = \bar{A}_i$, for i = 1, ..., n.

Definition $\mathcal{L}_{g,n}$ = set of equivalence classes of (g, n)-links. **Proposition.** Let

$$\Theta_{g,n}: \mathcal{M}_{2n}(\Sigma_g) \longrightarrow \mathcal{L}_{g,n}, \ \Theta_{g,n}(\psi) = L_{\psi}$$

where L_{ψ} is the (g, n)-link in the 3-manifold M_{ψ} defined by

$$(M_{\psi}, L_{\psi}) = (\mathsf{H}_g, \mathcal{A}_n) \cup_{\psi \tau} (\bar{\mathsf{H}}_g, \bar{\mathcal{A}}_n).$$

The map $\Theta_{g,n}$ is well defined and surjective.

P. Bellingeri (LMNO - Caen)

Back to the forgetting map :

$$\psi_{g,n}: \mathcal{M}_{2n}(\Sigma_g) \to \mathcal{M}(\Sigma_g)$$

Remark. If $\beta_1, \beta_2 \in \mathcal{M}_{2n}(\Sigma_g)$ are s.t. $\psi_{g,n}(\beta_1) = \psi_{g,n}(\beta_2)$ then L_{β_1} and L_{β_2} belong to the same ambient manifold.

Let *M* be a closed manifold. Let $\phi \in \mathcal{M}(\Sigma_{g,1}) \subset \mathcal{M}_{2n}(\Sigma_g)$ s.t. $M = M_{\phi}$. We get a map

$$\Theta_{g,n}^{\phi}$$
: ker $(\psi_{g,n}) \longrightarrow \{(g,n) - \text{links in } M\}$

P. Bellingeri (LMNO - Caen)

Let *M* be a closed manifold. Let $\phi \in \mathcal{M}(\Sigma_{g,1}) \subset \mathcal{M}_{2n}(\Sigma_g)$ s.t. $M = M_{\phi}$. We get a map

$$\Theta_{g,n}^{\phi}$$
: ker $(\psi_{g,n}) \longrightarrow \{(g,n) - \text{links in } M\}$

Question. Characterize surface braids having isotopic "Heegard" closure (analogous of Birman-Hilden Theorem).

Proposition (B.-Cattabriga) Let $\phi \in \mathcal{M}(\Sigma_{g,1}) \subset \mathcal{M}_{2n}(\Sigma_g)$ and $\phi Hil_n(\Sigma_g)\phi^{-1} := Hil_n(\Sigma_g)(\phi)$.

- If β and δ belong to the same left coset of Hil_n(Σ_g) in ker(ψ_{g,n}) then L_β and L_δ are isotopic links in M_φ.
- If β and δ belong to the same right coset of Hil_n(Σ_g)(φ) in ker(ψ_{g,n}) then L_β and L_δ are isotopic links in M_φ.

Theorem (Cattabriga-Gabrovsek 2018, revisited)

Two elements in $\bigcup_{n \in \mathbb{N}} B_{2n}(\Sigma_g)$ determine equivalent links in $\Sigma_g \times I$ if and only if they are connected by a finite sequence of the following moves :

- Double coset moves via framed braids : α ↔ hαh' for some h, h' ∈ FB_n(Σ_g);
- "Sliding" moves : $\sigma_2 \sigma_1^2 \sigma_2 \alpha \leftrightarrow \alpha \leftrightarrow \alpha \sigma_2 \sigma_1^2 \sigma_2$;
- ► "Stabilization" moves : $\alpha \leftrightarrow T_k(\alpha)\sigma_{2k}$ where $T_k(b_j) = a_j$ $T_k(b_j) = a_j$ for $1 \le j \le g$ and $T_k(\sigma_i) = \begin{cases} \sigma_i & \text{if } i < 2k \\ \sigma_{2k}\sigma_{2k+1}\sigma_{2k+2}\sigma_{2k+1}^{-1}\sigma_{2k}^{-1} & \text{if } i = 2k \\ \sigma_{i+2} & \text{if } i > 2k \end{cases}$

"Hilden" Theorem (Cattabriga-Gabrovsek 2018)

The plat-closures of two surface braids β_1 and β_2 represent isotopic links in *M* iff β_1 can be transformed to β_2 by a finite sequence of :

- ► isotopies of closed surface braids in $\Sigma_g \times I$
- plat and dual plat slide moves.

"Hilden" Theorem (Cattabriga-Gabrovsek 2018)

The plat-closures of two surface braids β_1 and β_2 represent isotopic links in *M* iff β_1 can be transformed to β_2 by a finite sequence of :

- ► isotopies of closed surface braids in $\Sigma_g \times I$
- plat and dual plat slide moves.

Goal (B.-Cattabriga-Gabrovsek) : an "algebraic" version of previous Theorem.