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Theorems of Fujita and

Abhyankar, Eakin, and Heinzer

Leonid Makar-Limanov

Abstract

We give elementary proofs of two well-known theorems. First,
if A[x] ∼= C[x1, x2, x3] then A ∼= C[x1, x2]. Second, if A1 and A2

are domains of transcendence degree 1 over C and A1[x1, . . . , xn] ∼=
A2[x1, . . . , xn] then A1

∼= A2.

1 A[x] ∼= C3

We abbreviate R[x1, . . . , xn] by Rn.

Theorem 1 (Takao Fujita). A[x] ∼= C3 implies A ∼= C2.

Definition. For any ring A we can define its ring of absolute constants
AK(A). It is the intersection of the rings of constants of all locally nilpotent
derivations.

For example though a description of lnds for polynomial rings Cn are
known only when n = 1 or n = 2, it is easy to compute that AK(Cn) = C
because all partial derivatives are lnds.

Here is a key Lemma
Lemma 5. If A is a commutative domain, GK dim(A) <∞, (trdeg(A) <

∞), and AK(A) = A then AK(A[x]) = A.
(We are assuming that the only lnd on A is the zero derivation.)
Proof. The derivative by x is an lnd, just like in the ring C[x]. We will see
that all lnds of A[x] are equivalent to this derivation.

If ∂ ∈ LND(A[x] is a non-zero derivation and ∂|A = 0 consider ∂(x) =
x0x

d + x1x
d−1 + · · · + xd where xi ∈ A and x0 6= 0. The ∂-degree of ∂(x) is
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deg∂(x) − 1 and deg∂(x0x
d + x1x

d−1 + · · · + xd) = d deg∂(x). The equality
deg∂(x) − 1 = d deg∂(x) is possible only if d = 0 and deg∂(x) = 1, i.e. ∂ is
equivalent to the derivative by x.

If all lnds of A[x] are zeros on A the lemma is proved. Assume therefore
that ∂ is not identically zero on A. Since A has a finite transcendence degree,

m = max(degx(∂(a))|a ∈ A) <∞.

To see this take a transcendence basis T : t1, . . . , tn of A, i.e. a maximal set
of algebraically independent elements. If a ∈ A then there is an irreducible
dependence of a with this basis given by a polynomial p(t1, . . . , tn, a) = 0.
Hence 0 =

∑
i pi∂(ti) + pa∂(a) where all partial derivatives pi and pa belong

to A. Therefore degx(∂(a)) cannot be larger than max(degx(∂(ti))|ti ∈ T ).

Let
∂(x) = x0x

d + x1x
d−1 + · · ·+ xd

where xi ∈ A.
To understand what is going on consider the following three possibilities:

(a) d > m+ 1;
(b) d < m+ 1;
(c) d = m+ 1.

If d > m+1 then degx(∂
2(x)) = 2d−1. Indeed, ∂2(x) = ∂(

∑d
i=0 xix

d−i) =∑d
i=0[∂(xi)x

d−i+(d−i)xixd−i−1∂(x)] and degx((∂(xi)x
d−i+(d−i)xixd−i−1∂(x)) =

2d− i− 1 since degx(∂(xi)x
d−i) ≤ m+ d− i < d− 1 + d− i. Similar consid-

erations show that degx(∂
j(x)) = jd− j− 1 and ∂j(x) 6= 0 for any j. This is

impossible since ∂ is an lnd.
If d < m+1 we can write ∂(a) =

∑m
i=0 εi(a)xm−i for a ∈ A where εi(a) ∈ A

and ε0 is not identically zero because degx(∂(a)) = m for at least one a ∈ A.
Operators εi are derivations of A. Indeed,

