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Abstract

We give elementary proofs of two well-known theorems. First,
if Alz] = Clzy,x2, 23] then A = Clzy,x2]. Second, if A; and A,

~

are domains of transcendence degree 1 over C and Aq[zy,...,x,] =
Ag[xl, e ,J?n] then A1 = AQ.

We abbreviate R[zy,...,x,] by R,.
Theorem 1 (Takao Fujita). A[z] = C; implies A = C,.

Definition. For any ring A we can define its ring of absolute constants
AK(A). It is the intersection of the rings of constants of all locally nilpotent
derivations.

For example though a description of Inds for polynomial rings C, are
known only when n = 1 or n = 2, it is easy to compute that AK(C,,) = C
because all partial derivatives are Inds.

Here is a key Lemma

Lemma 5. If A is a commutative domain, GK dim(A) < oo, (trdeg(A4) <
o0), and AK(A) = A then AK(A[z]) = A.

(We are assuming that the only Ind on A is the zero derivation.)
Proof. The derivative by x is an Ind, just like in the ring Clz]. We will see
that all Inds of A[x] are equivalent to this derivation.

If 0 € LND(A[z] is a non-zero derivation and 9|4 = 0 consider d(x) =
roxd + 24t + - + 24 where z; € A and xg # 0. The d-degree of 9(x) is
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degy(x) — 1 and degy(wor? + 12971 + -+ + 14) = ddegy(x). The equality
degy(z) — 1 = ddegy(x) is possible only if d = 0 and degy(z) = 1, i.e. 0 is
equivalent to the derivative by x.

If all Inds of Alx] are zeros on A the lemma is proved. Assume therefore
that 0 is not identically zero on A. Since A has a finite transcendence degree,

m = max(deg,(d(a))|a € A) < o0

To see this take a transcendence basis T : ty,...,t, of A, i.e. a maximal set
of algebraically independent elements. If a € A then there is an irreducible
dependence of a with this basis given by a polynomial p(ti,...,t,,a) = 0.
Hence 0 = ), p;0(t;) + p,0(a) where all partial derivatives p; and p, belong
to A. Therefore deg,(0(a)) cannot be larger than max(deg, (0(¢;))[t; € T).

Let

d—

G(m):xoxd+x1x Loy

where x; € A.
To understand what is going on consider the following three possibilities:
(a) d >m+1;
(b) d <m + 1;
(¢c)d=m+ 1.

If d > m+1 then deg, (9?(z)) = 2d—1. Indeed, 3*(z) = I3 0, zz?™") =
>oiiol0(zs) a4 (d—i)z,a® 7 O(x)] and deg, (9(w:)z" '+ (d—i)aie =1 0(x)) =
2d — i — 1 since deg, (d(z;)x4) <m+d—1i <d—1+d—i. Similar consid-
erations show that deg, (9’ (z)) = jd —j — 1 and & (z) # 0 for any j. This is
impossible since 0 is an Ind.

If d < m+1 we can write d(a) = Y 1", & (a)z™ " for a € A where ¢;(a) € A
and € is not identically zero because deg,(d(a)) = m for at least one a € A.

Operators ¢; are derivations of A. Indeed,

(a1 + az) = O(a1) + 0(az) = 3217 eiar)a™ ™" + 370 €i(az) 2™,
hence €;(a; + as) = €;(ay) + €;(az) and

d(araz) = d(ar)az + a10(az) = Y 1" €i(ar)x™ as + a1y 1oy €i(az)z™ ™,
hence €;(ajas) = €;(ay)ag + alel(ag)

Now, 8%(a) = (3 L, i(a)a™ ™) = 321, [0(ei(a))a™ ' +(m—i)ei(a)2™ "0 ()]
and deg, [0(€;(a))z™ " + (m — i)e;(a)z™ 1 (x)] = 2m — i if €(e;(a)) # 0
since deg,[(m — i)e;(a)x™ " 10( )] <m—i—1+d < 2m — i. Therefore



deg,(0%*(a)) = 2m if €(a) # 0 since the coefficient with z?™ is €2(a). Simi-
larly, deg, (0%(a)) = km if €k(a) # 0. But then € is an Ind of A because 9 is
an Ind of Alx]. Therefore ¢y = 0.

The remaining case is d = m + 1 (and m > 0). In this case
O(ax®) = O(a)zF +kaz"10(x) = S, €i(a)a™ ok fkak S gt =
(eo(a) + kaxo)z™ ™ + 377" (ei(a) + kaz;)x™ ™ + kaw,, 12571

Hence deg, (d(az®)) = k+m if eg(a) + kaxy # 0. Consider a derivation D
given by D(a) = €y(a)z™, D(x) = rox™ . We can write d(az*) = D(az")+
A where deg,(A) < k +m since D(ax*) = ey(a)a™ " + ka*Laxoa™ L.

