Lecture 2
 Theorems of Fujita and Abhyankar, Eakin, and Heinzer

Leonid Makar-Limanov

Abstract

We give elementary proofs of two well-known theorems. First, if $A[x] \cong \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ then $A \cong \mathbb{C}\left[x_{1}, x_{2}\right]$. Second, if A_{1} and A_{2} are domains of transcendence degree 1 over \mathbb{C} and $A_{1}\left[x_{1}, \ldots, x_{n}\right] \cong$ $A_{2}\left[x_{1}, \ldots, x_{n}\right]$ then $A_{1} \cong A_{2}$.

$1 \quad A[x] \cong \mathbb{C}_{3}$

We abbreviate $R\left[x_{1}, \ldots, x_{n}\right]$ by R_{n}.
Theorem 1 (Takao Fujita). $A[x] \cong \mathbb{C}_{3}$ implies $A \cong \mathbb{C}_{2}$.
Definition. For any ring A we can define its ring of absolute constants $\mathrm{AK}(A)$. It is the intersection of the rings of constants of all locally nilpotent derivations.

For example though a description of lnds for polynomial rings \mathbb{C}_{n} are known only when $n=1$ or $n=2$, it is easy to compute that $\operatorname{AK}\left(C_{n}\right)=\mathbb{C}$ because all partial derivatives are lnds.

Here is a key Lemma
Lemma 5. If A is a commutative domain, $\operatorname{GK} \operatorname{dim}(A)<\infty,(\operatorname{trdeg}(A)<$ $\infty)$, and $\operatorname{AK}(A)=A$ then $\operatorname{AK}(A[x])=A$.
(We are assuming that the only \ln on A is the zero derivation.)
Proof. The derivative by x is an lnd, just like in the ring $\mathbb{C}[x]$. We will see that all lnds of $A[x]$ are equivalent to this derivation.

If $\partial \in \operatorname{LND}\left(A[x]\right.$ is a non-zero derivation and $\left.\partial\right|_{A}=0$ consider $\partial(x)=$ $x_{0} x^{d}+x_{1} x^{d-1}+\cdots+x_{d}$ where $x_{i} \in A$ and $x_{0} \neq 0$. The ∂-degree of $\partial(x)$ is
$\operatorname{deg}_{\partial}(x)-1$ and $\operatorname{deg}_{\partial}\left(x_{0} x^{d}+x_{1} x^{d-1}+\cdots+x_{d}\right)=d \operatorname{deg}_{\partial}(x)$. The equality $\operatorname{deg}_{\partial}(x)-1=d \operatorname{deg}_{\partial}(x)$ is possible only if $d=0$ and $\operatorname{deg}_{\partial}(x)=1$, i.e. ∂ is equivalent to the derivative by x.

If all lnds of $A[x]$ are zeros on A the lemma is proved. Assume therefore that ∂ is not identically zero on A. Since A has a finite transcendence degree,

$$
m=\max \left(\operatorname{deg}_{x}(\partial(a)) \mid a \in A\right)<\infty
$$

To see this take a transcendence basis $\mathcal{T}: t_{1}, \ldots, t_{n}$ of A, i.e. a maximal set of algebraically independent elements. If $a \in A$ then there is an irreducible dependence of a with this basis given by a polynomial $p\left(t_{1}, \ldots, t_{n}, a\right)=0$. Hence $0=\sum_{i} p_{i} \partial\left(t_{i}\right)+p_{a} \partial(a)$ where all partial derivatives p_{i} and p_{a} belong to A. Therefore $\operatorname{deg}_{x}(\partial(a))$ cannot be larger than $\max \left(\operatorname{deg}_{x}\left(\partial\left(t_{i}\right)\right) \mid t_{i} \in \mathcal{T}\right)$.

Let

$$
\partial(x)=x_{0} x^{d}+x_{1} x^{d-1}+\cdots+x_{d}
$$

where $x_{i} \in A$.
To understand what is going on consider the following three possibilities:
(a) $d>m+1$;
(b) $d<m+1$;
(c) $d=m+1$.

If $d>m+1$ then $\operatorname{deg}_{x}\left(\partial^{2}(x)\right)=2 d-1$. Indeed, $\partial^{2}(x)=\partial\left(\sum_{i=0}^{d} x_{i} x^{d-i}\right)=$ $\sum_{i=0}^{d}\left[\partial\left(x_{i}\right) x^{d-i}+(d-i) x_{i} x^{d-i-1} \partial(x)\right]$ and $\operatorname{deg}_{x}\left(\left(\partial\left(x_{i}\right) x^{d-i}+(d-i) x_{i} x^{d-i-1} \partial(x)\right)=\right.$ $2 d-i-1$ since $\operatorname{deg}_{x}\left(\partial\left(x_{i}\right) x^{d-i}\right) \leq m+d-i<d-1+d-i$. Similar considerations show that $\operatorname{deg}_{x}\left(\partial^{j}(x)\right)=j d-j-1$ and $\partial^{j}(x) \neq 0$ for any j. This is impossible since ∂ is an lnd.