∂(a1 + a2) = ∂(a1) + ∂(a2) =
∑m

i=0 εi(a1)x
m−i +

∑m
i=0 εi(a2)x

m−i,
hence εi(a1 + a2) = εi(a1) + εi(a2) and
∂(a1a2) = ∂(a1)a2 + a1∂(a2) =

∑m
i=0 εi(a1)x

m−ia2 + a1
∑m

i=0 εi(a2)x
m−i,

hence εi(a1a2) = εi(a1)a2 + a1εi(a2).
Now, ∂2(a) = ∂(

∑m
i=0 εi(a)xm−i) =

∑m
i=0[∂(εi(a))xm−i+(m−i)εi(a)xm−i−1∂(x)]

and degx[∂(εi(a))xm−i + (m − i)εi(a)xm−i−1∂(x)] = 2m − i if ε0(εi(a)) 6= 0
since degx[(m − i)εi(a)xm−i−1∂(x)] ≤ m − i − 1 + d < 2m − i. Therefore
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degx(∂
2(a)) = 2m if ε20(a) 6= 0 since the coefficient with x2m is ε20(a). Simi-

larly, degx(∂
k(a)) = km if εk0(a) 6= 0. But then ε0 is an lnd of A because ∂ is

an lnd of A[x]. Therefore ε0 = 0.
The remaining case is d = m+ 1 (and m > 0). In this case

∂(axk) = ∂(a)xk+kaxk−1∂(x) =
∑m

i=0 εi(a)xm−ixk+kaxk−1
∑m+1

i=0 xix
m+1−i =

(ε0(a) + kax0)x
m+k +

∑m
i=1(εi(a) + kaxi)x

m−i+k + kaxm+1x
k−1.

Hence degx(∂(axk)) = k+m if ε0(a)+kax0 6= 0. Consider a derivation D
given by D(a) = ε0(a)xm, D(x) = x0x

m+1. We can write ∂(axk) = D(axk)+
∆ where degx(∆) < k +m since D(axk) = ε0(a)xm+k + kxk−1ax0x

m+1.
Therefore D is an lnd since if it isn’t we will find a monomial axk for

which degx(∂
j(axk)) = k + jm. But this is impossible since if D is an lnd

then degD(x)− 1 = degD(a0) + (m+ 1) degD(x).
Lemma is proved. �

Since A[x] ∼= C3 we cannot have AK(A) = A because, according to
Lemma 1 if AK(A) = A then C = AK(C3) = A. Hence AK(A) 6= A which
means that there is a non-zero lnd ∂ on A.

As we know from the first lecture trdeg(A∂) = 1. Therefore A∂ = C[p]
(Lemma 4).

A derivation ∂ is a non-zero lnd on A. So there are elements of A which
do not belong to A∂, but their images under ∂ belong to A∂ = C[p]. We
can choose among them an a ∈ A for which ∂(a) = f(p) where degree of a
polynomial f is minimal possible. If this degree is zero, i.e. ∂(a) = c ∈ C∗
then A = C[p, a]. In this case t ∈ A and the proof that NilA(∂) = A∂[t] is
the same as the proof in Lemma 2.

If A = C[p, a] we are done. Otherwise take a b ∈ A \C[p, a]. As we know
A ⊂ Frac(A∂)[ a

f(p)
] = C(p)[a]. Since b 6∈ C[p, a] it has a denominator which

is a polynomial in p, and we can multiply b by a polynomial g(p) so that

the denominator of g(p)b is p− c. Thus g(p)b = φ(p,a)
p−c = ψ(p, a) + ξ(a)

p−c where

φ, ψ ∈ C[p, a] and ξ ∈ C[a].

Therefore ξ(a)
p−c ∈ A. Consider presentation of ξ(a) =

∏
i(a − µi) as a

product of irreducible polynomials. One of them should be divisible by an
irreducible polynomial p−c. This polynomial is a factor in one of the factors
a − µi. Hence a−µ

p−c ∈ A for some µ ∈ C. But this leads to a contradiction

since ∂(a−µ
p−c ) = f(p)

p−c and degp(
f
p−c) < degp(f). �

This is a theorem of Takao Fujita: Fujita, Takao On Zariski problem.
Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 3, 106-110.
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2 A1[x1, . . . , xn] ∼= A2[x1, . . . , xn]

Now we discuss the following question. Suppose that Rn = R[x1, . . . , xn] is
given and R is a domain of transcendence degree one. Can we recover R up
to an isomorphism? It turns out that the answer is yes. Though we are not
going to discuss it, the answer is no if trdeg(R) > 1.

Theorem 2. If A1 and A2 are domains of transcendence degree 1 over C
and A1[x1, . . . , xn] ∼= A2[x1, . . . , xn] then A1

∼= A2.

