
LECTURE 2

1. Root datum and Coxeter groups

We start from the following classical motivating example.
Consider the Euclidean space RN , N ≥ 2. Let e1, . . . , eN denote the standard ba-

sis. Let H ⊂ RN be the hyperplane consisting of vectors whose sum of coordinates
is 0, i.e.

H := {
N∑
i=1

aiei |
N∑
i=1

ai = 0}.

Let Σ denote the subset of H consisting of all differences of standard vectors

Σ := {ei − ej | i 6= j}.
By definition, we have

Σ ∩mΣ 6= ∅, m ∈ Z =⇒ m = ±1.

and Σ splits into two disjoint subsets Σ+ and Σ−, where

Σ+ := {ei − ej | i < j} and Σ− := {ei − ej | i > j}.
Each vector α from Σ can be uniquely expressed as a Z-linear combination of vectors
from the subset

Π := {ei − ei+1 | 1 ≤ i ≤ N − 1}.
Moreover, if α =

∑
i ci(ei− ei+1), then either all ci ≥ 0, or all ci ≤ 0. We also have

|Σ+| = |Σ−| =
(
N

2

)
.

Let Λ denote the Z-linear span of Π. Observe that Λ is a free Z-module of rank
N − 1 and Λ ⊗Z R ' H. The subset Σ of the finitely generated free Z-module Λ
provides an example of a root system of type A and of rank N − 1:

• elements of Σ are called roots,
• elements of Π are called simple roots,
• elements of Σ+ and Σ− are called positive and negative roots, respectively.
• The Z-module Λ is called root lattice.

Given α ∈ Σ consider an orthogonal reflection sα which fixes the hyperplane
orthogonal to α = ei − ej . It is given by the following general formula

sα(β) := β − 2(α,β)
(α,α) α, where (−,−) is the usual dot-product in RN .

Observe that sα simply switches ei and ej (the ith and the jth coordinates) and,
hence, it leaves Σ invariant:

sα(β) ∈ Σ, for all α, β ∈ Σ.

Let W be the group (called the Weyl group) generated by reflections sα, α ∈
Σ where the multiplication is given by the composite of reflections. It acts by
permutations of the set {e1, . . . , eN}, i.e. it can be identified with the symmetric
group SN on the set of indices {1, . . . N}. Clearly, it leaves Σ invariant.
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1.1. Root datum. We now provide the following generalization of the previous ex-
ample (see e.g. [?, Exp. XXI, §1.1]).

We define a root datum to be a nonempty finite subset Σ of a free finitely gen-
erated Z-module Λ together with a set inclusion

Σ ↪→ Λ∨, α 7→ α∨

into the dual Λ∨ = HomZ(Λ,Z) such that

(1) Σ ∩mΣ 6= ∅, m ∈ Z =⇒ m = ±1,
(2) α∨(α) = 2 for all α ∈ Σ, and
(3) β − α∨(β)α ∈ Σ and β∨ − β∨(α)α∨ ∈ Σ∨ for all α, β ∈ Σ,

where Σ∨ denotes the image of Σ in Λ∨. The elements of Σ (resp. Σ∨) are called
roots (resp. coroots).

The Z-submodule of Λ generated by Σ is called the root lattice and is denoted
by Λr. A root datum is called semisimple if

Λ⊗Z Q = Λr ⊗Z Q.
From now on by a root datum we will always mean a semisimple one.

The Z-submodule of ΛQ = Λ⊗Z Q generated by all λ ∈ ΛQ such that α∨(λ) ∈ Z
for all α ∈ Σ is called the weight lattice and is denoted by Λw.

By definition we have

Λr ⊆ Λ ⊆ Λw and Λr ⊗Z Q = ΛQ = Λw ⊗Z Q.
The Q-rank of ΛQ is called the rank of the root datum.

1.2. Simple roots, fundamental weights and the Cartan matrix. It can be shown
that the root lattice Λr admits a Z-basis Π = {α1, . . . , αn} such that each α ∈ Σ
is a linear combination of αi’s with either all positive or all negative coefficients
and n is the rank of the root datum. So the set Σ splits into two disjoint subsets
Σ = Σ+ q Σ−, where Σ+ (resp. Σ−) is called the set of positive (resp. negative)
roots. The roots αi are called simple roots.

Given the set Π we define the set of fundamental weights {ω1, . . . , ωn} ⊂ Λw as

α∨i (ωj) = δij ,

where δij is the Kronecker symbol. Fundamental weights form a basis of the weight
lattice Λw.

We denote cij = α∨j (αi), i, j = 1 . . . n. The matrix C = (cij) is called the Cartan
matrix of the root datum. By definition we have

αi =

n∑
j=1

cijωj ,

i.e. the Cartan matrix expresses simple roots in terms of fundamental weights.
Observe that that the determinant of the Cartan matrix coincides with the num-

ber of elements in the quotient group Λw/Λr.

1.3. The Dynkin diagram. A root datum is called irreducible if it can not be rep-
resented as a direct sum of root data, i.e. Λ can not be written as Λ = Λ1 ⊕ Λ2,
where Σ1 ⊂ Λ1, Σ2 ⊂ Λ2 are the root data.

To any irreducible root datum we associate a graph called the Dynkin diagram
D. Its vertices are in 1-1 correspondence with the set of simple roots {α1, . . . , αn}
and the number of edges connecting two different vertices αi, αj is given by cij ·cji.
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Moreover, if there are more than one edge connecting αi and αj we put ′ <′ between
αi and αj if cij < cji. Note that the latter inequality leads to (αi, αi) < (αj , αj).

