LECTURE 2

1. ROOT DATUM AND COXETER GROUPS

We start from the following classical motivating example.

Consider the Euclidean space \mathbb{R}^N , $N \geq 2$. Let e_1, \ldots, e_N denote the standard basis. Let $H \subset \mathbb{R}^N$ be the hyperplane consisting of vectors whose sum of coordinates is 0, i.e.

$$H := \{\sum_{i=1}^{N} a_i e_i \mid \sum_{i=1}^{N} a_i = 0\}.$$

Let Σ denote the subset of H consisting of all differences of standard vectors

$$\Sigma := \{ e_i - e_j \mid i \neq j \}.$$

By definition, we have

$$\Sigma \cap m\Sigma \neq \emptyset, \ m \in \mathbb{Z} \implies m = \pm 1.$$

and Σ splits into two disjoint subsets Σ^+ and Σ^- , where

$$\Sigma^+ := \{ e_i - e_j \mid i < j \} \text{ and } \Sigma^- := \{ e_i - e_j \mid i > j \}.$$

Each vector α from Σ can be uniquely expressed as a $\mathbbm{Z}-linear$ combination of vectors from the subset

$$\Pi := \{ e_i - e_{i+1} \mid 1 \le i \le N - 1 \}.$$

Moreover, if $\alpha = \sum_{i} c_i(e_i - e_{i+1})$, then either all $c_i \ge 0$, or all $c_i \le 0$. We also have

$$|\Sigma^+| = |\Sigma^-| = \binom{N}{2}$$

Let Λ denote the \mathbb{Z} -linear span of Π . Observe that Λ is a free \mathbb{Z} -module of rank N-1 and $\Lambda \otimes_{\mathbb{Z}} \mathbb{R} \simeq H$. The subset Σ of the finitely generated free \mathbb{Z} -module Λ provides an example of a *root system* of type Λ and of rank N-1:

- elements of Σ are called roots,
- elements of Π are called simple roots,
- elements of Σ^+ and Σ^- are called positive and negative roots, respectively.
- The \mathbb{Z} -module Λ is called root lattice.

Given $\alpha \in \Sigma$ consider an orthogonal reflection s_{α} which fixes the hyperplane orthogonal to $\alpha = e_i - e_j$. It is given by the following general formula

 $s_{\alpha}(\beta) := \beta - \frac{2(\alpha,\beta)}{(\alpha,\alpha)}\alpha, \quad \text{where } (-,-) \text{ is the usual dot-product in } \mathbb{R}^{N}.$

Observe that s_{α} simply switches e_i and e_j (the *i*th and the *j*th coordinates) and, hence, it leaves Σ invariant:

$$s_{\alpha}(\beta) \in \Sigma$$
, for all $\alpha, \beta \in \Sigma$.

Let W be the group (called the Weyl group) generated by reflections $s_{\alpha}, \alpha \in \Sigma$ where the multiplication is given by the composite of reflections. It acts by permutations of the set $\{e_1, \ldots, e_N\}$, i.e. it can be identified with the symmetric group S_N on the set of indices $\{1, \ldots, N\}$. Clearly, it leaves Σ invariant.

1.1. Root datum. We now provide the following generalization of the previous example (see e.g. [?, Exp. XXI, §1.1]).

We define a *root datum* to be a nonempty finite subset Σ of a free finitely generated \mathbb{Z} -module Λ together with a set inclusion

$$\Sigma \hookrightarrow \Lambda^{\vee}, \quad \alpha \mapsto \alpha^{\vee}$$

into the dual $\Lambda^{\vee} = Hom_{\mathbb{Z}}(\Lambda, \mathbb{Z})$ such that

- (1) $\Sigma \cap m\Sigma \neq \emptyset, m \in \mathbb{Z} \Longrightarrow m = \pm 1,$
- (2) $\alpha^{\vee}(\alpha) = 2$ for all $\alpha \in \Sigma$, and
- (3) $\beta \alpha^{\vee}(\beta)\alpha \in \Sigma$ and $\beta^{\vee} \beta^{\vee}(\alpha)\alpha^{\vee} \in \Sigma^{\vee}$ for all $\alpha, \beta \in \Sigma$,

where Σ^{\vee} denotes the image of Σ in Λ^{\vee} . The elements of Σ (resp. Σ^{\vee}) are called roots (resp. coroots).

The \mathbb{Z} -submodule of Λ generated by Σ is called the *root lattice* and is denoted by Λ_r . A root datum is called semisimple if

$$\Lambda\otimes_{\mathbb{Z}}\mathbb{Q}=\Lambda_r\otimes_{\mathbb{Z}}\mathbb{Q}.$$

From now on by a root datum we will always mean a semisimple one.

The \mathbb{Z} -submodule of $\Lambda_{\mathbb{Q}} = \Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by all $\lambda \in \Lambda_{\mathbb{Q}}$ such that $\alpha^{\vee}(\lambda) \in \mathbb{Z}$ for all $\alpha \in \Sigma$ is called the *weight lattice* and is denoted by Λ_w .