If $d<m+1$ we can write $\partial(a)=\sum_{i=0}^{m} \epsilon_{i}(a) x^{m-i}$ for $a \in A$ where $\epsilon_{i}(a) \in A$ and ϵ_{0} is not identically zero because $\operatorname{deg}_{x}(\partial(a))=m$ for at least one $a \in A$.

Operators ϵ_{i} are derivations of A. Indeed,
$\partial\left(a_{1}+a_{2}\right)=\partial\left(a_{1}\right)+\partial\left(a_{2}\right)=\sum_{i=0}^{m} \epsilon_{i}\left(a_{1}\right) x^{m-i}+\sum_{i=0}^{m} \epsilon_{i}\left(a_{2}\right) x^{m-i}$,
hence $\epsilon_{i}\left(a_{1}+a_{2}\right)=\epsilon_{i}\left(a_{1}\right)+\epsilon_{i}\left(a_{2}\right)$ and
$\partial\left(a_{1} a_{2}\right)=\partial\left(a_{1}\right) a_{2}+a_{1} \partial\left(a_{2}\right)=\sum_{i=0}^{m} \epsilon_{i}\left(a_{1}\right) x^{m-i} a_{2}+a_{1} \sum_{i=0}^{m} \epsilon_{i}\left(a_{2}\right) x^{m-i}$, hence $\epsilon_{i}\left(a_{1} a_{2}\right)=\epsilon_{i}\left(a_{1}\right) a_{2}+a_{1} \epsilon_{i}\left(a_{2}\right)$.

Now, $\partial^{2}(a)=\partial\left(\sum_{i=0}^{m} \epsilon_{i}(a) x^{m-i}\right)=\sum_{i=0}^{m}\left[\partial\left(\epsilon_{i}(a)\right) x^{m-i}+(m-i) \epsilon_{i}(a) x^{m-i-1} \partial(x)\right]$ and $\operatorname{deg}_{x}\left[\partial\left(\epsilon_{i}(a)\right) x^{m-i}+(m-i) \epsilon_{i}(a) x^{m-i-1} \partial(x)\right]=2 m-i$ if $\epsilon_{0}\left(\epsilon_{i}(a)\right) \neq 0$ since $\operatorname{deg}_{x}\left[(m-i) \epsilon_{i}(a) x^{m-i-1} \partial(x)\right] \leq m-i-1+d<2 m-i$. Therefore
$\operatorname{deg}_{x}\left(\partial^{2}(a)\right)=2 m$ if $\epsilon_{0}^{2}(a) \neq 0$ since the coefficient with $x^{2 m}$ is $\epsilon_{0}^{2}(a)$. Similarly, $\operatorname{deg}_{x}\left(\partial^{k}(a)\right)=k m$ if $\epsilon_{0}^{k}(a) \neq 0$. But then ϵ_{0} is an lnd of A because ∂ is an lnd of $A[x]$. Therefore $\epsilon_{0}=0$.

The remaining case is $d=m+1$ (and $m>0$). In this case
$\partial\left(a x^{k}\right)=\partial(a) x^{k}+k a x^{k-1} \partial(x)=\sum_{i=0}^{m} \epsilon_{i}(a) x^{m-i} x^{k}+k a x^{k-1} \sum_{i=0}^{m+1} x_{i} x^{m+1-i}=$ $\left(\epsilon_{0}(a)+k a x_{0}\right) x^{m+k}+\sum_{i=1}^{m}\left(\epsilon_{i}(a)+k a x_{i}\right) x^{m-i+k}+k a x_{m+1} x^{k-1}$.

Hence $\operatorname{deg}_{x}\left(\partial\left(a x^{k}\right)\right)=k+m$ if $\epsilon_{0}(a)+k a x_{0} \neq 0$. Consider a derivation D given by $D(a)=\epsilon_{0}(a) x^{m}, D(x)=x_{0} x^{m+1}$. We can write $\partial\left(a x^{k}\right)=D\left(a x^{k}\right)+$ Δ where $\operatorname{deg}_{x}(\Delta)<k+m$ since $D\left(a x^{k}\right)=\epsilon_{0}(a) x^{m+k}+k x^{k-1} a x_{0} x^{m+1}$.

