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Incomplete-web-scholar bibliography

About surface braid groups

I Gwenael Massuyeau, Lectures on mapping class groups, braid groups
and formality, personal webpage.

I John Guaschi, Daniel Juan-Pineda A survey of surface braid groups and
the lower algebraic K-theory of their group rings arXiv :1302.6536v1

I Luis Paris, Dale Rolfsen Geometric subgroups of surface braid groups
https ://arxiv.org/abs/math/9906122
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Group presentations for braid groups on surfaces of
positive genus

First appearances : Zariski (1936) and... Fadell-Van Buskirk (1961)

Group presentations :

Torus : Birman (1968)

Closed surfaces : Scott (1970)... corrected by Kulikov (1996) ;
González Meneses (2001) ; B. (2004)

Surfaces with boundary : B. (2004)

Positive Presentations : B. - Godelle (2007)

New presentations (Torus vs Klein Bottle) : Guaschi-Pereiro (2018)
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Surface braids as collections of paths

Σ oriented connected surface. P = {x1, . . . , xn} ⊂ Σ

Geometric braid (on n strands on Σ) :

β = (ψ1, . . . , ψn),
ψi : [0,1]→ Σ× [0,1]

I ψi(0) = (xi , 0) and
ψi(1) ∈ P × {1}
∀i = 1 . . . ,n ;

I ψi(t) 6= ψj(t) for i 6= j
and ψi(t) ∈ Σ× {t}.

on the left on the fundamental domain times
the interval, on the right the projection on the

fundamental domain
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Braid group of the surface
Surface braids are considered up to isotopy :

Isotopy : β0 ∼ β1 if it exists a continuous family of geometric braids
βt , t ∈ [0,1].

The usual composition of paths induces a structure of group on
equivalence classes of braids on n strands :

{ surface geometric braids (on n strands) }/∼ ' Bn(Σ),

I The subgroup of braids inducing trivial permutation is called pure
braid group on Σ, Pn(Σ).

Remark. The embedding of the disk D2 (with n marked points) in Σ
(with n marked points) induces an embedding Bn → Bn(Σ) (and
Pn → Pn(Σ)) ; more generally Paris and Rolfsen (1999) classified
embedding of punctured surfaces inducing embeddings on
corresponding braid groups.
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Surface braids : generators

Generators "from" Bn : Generators "from" π1(Σ) :
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Closed oriented surface of genus g

Generators for Bn(Σg) : σ1, . . . , σn−1,a1,b1 . . . ,ag ,bg
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Closed oriented surface of genus g

Generators for Bn(Σg) : σ1, . . . , σn−1,a1,b1 . . . ,ag ,bg

– Braid relations :

σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n − 2,
σiσj = σjσi , |i − j | > 1, 1 ≤ i , j ≤ n − 1,

– Mixed relations (notation : ck ∈ {ak ,bk}) :

(R1) crσi = σicr , i 6= 1, 1 ≤ r ≤ g,

(R2) σ1crσ1cr = crσ1crσ1, 1 ≤ r ≤ g,

(R3) σ1csσ
−1
1 cr = crσ1csσ

−1
1 , 1 ≤ s < r ≤ g,

(R4) σ1brσ1arσ1 = arσ1br , 1 ≤ r ≤ g,

(Rπ)
∏g

i=1[a−1
i ,bi ] = σ1 · · ·σn−2σ

2
n−1σn−2 · · ·σ1
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A relation
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Oriented surface of genus g and 1 boundary
component, Σg,1

Generators for Bn(Σg,1) : σ1, . . . , σn−1,a1,b1 . . . ,ag ,bg
– Braid relations :

σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n − 2,
σiσj = σjσi , |i − j | > 1, 1 ≤ i , j ≤ n − 1,

– Mixed relations (notation : ck ∈ {ak ,bk}) :