Lemma 6. Either AK(Rn) = R or AK(Rn) = C.
Proof. Since each of the partial derivatives is in LND(Rn) it is clear that
AK(Rn) ⊂ R.

So if AK(Rn) 6= R there exist ∂ ∈ LND(Rn) which is not identically zero
on R. If ∂(s) 6= 0 for some s ∈ R then ∂(r) 6= 0 for any r ∈ R \C. Indeed, if
r1 ∈ R\C and r2 ∈ R\C then these two elements are algebraically dependent
(since trdeg(R) = 1). If q(r1, r2) = 0 is an irreducible dependence between
these elements then 0 = ∂(q(r1, r2)) = q1(r1, r2)∂(r1) + q2(r1, r2)∂(r2) where
qi are the corresponding partial derivatives of q(r1, r2). If ∂(r1) = 0 then
q2(r1, r2)∂(r2) = 0 and ∂(r2) = 0 since q2(r1, r2) 6= 0. Therefore AK(Rn) = C.
�

Lemma 7. If AK(Rn) = C then R is isomorphic to a subring of a
polynomial ring with one generator.
Proof. Let S = Frac(R) and Sn = Frac(Rn). As we know from the previous
Lemma there is a ∂ ∈ LND(Rn) which is not identically zero on R. Since
∂ ∈ LND(Rn) there exists t ∈ Sn for which ∂(t) = 1. Of course, R ⊂ S∂n [t]
and t-degrees of elements of R \ C are positive.

Since trdeg(R) = 1 it is possible to construct a monomorphism (i.e. one-
to-one homomorphism) from R into C[x].

The ring R is finitely generated. To check it consider all deg∂(r) where
r ∈ R. This is a semigroup Π relative to addition. Take d, the smallest
positive number in Π. Then Π is generated by d and the smallest elements
of Π which are congruent to 1, 2, . . . , d− 1 modulo d. We can chose elements
r1, ..., rm ∈ R with the corresponding degrees. Consider a subalgebra A of
R generated by these elements. If r ∈ R there exists an element a ∈ A
with deg∂(a) = deg∂(r). Suppose r =

∑ν
i=0 rit

ν−i, a =
∑ν

i=0 ait
ν−i; ri, ai ∈

S∂n . These elements are algebraically dependent:
∑i+j=µ

i+j=0 ci,ja
irj = 0, ci,j ∈

C. Hence
∑

i+j=µ ci,ja
i
0r
j
0 = 0, otherwise deg∂(

∑i+j=µ
i+j=0 ci,ja

irj) = µν and
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∑i+j=µ
i+j=0 ci,ja

irj 6= 0. We can write
∑

i+j=µ ci,ja
i
0r
j
0 = aµ0

∑
i+j=µ ci,j(

r0
a0

)j =

an0
∏µ

k=0(
r0
a0
− λk) where λ1, . . . , λµ are roots of the polynomial

∑
i+j=µ ci,jz

j.
Thus r0− λa0 = 0 for one of these roots and deg∂(r− λa) < deg∂(r). So, by
induction on deg∂ we can show that any element r ∈ R is a linear combination
of elements of A, i.e. R = A = C[r1, . . . , rm].

Consider the subfield E of S∂n which is generated by the coefficients of
all ri’s as polynomials in t. Since E is finitely generated it has a finite
basis of transcendence t1, ..., tk over C. Since characteristic of E is zero,
E = C(t1, ..., tk)[θ] where θ is algebraic over C(t1, ..., tk). The element θ is a
root of an irreducible polynomial P (z) ∈ C(t1, . . . , tk)[z].

The coefficients of P are rational functions in t1, ..., tk and the coeffi-
cients of ri are rational functions in t1, ..., tk and polynomials in θ. Say,
f(t1, . . . , tk; θ) is the coefficient with the highest degree of t in r1. Since P is
irreducible, polynomials P (z) and F (z) = f(t1, . . . , tk; z) are relatively prime
and we can find a linear combination φP+ψF = 1 where φ, ψ ∈ C(t1, . . . , tk),
of these polynomials.

We can find complex numbers c1, . . . , ck which satisfy the following con-
ditions:
(a) denominators of φ and ψ are not zeros;
(b) denominators of coefficients of P are not zeros;
(c) denominators of coefficients of all ri are not zeros.