Therefore D is an lnd since if it isn't we will find a monomial $a x^{k}$ for which $\operatorname{deg}_{x}\left(\partial^{j}\left(a x^{k}\right)\right)=k+j m$. But this is impossible since if D is an lnd then $\operatorname{deg}_{D}(x)-1=\operatorname{deg}_{D}\left(a_{0}\right)+(m+1) \operatorname{deg}_{D}(x)$.
Lemma is proved.
Since $A[x] \cong \mathbb{C}_{3}$ we cannot have $\operatorname{AK}(A)=A$ because, according to Lemma 1 if $\operatorname{AK}(A)=A$ then $\mathbb{C}=\operatorname{AK}\left(\mathbb{C}_{3}\right)=A$. Hence $\operatorname{AK}(A) \neq A$ which means that there is a non-zero $\operatorname{lnd} \partial$ on A.

As we know from the first lecture $\operatorname{trdeg}\left(A^{\partial}\right)=1$. Therefore $A^{\partial}=\mathbb{C}[p]$ (Lemma 4).

A derivation ∂ is a non-zero \ln on A. So there are elements of A which do not belong to A^{∂}, but their images under ∂ belong to $A^{\partial}=\mathbb{C}[p]$. We can choose among them an $a \in A$ for which $\partial(a)=f(p)$ where degree of a polynomial f is minimal possible. If this degree is zero, i.e. $\partial(a)=c \in \mathbb{C}^{*}$ then $A=\mathbb{C}[p, a]$. In this case $t \in A$ and the proof that $\operatorname{Nil}_{A}(\partial)=A^{\partial}[t]$ is the same as the proof in Lemma 2.

If $A=\mathbb{C}[p, a]$ we are done. Otherwise take a $b \in A \backslash \mathbb{C}[p, a]$. As we know $A \subset \operatorname{Frac}\left(A^{\partial}\right)\left[\frac{a}{f(p)}\right]=\mathbb{C}(p)[a]$. Since $b \notin \mathbb{C}[p, a]$ it has a denominator which is a polynomial in p, and we can multiply b by a polynomial $g(p)$ so that the denominator of $g(p) b$ is $p-c$. Thus $g(p) b=\frac{\phi(p, a)}{p-c}=\psi(p, a)+\frac{\xi(a)}{p-c}$ where $\phi, \psi \in \mathbb{C}[p, a]$ and $\xi \in \mathbb{C}[a]$.

Therefore $\frac{\xi(a)}{p-c} \in A$. Consider presentation of $\xi(a)=\prod_{i}\left(a-\mu_{i}\right)$ as a product of irreducible polynomials. One of them should be divisible by an irreducible polynomial $p-c$. This polynomial is a factor in one of the factors $a-\mu_{i}$. Hence $\frac{a-\mu}{p-c} \in A$ for some $\mu \in \mathbb{C}$. But this leads to a contradiction since $\partial\left(\frac{a-\mu}{p-c}\right)=\frac{f(p)}{p-c}$ and $\operatorname{deg}_{p}\left(\frac{f}{p-c}\right)<\operatorname{deg}_{p}(f)$.

This is a theorem of Takao Fujita: Fujita, Takao On Zariski problem. Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 3, 106-110.
$2 \quad A_{1}\left[x_{1}, \ldots, x_{n}\right] \cong A_{2}\left[x_{1}, \ldots, x_{n}\right]$
Now we discuss the following question. Suppose that $R_{n}=R\left[x_{1}, \ldots, x_{n}\right]$ is given and R is a domain of transcendence degree one. Can we recover R up to an isomorphism? It turns out that the answer is yes. Though we are not going to discuss it, the answer is no if $\operatorname{trdeg}(R)>1$.

Theorem 2. If A_{1} and A_{2} are domains of transcendence degree 1 over \mathbb{C} and $A_{1}\left[x_{1}, \ldots, x_{n}\right] \cong A_{2}\left[x_{1}, \ldots, x_{n}\right]$ then $A_{1} \cong A_{2}$.

Lemma 6. Either $\operatorname{AK}\left(R_{n}\right)=R$ or $\operatorname{AK}\left(R_{n}\right)=\mathbb{C}$.
Proof. Since each of the partial derivatives is in $\operatorname{LND}\left(R_{n}\right)$ it is clear that $\operatorname{AK}\left(R_{n}\right) \subset R$.