(R1) crσi = σicr , i 6= 1, 1 ≤ r ≤ g,

(R2) σ1crσ1cr = crσ1crσ1, 1 ≤ r ≤ g,

(R3) σ1csσ
−1
1 cr = crσ1csσ

−1
1 , 1 ≤ s < r ≤ g,

(R4) σ1brσ1arσ1 = arσ1br , 1 ≤ r ≤ g,
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Oriented surface of with b > 1 boundary components

Generators for Bn(Σg,b) : σ1, . . . , σn−1,a1,b1 . . . ,ag ,bg , z1, . . . zb−1

– Braid relations :

σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n − 2,
σiσj = σjσi , |i − j | > 1, 1 ≤ i , j ≤ n − 1,

– Mixed relations (notation : ck ∈ {ak ,bk}) :

(R1) crσi = σicr , i 6= 1, 1 ≤ r ≤ g,
(R1’) zrσi = σizr , i 6= 1, 1 ≤ r ≤ b − 1,

(R2) σ1crσ1cr = crσ1crσ1, 1 ≤ r ≤ g,
(R2’) σ1zrσ1zr = zrσ1zrσ1, 1 ≤ r ≤ b − 1,

(R3) σ1csσ
−1
1 cr = crσ1csσ

−1
1 , 1 ≤ s < r ≤ g,

(R3’) σ1zsσ
−1
1 zr = zrσ1zsσ

−1
1 , 1 ≤ s < r ≤ b − 1,

(R4) σ1brσ1arσ1 = arσ1br , 1 ≤ r ≤ g,
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Surface braids in terms of configuration spaces

Σ oriented surface ; FnΣ = {(x1, . . . xn) ∈ Σn |xi 6= xj for i 6= j}.

Pn(Σ) ' π1(FnΣ) ;
Bn(Σ) ' π1(FnΣ/Sn) ;

Mixed braid group on n strands of Σ :
Bm,n(Σ) ' π1(Fm+nΣ/(Sm × Sn))
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Main tools on surface braids : exact sequences

Generalised Fadell-Neuwirth fibrations :
p : Fn+mΣ→ FnΣ, p((x1, . . . xn, xn+1, . . . , xn+m)) = (x1, . . . xn)

Homotopy exact sequence
−−−−−−−−−−−−−−−−−−−−−→

(PBS) 1→ Pm(Σ \ {n points})→ Pn+m(Σ)
πn,m→ Pn(Σ)→ 1

and

(MBS) 1→ Bm(Σ \ {n points})→ Bn,m(Σ)
πn,m→ Bn(Σ)→ 1
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For m = 1 we get :

(PBS) 1→ π1(Σ \ {n points})→ Pn+1(Σ)
πn,1→ Pn(Σ)→ 1;

(MBS) 1→ π1(Σ \ {n points})→ Bn,1(Σ)
πn,1→ Bn(Σ)→ 1
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Consequences of Fadell-Neuwirth exact sequences :
some exemples

• we can obtain group presentations for Pn(Σ) and Bn(Σ).

• Proposition (Paris-Rolfsen 1999). Let Σg be a closed surface of
genus g ≥ 1. Pn(Σg) and Bn(Σg) have no torsion (for Bn(Σg) we need
further informations, in particular that FnΣg is a Eilenberg-MacLane
space).

• Theorem (Paris-Rolfsen 1999). Let Σg be a closed surface of genus
g ≥ 2. Pn(Σg) and Bn(Σg) have trivial center.
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Group presentations for Bn(Σ) : outlines of proofs

The proof of the presentation for Bn(Σg) in (González-Meneses 2001)
consists to apply iteratively Lindon-Schupp’s method to exact
sequences of pure braid groups on surfaces and therefore to

1→ Pn(Σg)→ Bn(Σg)→ Sn → 1

The proof of the presentation for Bn(Σg,b) in (B. 2004) is inspired by
Morita’s proof of Artin presentation of Bn (Morita, 1992) and is based
on the exact sequence :

(MBS) 1→ Fn+2g+b−1 → Bn,1(Σg,b)
πn,1→ Bn(Σg,b)→ 1
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A consequence of group presentations : the
determination of lower central series

Lower central series (LCS) of G :
Γ1(G) = G, Γi(G) = [G, Γi−1(G)] for i > 1.