Therefore D is an Ind since if it isn’t we will find a monomial az® for
which deg,(0?(az"*)) = k + jm. But this is impossible since if D is an Ind
then degp(z) — 1 =degp(ag) + (m + 1) degp(x).

Lemma is proved. [J

Since Alzx] = C3; we cannot have AK(A) = A because, according to
Lemma 1 if AK(A) = A then C = AK(C3) = A. Hence AK(A) # A which
means that there is a non-zero Ind 0 on A.

As we know from the first lecture trdeg(A?) = 1. Therefore A2 = C[p]
(Lemma 4).

A derivation 0 is a non-zero Ind on A. So there are elements of A which
do not belong to A2, but their images under d belong to A2 = Clp]. We
can choose among them an a € A for which d(a) = f(p) where degree of a
polynomial f is minimal possible. If this degree is zero, i.e. d(a) = ¢ € C*
then A = C[p,a]. In this case t € A and the proof that Nil,(9) = A?[t] is
the same as the proof in Lemma 2.

If A= C|p,a] we are done. Otherwise take a b € A\ C[p,a]. As we know
AcC Frac(Aa)[ﬁ] = C(p)[a]. Since b & Clp, a] it has a denominator which
is a polynomial in p, and we can multiply b by a polynomial g(p) so that
the denominator of g(p)b is p — ¢. Thus g(p)b = d’(fa) =1(p,a) + 3 g(a) where
¢, ¥ € Clp,a| and ¢ € Cla).

Therefore i_az € A. Consider presentation of {(a) = [[;(a — ;) as a
product of irreducible polynomials. One of them should be divisible by an
irreducible polynomial p —¢. This polynomial is a factor in one of the factors
a — ;. Hence C;_T“ € A for some p € C. But this leads to a contradiction

since O(5=£) = fp) and degp( -) <deg,(f). O

This is a theorem of Takao Fujita: Fujita, Takao On Zariski problem.
Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 3, 106-110.



2 Az, .., 1] = Ajlay, .1y

Now we discuss the following question. Suppose that R, = R[zy,...,z,] is
given and R is a domain of transcendence degree one. Can we recover R up
to an isomorphism? It turns out that the answer is yes. Though we are not
going to discuss it, the answer is no if trdeg(R) > 1.

Theorem 2. If A} and Ay are domains of transcendence degree 1 over C
and Aq[xy, ..., 1] = Aglxy, ... 2] then Ay = As.

Lemma 6. Either AK(R,,) = R or AK(R,) = C.

Proof. Since each of the partial derivatives is in LND(R,) it is clear that
AK(R,) C R.

So if AK(R,,) # R there exist 0 € LND(R,,) which is not identically zero
on R. If 9(s) # 0 for some s € R then O(r) # 0 for any r € R\ C. Indeed, if
rp € R\C and r € R\C then these two elements are algebraically dependent
(since trdeg(R) = 1). If g(r1,72) = 0 is an irreducible dependence between
these elements then 0 = 0(q(r1,r2)) = q1(r1,72)0(r1) + g2(r1,72)0(r2) Where
¢; are the corresponding partial derivatives of q(ri,75). If O(r;) = 0 then
q2(r1,72)0(r2) = 0 and 9(r3) = 0 since ga(ry, o) # 0. Therefore AK(R,,) = C.
O

Lemma 7. If AK(R,) = C then R is isomorphic to a subring of a

polynomial ring with one generator.
Proof. Let S = Frac(R) and S,, = Frac(R,). As we know from the previous
Lemma there is a 0 € LND(R,,) which is not identically zero on R. Since
0 € LND(R,) there exists t € S, for which d(t) = 1. Of course, R C S9[t]
and t-degrees of elements of R\ C are positive.

Since trdeg(R) = 1 it is possible to construct a monomorphism (i.e. one-
to-one homomorphism) from R into C[z].

The ring R is finitely generated. To check it consider all degg(r) where
r € R. This is a semigroup II relative to addition. Take d, the smallest
positive number in II. Then II is generated by d and the smallest elements
of II which are congruent to 1,2,...,d —1 modulo d. We can chose elements
T1,...,Tm € R with the corresponding degrees. Consider a subalgebra A of
R generated by these elements. If » € R there exists an element a € A
with degy(a) = degy(r). Suppose r =Y rit"™", a =Y _ at"™" r,a €
Ziﬁg cija'r? =0, ¢ €

=R L i) —
itj—o Cija'r’) = pv and

S9. These elements are algebraically dependent: Y

C. Hence > abr) = 0, otherwise deg, (3

itj=p Ci.j



Zzzzg cija'r? # 0. We can write Ziﬂ.:u cmaéré = af Ziﬂ.:u ci7j(2—g)j =
ag [Tr—o(22 — M) where Ay, ..., A, are roots of the polynomial >, ., ci 2.
Thus ro — Aag = 0 for one of these roots and degy(r — Aa) < degy(r). So, by
induction on deg, we can show that any element r € R is a linear combination
of elements of A, i.e. R=A=C[ry,...,rm]

Consider the subfield E of S? which is generated by the coefficients of
all r;’s as polynomials in £. Since FE is finitely generated it has a finite
basis of transcendence ti,...,t; over C. Since characteristic of E is zero,
E = C(ty, ..., t;)[0] where 6 is algebraic over C(ty,...,t;). The element 6 is a
root of an irreducible polynomial P(z) € C(t,...,tx)[z].

