LECTURE 2

1. RooT DATUM AND COXETER GROUPS

We start from the following classical motivating example.
Consider the Euclidean space RY, N > 2. Let ey, . . ., en denote the standard ba-
sis. Let H C RY be the hyperplane consisting of vectors whose sum of coordinates

is 0, i.e.

N N

H = {Zaiei | Zai = 0}

i=1 i=1

Let 3 denote the subset of H consisting of all differences of standard vectors
Yi={ei—e i # 5}
By definition, we have
SNmX#0, meZ = m==+l
and ¥ splits into two disjoint subsets ¥ and ¥, where
Yti={ei—ej|li<jland ¥~ :={e; —e; | i > j}.
Each vector a from ¥ can be uniquely expressed as a Z-linear combination of vectors
from the subset
H::{ei—ei+1|1§i§N—1}.

Moreover, if & = ), ¢i(e; — ej41), then either all ¢; > 0, or all ¢; < 0. We also have

= =121 = (5):

Let A denote the Z-linear span of II. Observe that A is a free Z-module of rank
N —1and A ®z R ~ H. The subset X of the finitely generated free Z-module A
provides an example of a root system of type A and of rank N — 1:

elements of ¥ are called roots,

elements of IT are called simple roots,

elements of ¥ and ¥~ are called positive and negative roots, respectively.
The Z-module A is called root lattice.

Given o € X consider an orthogonal reflection s, which fixes the hyperplane
orthogonal to o = e; — e;. It is given by the following general formula

sa(B) =0 — 208 where (-, —) is the usual dot-product in R,

(@a) %

Observe that s, simply switches e; and e; (the ith and the jth coordinates) and,
hence, it leaves ¥ invariant:

sq(B) €X, forall o,f€X.

Let W be the group (called the Weyl group) generated by reflections s,, a €
> where the multiplication is given by the composite of reflections. It acts by
permutations of the set {e,...,en}, i.e. it can be identified with the symmetric
group Sn on the set of indices {1,... N}. Clearly, it leaves ¥ invariant.
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1.1. Root datum. We now provide the following generalization of the previous ex-
ample (see e.g. [?, Exp. XXI, §1.1]).

We define a root datum to be a nonempty finite subset ¥ of a free finitely gen-
erated Z-module A together with a set inclusion

Y—=AY, a—aY

into the dual AV = Homy(A,Z) such that

(1) ENmE#0, meZ = m = =1,

(2) a¥(a) =2 for all @ € 3, and

(3) B—a¥(B)ae X and BY — BY()a¥ € XY for all a, B € %,
where ¥V denotes the image of ¥ in AY. The elements of ¥ (resp. XV) are called
roots (resp. coroots).

The Z-submodule of A generated by X is called the root lattice and is denoted

by A,. A root datum is called semisimple if

A®ZQ:AT®ZQ'

From now on by a root datum we will always mean a semisimple one.

The Z-submodule of Ag = A ®7 Q generated by all A € Ag such that () € Z
for all € 3 is called the weight lattice and is denoted by A,,.

By definition we have

ArgAgAw and AT®ZQ:AQ:AM®ZQ'
The Q-rank of Ag is called the rank of the root datum.

1.2. Simple roots, fundamental weights and the Cartan matriz. It can be shown
that the root lattice A, admits a Z-basis II = {a1,...,a,} such that each o € &
is a linear combination of a;’s with either all positive or all negative coefficients
and n is the rank of the root datum. So the set X splits into two disjoint subsets
Y =X, IIX_, where ¥, (resp. X_) is called the set of positive (resp. negative)
roots. The roots a; are called simple roots.
Given the set II we define the set of fundamental weights {wy,...,w,} C Ay as
o) (wy) = 0y,
where §;; is the Kronecker symbol. Fundamental weights form a basis of the weight
lattice A, .
We denote ¢;; = o (a;), i,j = 1...n. The matrix C' = (c;;) is called the Cartan
matriz of the root datum. By definition we have
n
oy = Z cijwj,
j=1
i.e. the Cartan matrix expresses simple roots in terms of fundamental weights.
Observe that that the determinant of the Cartan matrix coincides with the num-
ber of elements in the quotient group A, /A,.

1.3. The Dynkin diagram. A root datum is called irreducible if it can not be rep-
resented as a direct sum of root data, i.e. A can not be written as A = A1 @ Asg,
where Y1 C Ay, X5 C Ay are the root data.

To any irreducible root datum we associate a graph called the Dynkin diagram
D. Its vertices are in 1-1 correspondence with the set of simple roots {a1,...,a,}
and the number of edges connecting two different vertices c;, o is given by c¢;; - ¢j;.
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Moreover, if there are more than one edge connecting ¢; and «; we put’ <’ between
a; and a; if ¢;; < ¢j;. Note that the latter inequality leads to (o, o) < (¢, o).