G is residually nilpotent if
⋂

i≥1 Γi(G) = {1} ;

G is perfect if Γ1(G) = Γ2(G).

Reminders. B2 = Z ; if n ≥ 3, Γ1(Bn)/Γ2(Bn) = Z and Γ2(Bn) = Γ3(Bn).

Γ2(Bn) is perfect if and only if n ≥ 5.
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LCS for surface braid groups

LCS Theorem (B-Gervais-Guaschi 2008, B-Bardakov 2009,
B-Gonçalves-Guaschi 2018). Let g ≥ 1, and let n ≥ 2. Then :

1. Bn(Σg)/Γ2(Bn(Σg)) ∼= Z2g ⊕ Z2.

2. Γ2(Bn(Σg))/Γ3(Bn(Σg)) ∼= Zn−1+g if n ≥ 3.

3. Group presentation for Bn(Σg)/Γ3(Bn(Σg)) if n ≥ 3.

4. Γ3(Bn(Σg)) = Γ4(Bn(Σg)) if and only if n ≥ 3. Moreover Γ3(Bn(Σg)) is
perfect if and only if n ≥ 5.

5. The group B2(Σg) is residually nilpotent (but not nilpotent) ; in particular
Γ2(B2(T))/Γ3(B2(T)) ∼= Z3

2, and if g > 1, Γ2(B2(Σg))/Γ3(B2(Σg)) is a
non-trivial quotient of Z2g

2 ⊕ Zg+1.

Remarks. The case n = 1 is known since long time (B1(Σ) = π1(Σ)).
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LCS, the orientable case with boundary

Let Σg,b be a compact, connected orientable surface of genus g ≥ 1 and with
b ≥ 1 boundary components.

LCS Theorem (B.-Gervais-Guaschi 2008, B-Gonçalves-Guaschi 2018).
Let n ≥ 2. Then :

1. Bn(Σg,b)/Γ2(Bn(Σg,b)) ∼= Z2g+b−1 ⊕ Z2.

2. Γ2(Bn(Σg))/Γ3(Bn(Σg)) ∼= Z if n ≥ 3.

3. Group presentation for Bn(Σg)/Γ3(Bn(Σg)) if n ≥ 3.

4. Γ3(Bn(Σg,b)) = Γ4(Bn(Σg,b)) if and only if n ≥ 3. Moreover Γ3(Bn(Σg,b))
is perfect if and only if n ≥ 5.

5. The group B2(Σg,b) is residually nilpotent (but not nilpotent) ; in particular
Γ2(B2(Σg,b))/Γ3(B2(Σg,b)) is a non-trivial quotient of Z2g+b−1

2 ⊕ Z.

P. Bellingeri (LMNO – Caen) Generalizations of braid groups 4-9 November 18 / 25



Remarks and applications

Similar results have been obtained for mixed braid groups Bm,n(Σ) for
m or n greater or equal than 3 (B.-Godelle-Guaschi 2017)

Applications :
I Representations of Torelli groups (Blanchet, in progress)
I Linear representations for surface braid groups

(B.-Godelle-Guaschi 2017)
I Surjective morphisms between surface braid groups

(B.-Gonçalves-Guaschi 2017).
I Fibrations on curves of genus g (Causin-Polizzi 2019)
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Surjective morphisms between surface (pure) braid
groups.

Let Σg be a compact, connected orientable surface without boundary,
of genus g ≥ 0.

Theorem (Chen, 2017). Let g > 1. Any surjection between pure braid
groups on Σg factors through some forgetful homomorphism.

Conjecture (Chen, 2017). Let g > 1 and n 6= m. There is not a
surjective homomorphism φn,m : Bn(Σg)→ Bm(Σg).
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Surjective morphisms between surface (pure) braid
groups.