So if $\operatorname{AK}\left(R_{n}\right) \neq R$ there exist $\partial \in \operatorname{LND}\left(R_{n}\right)$ which is not identically zero on R. If $\partial(s) \neq 0$ for some $s \in R$ then $\partial(r) \neq 0$ for any $r \in R \backslash \mathbb{C}$. Indeed, if $r_{1} \in R \backslash \mathbb{C}$ and $r_{2} \in R \backslash \mathbb{C}$ then these two elements are algebraically dependent (since $\operatorname{trdeg}(R)=1$). If $q\left(r_{1}, r_{2}\right)=0$ is an irreducible dependence between these elements then $0=\partial\left(q\left(r_{1}, r_{2}\right)\right)=q_{1}\left(r_{1}, r_{2}\right) \partial\left(r_{1}\right)+q_{2}\left(r_{1}, r_{2}\right) \partial\left(r_{2}\right)$ where q_{i} are the corresponding partial derivatives of $q\left(r_{1}, r_{2}\right)$. If $\partial\left(r_{1}\right)=0$ then $q_{2}\left(r_{1}, r_{2}\right) \partial\left(r_{2}\right)=0$ and $\partial\left(r_{2}\right)=0$ since $q_{2}\left(r_{1}, r_{2}\right) \neq 0$. Therefore $\operatorname{AK}\left(R_{n}\right)=\mathbb{C}$.

Lemma 7. If $\operatorname{AK}\left(R_{n}\right)=\mathbb{C}$ then R is isomorphic to a subring of a polynomial ring with one generator.
Proof. Let $S=\operatorname{Frac}(R)$ and $S_{n}=\operatorname{Frac}\left(R_{n}\right)$. As we know from the previous Lemma there is a $\partial \in \operatorname{LND}\left(R_{n}\right)$ which is not identically zero on R. Since $\partial \in \operatorname{LND}\left(R_{n}\right)$ there exists $t \in S_{n}$ for which $\partial(t)=1$. Of course, $R \subset S_{n}^{\partial}[t]$ and t-degrees of elements of $R \backslash \mathbb{C}$ are positive.

Since $\operatorname{trdeg}(R)=1$ it is possible to construct a monomorphism (i.e. one-to-one homomorphism) from R into $\mathbb{C}[x]$.

The ring R is finitely generated. To check it consider all $\operatorname{deg}_{\partial}(r)$ where $r \in R$. This is a semigroup Π relative to addition. Take d, the smallest positive number in Π. Then Π is generated by d and the smallest elements of Π which are congruent to $1,2, \ldots, d-1$ modulo d. We can chose elements $r_{1}, \ldots, r_{m} \in R$ with the corresponding degrees. Consider a subalgebra A of R generated by these elements. If $r \in R$ there exists an element $a \in A$ with $\operatorname{deg}_{\partial}(a)=\operatorname{deg}_{\partial}(r)$. Suppose $r=\sum_{i=0}^{\nu} r_{i} t^{\nu-i}, a=\sum_{i=0}^{\nu} a_{i} t^{\nu-i} ; r_{i}, a_{i} \in$ S_{n}^{∂}. These elements are algebraically dependent: $\sum_{i+j=0}^{i+j=\mu} c_{i, j} a^{i} r^{j}=0, c_{i, j} \in$ \mathbb{C}. Hence $\sum_{i+j=\mu} c_{i, j} a_{0}^{i} r_{0}^{j}=0$, otherwise $\operatorname{deg}_{\partial}\left(\sum_{i+j=0}^{i+j=\mu} c_{i, j} a^{i} r^{j}\right)=\mu \nu$ and
$\sum_{i+j=0}^{i+j=\mu} c_{i, j} a^{i} r^{j} \neq 0$. We can write $\sum_{i+j=\mu} c_{i, j} a_{0}^{i} r_{0}^{j}=a_{0}^{\mu} \sum_{i+j=\mu} c_{i, j}\left(\frac{r_{0}}{a_{0}}\right)^{j}=$ $a_{0}^{n} \prod_{k=0}^{\mu}\left(\frac{r_{0}}{a_{0}}-\lambda_{k}\right)$ where $\lambda_{1}, \ldots, \lambda_{\mu}$ are roots of the polynomial $\sum_{i+j=\mu} c_{i, j} z^{j}$. Thus $r_{0}-\lambda a_{0}=0$ for one of these roots and $\operatorname{deg}_{\partial}(r-\lambda a)<\operatorname{deg}_{\partial}(r)$. So, by induction on $\operatorname{deg}_{\partial}$ we can show that any element $r \in R$ is a linear combination of elements of A, i.e. $R=A=\mathbb{C}\left[r_{1}, \ldots, r_{m}\right]$.