The coefficients of P are rational functions in %q,...,f; and the coeffi-
cients of r; are rational functions in ¢i,...,¢; and polynomials in 6. Say,
f(ty, ... tx;0) is the coefficient with the highest degree of ¢ in r1. Since P is
irreducible, polynomials P(z) and F(z) = f(t1,...,tx; 2) are relatively prime
and we can find a linear combination ¢ P+¢ F = 1 where ¢, ¢ € C(ty, ..., 1),
of these polynomials.

We can find complex numbers ¢y, ..., ¢, which satisfy the following con-
ditions:

(a) denominators of ¢ and 1 are not zeros;
(b) denominators of coefficients of P are not zeros;
(¢) denominators of coefficients of all r; are not zeros.
Now, substitute c,...,cx in P(z) and find a root ¢ € C of this poly-

nomial. After that substitute cq,..., ¢, and ¢ in the coefficients of r;. We
will obtain m polynomials 7, ..., 7, € C[t] and deg(r}) > 0. The mapping
a: R — C[t] sending r; — r, i = 1,...,m is a homomorphism of R into

C[t]. The image «(R) has the transcendence degree one since 7} is not a
constant. Hence this in a monomorphism. (If the kernel of a contains a
non-zero element the image will be just C.) [

From now on we assume that R C C[y]. I also assume that S = Frac(R) =
C(y). This follows from the Liiroth theorem.

Lemma 8. There exists an r € R such that rCly] C R.
Proof. By assumptions of the lemma there exist two elements f, g € R such
that g = yf. Let deg,(f) = k+ 1 and let us assume that f is monic. Since
elements ¢'f*~" = y'f* € R it is clear that f*Cly] € R. (It is enough to
notice that if i > k then y* = " *=1f + r;(y) with deg(r;) < i. So we can
use induction on i to observe that y'f* € R for all i.) O



Lemma 9. Denote the extension of 0 € Der(R) on C(y) also by 0. Then
9(Cly]) c Clyl.
Proof. Let us assume that d(y) € C(y) \ Cly]. Then making a change of
variable if necessary we may assume that d(y) has a pole of order m — 1 at
y=0.If r € Rand r = r(0) + y's where s(0) # 0 then i is divisible by m.
Otherwise several applications of 0 will take r out of C[y| and hence out of
R. Since in Lemma 8 g = yf where f, g € R this is impossible. [J

Lemma 10. There exists an h € R such that hCly] C R and 0(h) €
hCly] for any 0 € Der(R).
Proof. By the previous lemma there are non-zero ideals of C[y| which belong
to R. Let us take the maximal ideal with this property and denote by h its
generator.

If 0 € Der(R) then R D 0(hCly]) = 9(h)Cly]+hO(C[y]). Since O(C[y]) C
Cly] it implies that d(h)C[y] C R and thus d(h) € hC[y]. O

Lemma 11. R = C[y].

Proof. R, C Cly,x1,...,2,] = A by Lemma 7, and, using Liiroth theorem
Frac(R,) = C(y, z1,...,2,). By Lemma 10 there exists an h € R such that
hCly] € R and 9(h) € hCl[y] for any 0 € Der(R). If h € C the Lemma is
proved. So let us assume that h ¢ C.

By the assumption of the Lemma there is a 9 € LND(R,,) which is not
zero on R. As we know if h & C then 9(h) # 0.

We can write 9(r) = > €&(a)x' where i = (i1,...,4,) is a multi-index
and x' = 2! ... 2%, As above, ¢ € Der(R). Hence by Lemma 10 9(h) = ha
where a € A. By Lemma 9 9(A) C A. Hence 9'(h) = ha;, a; € A. Consider
g = O%(h) where k = degy(h). Then g = hay and d(g) = 0.

We know from Lemma 10 that hA C R,,. Therefore g* = h%a; = h(ha}) €
R, and 9(g?) = 0. Since ha; € R, both d(h) = 0 and d(hai) = 0 contrary
to our assumption that d(h) # 0. Therefore h € C and R, = A. O

Our claim is proved. If AK(R,,) = R we know what R is, if AK(R,,) =C
then R = C.

This is a theorem of Abhyankar, Eakin, and Heinzer: Abhyankar, Shree-
ram S.; Heinzer, William; Eakin, Paul On the uniqueness of the coefficient
ring in a polynomial ring. J. Algebra 23 (1972), 310-342.