By definition we have

$$\Lambda_r \subseteq \Lambda \subseteq \Lambda_w$$
 and $\Lambda_r \otimes_{\mathbb{Z}} \mathbb{Q} = \Lambda_{\mathbb{Q}} = \Lambda_w \otimes_{\mathbb{Z}} \mathbb{Q}.$

The \mathbb{Q} -rank of $\Lambda_{\mathbb{Q}}$ is called the *rank* of the root datum.

1.2. Simple roots, fundamental weights and the Cartan matrix. It can be shown that the root lattice Λ_r admits a \mathbb{Z} -basis $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ such that each $\alpha \in \Sigma$ is a linear combination of α_i 's with either all positive or all negative coefficients and n is the rank of the root datum. So the set Σ splits into two disjoint subsets $\Sigma = \Sigma_+ \amalg \Sigma_-$, where Σ_+ (resp. Σ_-) is called the set of positive (resp. negative) roots. The roots α_i are called simple roots.

Given the set Π we define the set of fundamental weights $\{\omega_1, \ldots, \omega_n\} \subset \Lambda_w$ as

$$\alpha_i^{\vee}(\omega_j) = \delta_{ij}$$

where δ_{ij} is the Kronecker symbol. Fundamental weights form a basis of the weight lattice Λ_w .

We denote $c_{ij} = \alpha_j^{\vee}(\alpha_i)$, $i, j = 1 \dots n$. The matrix $C = (c_{ij})$ is called the *Cartan* matrix of the root datum. By definition we have

$$\alpha_i = \sum_{j=1}^n c_{ij}\omega_j,$$

i.e. the Cartan matrix expresses simple roots in terms of fundamental weights.

Observe that that the determinant of the Cartan matrix coincides with the number of elements in the quotient group Λ_w/Λ_r .

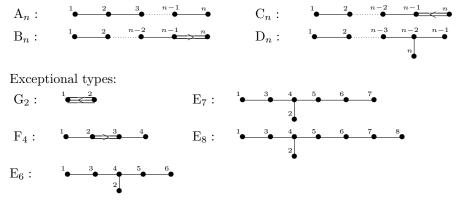
1.3. The Dynkin diagram. A root datum is called *irreducible* if it can not be represented as a direct sum of root data, i.e. Λ can not be written as $\Lambda = \Lambda_1 \oplus \Lambda_2$, where $\Sigma_1 \subset \Lambda_1, \Sigma_2 \subset \Lambda_2$ are the root data.

To any irreducible root datum we associate a graph called the *Dynkin diagram* \mathcal{D} . Its vertices are in 1-1 correspondence with the set of simple roots $\{\alpha_1, \ldots, \alpha_n\}$ and the number of edges connecting two different vertices α_i, α_j is given by $c_{ij} \cdot c_{ji}$.

Moreover, if there are more than one edge connecting α_i and α_j we put ' <' between α_i and α_j if $c_{ij} < c_{ji}$. Note that the latter inequality leads to $(\alpha_i, \alpha_i) < (\alpha_j, \alpha_j)$.

All Dynkin diagrams are classified and consist of the following types (our enumeration of vertices follows Bourbaki; the lower index is the rank n):

Classical types:



It can be shown that an irreducible root datum is determined uniquely by

- its Dynkin diagram and
- the intermediate lattice $\Lambda_r \subseteq \Lambda \subseteq \Lambda_w$.

If $\Lambda = \Lambda_w$ (resp. $\Lambda = \Lambda_r$), then the root datum is called simply connected (resp. adjoint) and will be denoted by \mathcal{D}_n^{sc} (resp. \mathcal{D}_n^{ad}), where $\mathcal{D} = A, B, C, D, E, F, G$ is one of the Dynkin diagrams and n is its rank.

1.4. The Weyl group. A Z-linear map $s_{\alpha} \colon \Lambda_w \to \Lambda_w, \alpha \in \Sigma$, defined by

$$s_{\alpha}(\lambda) := \lambda - \alpha^{\vee}(\lambda)\alpha, \quad \lambda \in \Lambda_w$$

is called the *reflection* corresponding to the root α . Observe that by definition we have

$$s_{\alpha} \circ s_{\alpha} = \mathrm{id}.$$

The group W generated by all reflections s_{α} is called the Weyl group of the root datum. It can be shown that

$$W = \langle s_1, \dots, s_n \mid (s_i s_j)^{m_{ij}} = 1 \rangle$$

where $s_i = s_{\alpha_i}$ is the reflection corresponding to the simple root α_i , the *Coxeter* exponents $m_{ii} = 1$ and m_{ij} for $i \neq j$ depend on the values of c_{ij} as follows:

$$m_{ij} = 2 \text{ if } c_{ij}c_{ji} = 0 \text{ (no edge)},$$

$$m_{ij} = 3 \text{ if } c_{ij}c_{ji} = 1 \text{ (single edge)},$$

$$m_{ij} = 4 \text{ if } c_{ij}c_{ji} = 2 \text{ (double edge)},$$

$$m_{ij} = 6 \text{ if } c_{ij}c_{ji} = 3 \text{ (triple edge)}.$$

The group W is a finite group which acts by permutations on Σ . It provides an example of the so called *Coxeter group*.