Theorem (B-Gonçalves-Guaschi, 2018). Let m,n ∈ N be such that
m 6= n.

1. Let g = 1. There is a surjective homom. ρ : Bn(T)→ Bm(T) iff
m = 1.

2. Let g > 1. There is not a surjective homom. ρ : Bn(Σg)→ Bm(Σg).

Corollary. Let g ≥ 1, and let n,m ∈ N. There is a surjective
homomorphism of Bn(Σg) onto Pm(Σg) iff n = m = 1 for g > 1 and
m = 1 for g = 1.

Remark. Similar results hold for braid groups on surfaces with
boundary or non orientable.
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Outline of the proof

The proof of our main Theorem is strictly related to the knowledge of the LCS
of surface braid groups. For instance :

I Let n < m and g ≥ 1.

If n = 1, (B1(Σg))Ab ∼= Z2g , and (Bm(Σg))Ab ∼= Z2g ⊕ Z2 by LCS
Theorem, which implies that there is no surjective homomorphism from
(B1(Σg))Ab onto (Bm(Σg))Ab, from which it follows there is no surjective
homomorphism from B1(Σg) to Bm(Σg).

If n = 2, the result follows from an argument on minimal number of
generators G(Bm(Σg)), which is 2g + 1 for m = 2 and 2g + 2 for m > 2.

If n ≥ 3, LCS Theorem implies that there is no surjective homomorphism
from Γ2(Bn(Σg))/Γ3(Bn(Σg)) onto Γ2(Bm(Σg))/Γ3(Bm(Σg)), and hence
there is no surjective homomorphism from Bn(Σg) to Bm(Σg).
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Representations in symmetric groups

Definition. A homomorphism ρ : Bn(Σg)→ Sn is said to be transitive if the
action of Im (ρ) on the set {1, . . . ,n} is transitive.

Definition. A homomorphism ρ : Bn(Σg)→ Sn is said to be primitive if the
only partitions of the set {1, . . . ,n} that are left invariant by the action of
Im (ρ) are the set itself, or the partition consisting of singletons.

Ivanov found a family of transitive but imprimitive representations ; all
provided examples were abelian representations and the last sentence in
Ivanov’s paper was :

I do not know to what extent these examples exhaust the imprimitive
representations.

It turns out that representations of surface braid groups into symmetric
groups is much richer than expected...
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Representations in symmetric groups : first results

Lemma (B.-Gonçalves-Guaschi 2018). Let n ≥ m ≥ 2, and let
ρ : Bn(Σg)→ Sm be a homomorphism.

1. If (n,m) 6= (4,3), ρ(Bn) is a cyclic group.

2. The subgroup ρ(Bn(Σg)) is contained in the centraliser of ρ(Bn).

3. The homomorphism ρ sends Γ3(Bn(Σg)) to the trivial element, so it
factors through the quotient Bn(Σg)/Γ3(Bn(Σg)).

4. The subgroup ρ(Bn(Σg)) is nilpotent of nilpotency degree at most 2.

Starting from f.p. presentations for Bn(Σg)/Γ3(Bn(Σg)) (B.-Gervais-Guaschi
2008), it is possible to construct several families of imprimitive non abelian
representations ρ : Bn(Σg)→ Sm.
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Non abelian representations : the simplest example

Following (B.-Gervais-Guaschi, 2008) we have a presentation of
Bn(T)/Γ3(Bn(T)) given by :

〈a1,b1, σ|[a1, σ] = [b1, σ] = 1 , [a1,b1] = σ2 , σ2n = 1〉.

Now, for n even, define θ : Bn(T)/Γ3(Bn(T))→ S8 as follows :

θ(a1) = (1 3)(2 4) , θ(b1) = (1 5)(2 6)(3 7)(4 8) , θ(σ) = (1 2 3 4)(5 6 7 8).

By construction θ is transitive, imprimitive and with non-Abelian image.
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