All Dynkin diagrams are classified and consist of the following types (our enu-
meration of vertices follows Bourbaki; the lower index is the rank n):

Classical types:

n—2 n—1 n

1 2 3 n—1 3 1 2
A, o "o C, : o P —

1 1 2 -3 n-2 n-1
B, : o e D, : ‘o0 o—"I—nc
n

1 2 1 3 4 5 6 7
Go —» E;: 5
2
1 2 3 4 1 3 4 6 7 8
Fu — o9 o Eg 2

Eg: o—o—I—o—o
2

It can be shown that an irreducible root datum is determined uniquely by

e its Dynkin diagram and
e the intermediate lattice A, C A C A,.

If A=A, (resp. A =A,;), then the root datum is called simply connected (resp.
adjoint) and will be denoted by D3¢ (resp. D), where D = A,B,C,D,E,F,G is
one of the Dynkin diagrams and n is its rank.

1.4. The Weyl group. A Z-linear map s,: Ay — Ay, a € 3, defined by
sa(A) =X —a'(Na, X€ Ay,

is called the reflection corresponding to the root . Observe that by definition we
have

Se © 8o = 1d.

The group W generated by all reflections s, is called the Weyl group of the root
datum. It can be shown that

W = (s1,...,8n | (5i8;)"7 =1)

where s; = s,, is the reflection corresponding to the simple root o, the Cozeter
exponents m;; = 1 and m;; for i # j depend on the values of ¢;; as follows:

mg; = 2 if ¢ic5; = 0 (no edge),
m;j = 3 if ¢;jc5; = 1 (single edge),
mgj = 4 if ¢;jcj; = 2 (double edge),
my;; = 6 if ¢;5¢5; = 3 (triple edge).
The group W is a finite group which acts by permutations on 3. It provides an

example of the so called Coxeter group.
Each element of W can be written as a product of simple reflections

W = 84,84y -S4

_
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The smallest such r is called the length of w and is denoted by ¢(w). Presentation
of w as a product of precisely ¢(w) simple reflections is called reduced presentation
(or reduced word).

1.5. Geometric example/realization. We can realize roots ¥ (and the root lattice
A,) geometrically as vectors (and their Z-linear combinations) in a finite dimen-
sional Euclidean space RY:

Namely, we may view ¥ as a subset of (non-zero) vectors in RY and for each
a € RY we define oV € (RV)* by

aY(z) = 2(((10‘;)), z € RV,

If V(B) € Z for all a,3 € %, then " defines an element in the dual Z-module
AY. Hence, it gives the inclusion ¥ < AY, o +— «" and, therefore, it provides an

example of a root datum. In this way we have also realized the Weyl group W as
the group generated by the usual orthogonal reflections:

the operator s, is the reflection along the vector a as it fixes the
hyperplane orthogonal to o and sends a to —a.

We call such example/realization of a root datum the finite crystallographic root
system see e.g. [?, §2.9].

Observe that if we identify the dual space (RY)* with RY by ef + e;, where

{e1,...,en} is the standard basis, then the coroots correspond to the vectors

oV — ﬁa e A ®zR.
1.6. Finite real root systems. We can replace the coefficient rings Z and Q by R in
the definitions of the root datum and of the associated lattices (i.e. by considering
the R-vector space A instead of a Z-module A and its R-linear dual AY). In this
case, we obtain a root datum over R, where (A), = A = (A),, and «"(8) is not
necessarily in Z.

Following example we can realize ¥ as a subset in RV with (o, o) = 1 and
aY(z) := 2(a, x). We call such an example/realization the finite (normalized) real
root system, see e.g. [?, §1]. The Weyl group then turns into a finite real reflection
group which is a Coxeter group

W = (s1,...,8n | (si5;)"" =1)

for some exponents m;;.

All finite real root systems are classified by the so called Cozeter diagrams.
Similar to the Dynkin digram its vertices are in 1-1 correspondence with the set of
simple roots {a1,...,a,}. Different vertices a; and o are connected by an edge
only if m;; > 3. In addition, if m;; > 4, then the respective edge is labelled by the
Coxeter exponent m;;. Observe that o (a;) = —2cos(m/m;;) and the respective
symmetric matrix C' = (o} (@;)) is called the Schléfli matrix.

If W has exponents m;; = 2,3,4,6 only, then (up to rescaling root vectors)
we obtain the usual crystallographic root system. In all other cases (called non-
crystallographic), the finite real root systems are classified by the Coxeter diagrams
of the following types (here m =5 or m > 7):

Io(m) : 'o—m—e H; : )

1 2 3 4
Hy : 55— e @
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Remark 1.1. Observe that we may think of 12(2), I(3), Io(4) and I»(6) as the
normalized crystallographic root systems of type A; x Aj, Ag, Bs (= C3) and
G, respectively. Indeed, these are obtained by scaling one of the simple roots by
—2cos(m/mi;) = 0,—1,—+/2 and —/3, respectively
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