Now, substitute c1, . . . , ck in P (z) and find a root θ′ ∈ C of this poly-
nomial. After that substitute c1, . . . , ck and θ′ in the coefficients of ri. We
will obtain m polynomials r′1, . . . , r

′
m ∈ C[t] and deg(r′1) > 0. The mapping

α : R → C[t] sending ri → r′i, i = 1, . . . ,m is a homomorphism of R into
C[t]. The image α(R) has the transcendence degree one since r′1 is not a
constant. Hence this in a monomorphism. (If the kernel of α contains a
non-zero element the image will be just C.) �

From now on we assume that R ⊆ C[y]. I also assume that S = Frac(R) =
C(y). This follows from the Lüroth theorem.

Lemma 8. There exists an r ∈ R such that rC[y] ⊂ R.
Proof. By assumptions of the lemma there exist two elements f, g ∈ R such
that g = yf . Let degy(f) = k + 1 and let us assume that f is monic. Since
elements gifk−i = yifk ∈ R it is clear that fkC[y] ⊂ R. (It is enough to
notice that if i > k then yi = yi−k−1f + ri(y) with deg(ri) < i. So we can
use induction on i to observe that yifk ∈ R for all i.) �
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Lemma 9. Denote the extension of ∂ ∈ Der(R) on C(y) also by ∂. Then
∂(C[y]) ⊂ C[y].
Proof. Let us assume that ∂(y) ∈ C(y) \ C[y]. Then making a change of
variable if necessary we may assume that ∂(y) has a pole of order m − 1 at
y = 0. If r ∈ R and r = r(0) + yis where s(0) 6= 0 then i is divisible by m.
Otherwise several applications of ∂ will take r out of C[y] and hence out of
R. Since in Lemma 8 g = yf where f, g ∈ R this is impossible. �

Lemma 10. There exists an h ∈ R such that hC[y] ⊂ R and ∂(h) ∈
hC[y] for any ∂ ∈ Der(R).
Proof. By the previous lemma there are non-zero ideals of C[y] which belong
to R. Let us take the maximal ideal with this property and denote by h its
generator.

If ∂ ∈ Der(R) then R ⊃ ∂(hC[y]) = ∂(h)C[y]+h∂(C[y]). Since ∂(C[y]) ⊂
C[y] it implies that ∂(h)C[y] ⊂ R and thus ∂(h) ∈ hC[y]. �

Lemma 11. R = C[y].
Proof. Rn ⊆ C[y, x1, . . . , xn] = A by Lemma 7, and, using Lüroth theorem
Frac(Rn) = C(y, x1, . . . , xn). By Lemma 10 there exists an h ∈ R such that
hC[y] ⊂ R and ∂(h) ∈ hC[y] for any ∂ ∈ Der(R). If h ∈ C the Lemma is
proved. So let us assume that h 6∈ C.

By the assumption of the Lemma there is a ∂ ∈ LND(Rn) which is not
zero on R. As we know if h 6∈ C then ∂(h) 6= 0.

We can write ∂(r) =
∑

i εi(a)xi where i = (i1, . . . , in) is a multi-index
and xi = xi11 . . . x

in
n . As above, εi ∈ Der(R). Hence by Lemma 10 ∂(h) = ha

where a ∈ A. By Lemma 9 ∂(A) ⊂ A. Hence ∂i(h) = hai, ai ∈ A. Consider
g = ∂k(h) where k = deg∂(h). Then g = hak and ∂(g) = 0.

We know from Lemma 10 that hA ⊆ Rn. Therefore g2 = h2a2k = h(ha2k) ∈
Rn and ∂(g2) = 0. Since ha2k ∈ Rn both ∂(h) = 0 and ∂(ha2k) = 0 contrary
to our assumption that ∂(h) 6= 0. Therefore h ∈ C and Rn = A. �

Our claim is proved. If AK(Rn) = R we know what R is, if AK(Rn) = C
then R = C.

This is a theorem of Abhyankar, Eakin, and Heinzer: Abhyankar, Shree-
ram S.; Heinzer, William; Eakin, Paul On the uniqueness of the coefficient
ring in a polynomial ring. J. Algebra 23 (1972), 310-342.
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