Each element of W can be written as a product of simple reflections

$$w = s_{i_1} s_{i_2} \dots s_{i_r}.$$

LECTURE 2

The smallest such r is called the *length of* w and is denoted by $\ell(w)$. Presentation of w as a product of precisely $\ell(w)$ simple reflections is called *reduced* presentation (or *reduced word*).

1.5. Geometric example/realization. We can realize roots Σ (and the root lattice Λ_r) geometrically as vectors (and their \mathbb{Z} -linear combinations) in a finite dimensional Euclidean space \mathbb{R}^N :

Namely, we may view Σ as a subset of (non-zero) vectors in \mathbb{R}^N and for each $\alpha \in \mathbb{R}^N$ we define $\alpha^{\vee} \in (\mathbb{R}^N)^*$ by

$$\alpha^{\vee}(x) := \frac{2(\alpha, x)}{(\alpha, \alpha)}, \quad x \in \mathbb{R}^N.$$

If $\alpha^{\vee}(\beta) \in \mathbb{Z}$ for all $\alpha, \beta \in \Sigma$, then α^{\vee} defines an element in the dual \mathbb{Z} -module Λ_r^{\vee} . Hence, it gives the inclusion $\Sigma \hookrightarrow \Lambda_r^{\vee}$, $\alpha \mapsto \alpha^{\vee}$ and, therefore, it provides an example of a root datum. In this way we have also realized the Weyl group W as the group generated by the usual orthogonal reflections:

the operator s_{α} is the reflection along the vector α as it fixes the hyperplane orthogonal to α and sends α to $-\alpha$.

We call such example/realization of a root datum the *finite crystallographic root* system see e.g. [?, §2.9].

Observe that if we identify the dual space $(\mathbb{R}^N)^*$ with \mathbb{R}^N by $e_i^* \mapsto e_i$, where $\{e_1, \ldots, e_N\}$ is the standard basis, then the coroots correspond to the vectors

$$\alpha^{\vee} \mapsto \frac{2}{(\alpha,\alpha)} \alpha \in \Lambda_r \otimes_{\mathbb{Z}} \mathbb{R}.$$

1.6. Finite real root systems. We can replace the coefficient rings \mathbb{Z} and \mathbb{Q} by \mathbb{R} in the definitions of the root datum and of the associated lattices (i.e. by considering the \mathbb{R} -vector space Λ instead of a \mathbb{Z} -module Λ and its \mathbb{R} -linear dual Λ^{\vee}). In this case, we obtain a root datum over \mathbb{R} , where $(\Lambda)_r = \Lambda = (\Lambda)_w$ and $\alpha^{\vee}(\beta)$ is not necessarily in \mathbb{Z} .

Following example 1.5, we can realize Σ as a subset in \mathbb{R}^N with $(\alpha, \alpha) = 1$ and $\alpha^{\vee}(x) := 2(\alpha, x)$. We call such an example/realization the *finite (normalized) real* root system, see e.g. [?, §1]. The Weyl group then turns into a finite real reflection group which is a Coxeter group

$$W = \langle s_1, \dots, s_n \mid (s_i s_j)^{m_{ij}} = 1 \rangle$$

for some exponents m_{ij} .

All finite real root systems are classified by the so called *Coxeter diagrams*. Similar to the Dynkin digram its vertices are in 1-1 correspondence with the set of simple roots $\{\alpha_1, \ldots, \alpha_n\}$. Different vertices α_i and α_j are connected by an edge only if $m_{ij} \geq 3$. In addition, if $m_{ij} \geq 4$, then the respective edge is labelled by the Coxeter exponent m_{ij} . Observe that $\alpha_j^{\vee}(\alpha_i) = -2\cos(\pi/m_{ij})$ and the respective symmetric matrix $C = (\alpha_j^{\vee}(\alpha_i))$ is called the Schläfli matrix.

If W has exponents $m_{ij} = 2, 3, 4, 6$ only, then (up to rescaling root vectors) we obtain the usual crystallographic root system. In all other cases (called non-crystallographic), the finite real root systems are classified by the Coxeter diagrams of the following types (here m = 5 or $m \ge 7$):

$$I_2(m): \xrightarrow{1 - m^2} H_3: \xrightarrow{1 - 5^2 - 3} H_4: \xrightarrow{1 - 5^2 - 3} H_5$$

LECTURE 2

Remark 1.1. Observe that we may think of $I_2(2)$, $I_2(3)$, $I_2(4)$ and $I_2(6)$ as the normalized crystallographic root systems of type $A_1 \times A_1$, A_2 , B_2 (= C_2) and G_2 respectively. Indeed, these are obtained by scaling one of the simple roots by $-2\cos(\pi/m_{ij}) = 0, -1, -\sqrt{2}$ and $-\sqrt{3}$, respectively

(Kirill Zainoulline) Department of Mathematics and Statistics, University of Ottawa, 150 Louis-Pasteur, Ottawa, ON, K1N 6N5, Canada

 $Email \ address: \tt kirill@uottawa.ca$

URL: http://mysite.science.uottawa.ca/kzaynull/