All Dynkin diagrams are classified and consist of the following types (our enu-
meration of vertices follows Bourbaki; the lower index is the rank n):

Classical types:

An : •1 •2 •3 •n−1 •n Cn : •1 •2 •n−2 •n−1
< •n

Bn : •1 •2 •n−2 •n−1
> •n Dn : •1 •2 •n−3 •n−2 •n−1

•n

Exceptional types:

G2 : •1 < •2 E7 : •1 •3 •4 •5 •6 •7

•2

F4 : •1 •2 > •3 •4 E8 : •1 •3 •4 •5 •6 •7 •8

•2

E6 : •1 •3 •4 •5 •6

•2

It can be shown that an irreducible root datum is determined uniquely by

• its Dynkin diagram and
• the intermediate lattice Λr ⊆ Λ ⊆ Λw.

If Λ = Λw (resp. Λ = Λr), then the root datum is called simply connected (resp.
adjoint) and will be denoted by Dscn (resp. Dadn ), where D = A,B,C,D,E,F,G is
one of the Dynkin diagrams and n is its rank.

1.4. The Weyl group. A Z-linear map sα : Λw → Λw, α ∈ Σ, defined by

sα(λ) := λ− α∨(λ)α, λ ∈ Λw,

is called the reflection corresponding to the root α. Observe that by definition we
have

sα ◦ sα = id.

The group W generated by all reflections sα is called the Weyl group of the root
datum. It can be shown that

W = 〈s1, . . . , sn | (sisj)mij = 1〉

where si = sαi
is the reflection corresponding to the simple root αi, the Coxeter

exponents mii = 1 and mij for i 6= j depend on the values of cij as follows:

mij = 2 if cijcji = 0 (no edge),

mij = 3 if cijcji = 1 (single edge),

mij = 4 if cijcji = 2 (double edge),

mij = 6 if cijcji = 3 (triple edge).

The group W is a finite group which acts by permutations on Σ. It provides an
example of the so called Coxeter group.

Each element of W can be written as a product of simple reflections

w = si1si2 . . . sir .
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The smallest such r is called the length of w and is denoted by `(w). Presentation
of w as a product of precisely `(w) simple reflections is called reduced presentation
(or reduced word).

1.5. Geometric example/realization. We can realize roots Σ (and the root lattice
Λr) geometrically as vectors (and their Z-linear combinations) in a finite dimen-
sional Euclidean space RN :

Namely, we may view Σ as a subset of (non-zero) vectors in RN and for each
α ∈ RN we define α∨ ∈ (RN )∗ by

α∨(x) := 2(α,x)
(α,α) , x ∈ RN .

If α∨(β) ∈ Z for all α, β ∈ Σ, then α∨ defines an element in the dual Z-module
Λ∨r . Hence, it gives the inclusion Σ ↪→ Λ∨r , α 7→ α∨ and, therefore, it provides an
example of a root datum. In this way we have also realized the Weyl group W as
the group generated by the usual orthogonal reflections:

the operator sα is the reflection along the vector α as it fixes the
hyperplane orthogonal to α and sends α to −α.

We call such example/realization of a root datum the finite crystallographic root
system see e.g. [?, §2.9].

Observe that if we identify the dual space (RN )∗ with RN by e∗i 7→ ei, where
{e1, . . . , eN} is the standard basis, then the coroots correspond to the vectors

α∨ 7→ 2
(α,α)α ∈ Λr ⊗Z R.

1.6. Finite real root systems. We can replace the coefficient rings Z and Q by R in
the definitions of the root datum and of the associated lattices (i.e. by considering
the R-vector space Λ instead of a Z-module Λ and its R-linear dual Λ∨). In this
case, we obtain a root datum over R, where (Λ)r = Λ = (Λ)w and α∨(β) is not
necessarily in Z.

Following example 1.5, we can realize Σ as a subset in RN with (α, α) = 1 and
α∨(x) := 2(α, x). We call such an example/realization the finite (normalized) real
root system, see e.g. [?, §1]. The Weyl group then turns into a finite real reflection
group which is a Coxeter group

W = 〈s1, . . . , sn | (sisj)mij = 1〉

for some exponents mij .
All finite real root systems are classified by the so called Coxeter diagrams.

Similar to the Dynkin digram its vertices are in 1-1 correspondence with the set of
simple roots {α1, . . . , αn}. Different vertices αi and αj are connected by an edge
only if mij ≥ 3. In addition, if mij ≥ 4, then the respective edge is labelled by the
Coxeter exponent mij . Observe that α∨j (αi) = −2 cos(π/mij) and the respective
symmetric matrix C = (α∨j (αi)) is called the Schläfli matrix.

If W has exponents mij = 2, 3, 4, 6 only, then (up to rescaling root vectors)
we obtain the usual crystallographic root system. In all other cases (called non-
crystallographic), the finite real root systems are classified by the Coxeter diagrams
of the following types (here m = 5 or m ≥ 7):

I2(m) : •1 m •2 H3 : •1 5 •2 •3

H4 : •1 5 •2 •3 •4
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Remark 1.1. Observe that we may think of I2(2), I2(3), I2(4) and I2(6) as the
normalized crystallographic root systems of type A1 × A1, A2, B2 (= C2) and
G2 respectively. Indeed, these are obtained by scaling one of the simple roots by
−2 cos(π/mij) = 0,−1,−

√
2 and −

√
3, respectively
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