Consider the subfield E of S_{n}^{∂} which is generated by the coefficients of all r_{i} 's as polynomials in t. Since E is finitely generated it has a finite basis of transcendence t_{1}, \ldots, t_{k} over \mathbb{C}. Since characteristic of E is zero, $E=\mathbb{C}\left(t_{1}, \ldots, t_{k}\right)[\theta]$ where θ is algebraic over $\mathbb{C}\left(t_{1}, \ldots, t_{k}\right)$. The element θ is a root of an irreducible polynomial $P(z) \in \mathbb{C}\left(t_{1}, \ldots, t_{k}\right)[z]$.

The coefficients of P are rational functions in t_{1}, \ldots, t_{k} and the coefficients of r_{i} are rational functions in t_{1}, \ldots, t_{k} and polynomials in θ. Say, $f\left(t_{1}, \ldots, t_{k} ; \theta\right)$ is the coefficient with the highest degree of t in r_{1}. Since P is irreducible, polynomials $P(z)$ and $F(z)=f\left(t_{1}, \ldots, t_{k} ; z\right)$ are relatively prime and we can find a linear combination $\phi P+\psi F=1$ where $\phi, \psi \in \mathbb{C}\left(t_{1}, \ldots, t_{k}\right)$, of these polynomials.

We can find complex numbers c_{1}, \ldots, c_{k} which satisfy the following conditions:
(a) denominators of ϕ and ψ are not zeros;
(b) denominators of coefficients of P are not zeros;
(c) denominators of coefficients of all r_{i} are not zeros.

Now, substitute c_{1}, \ldots, c_{k} in $P(z)$ and find a root $\theta^{\prime} \in \mathbb{C}$ of this polynomial. After that substitute c_{1}, \ldots, c_{k} and θ^{\prime} in the coefficients of r_{i}. We will obtain m polynomials $r_{1}^{\prime}, \ldots, r_{m}^{\prime} \in \mathbb{C}[t]$ and $\operatorname{deg}\left(r_{1}^{\prime}\right)>0$. The mapping $\alpha: R \rightarrow \mathbb{C}[t]$ sending $r_{i} \rightarrow r_{i}^{\prime}, i=1, \ldots, m$ is a homomorphism of R into $\mathbb{C}[t]$. The image $\alpha(R)$ has the transcendence degree one since r_{1}^{\prime} is not a constant. Hence this in a monomorphism. (If the kernel of α contains a non-zero element the image will be just \mathbb{C}.)

From now on we assume that $R \subseteq \mathbb{C}[y]$. I also assume that $S=\operatorname{Frac}(R)=$ $\mathbb{C}(y)$. This follows from the Lüroth theorem.

Lemma 8. There exists an $r \in R$ such that $r \mathbb{C}[y] \subset R$.
Proof. By assumptions of the lemma there exist two elements $f, g \in R$ such that $g=y f$. Let $\operatorname{deg}_{y}(f)=k+1$ and let us assume that f is monic. Since elements $g^{i} f^{k-i}=y^{i} f^{k} \in R$ it is clear that $f^{k} \mathbb{C}[y] \subset R$. (It is enough to notice that if $i>k$ then $y^{i}=y^{i-k-1} f+r_{i}(y)$ with $\operatorname{deg}\left(r_{i}\right)<i$. So we can use induction on i to observe that $y^{i} f^{k} \in R$ for all i.)

Lemma 9. Denote the extension of $\partial \in \operatorname{Der}(R)$ on $\mathbb{C}(y)$ also by ∂. Then $\partial(\mathbb{C}[y]) \subset \mathbb{C}[y]$.
Proof. Let us assume that $\partial(y) \in \mathbb{C}(y) \backslash \mathbb{C}[y]$. Then making a change of variable if necessary we may assume that $\partial(y)$ has a pole of order $m-1$ at $y=0$. If $r \in R$ and $r=r(0)+y^{i} s$ where $s(0) \neq 0$ then i is divisible by m. Otherwise several applications of ∂ will take r out of $\mathbb{C}[y]$ and hence out of R. Since in Lemma $8 g=y f$ where $f, g \in R$ this is impossible.

Lemma 10. There exists an $h \in R$ such that $h \mathbb{C}[y] \subset R$ and $\partial(h) \in$ $h \mathbb{C}[y]$ for any $\partial \in \operatorname{Der}(R)$.
Proof. By the previous lemma there are non-zero ideals of $\mathbb{C}[y]$ which belong to R. Let us take the maximal ideal with this property and denote by h its generator.

If $\partial \in \operatorname{Der}(R)$ then $R \supset \partial(h \mathbb{C}[y])=\partial(h) \mathbb{C}[y]+h \partial(\mathbb{C}[y])$. Since $\partial(\mathbb{C}[y]) \subset$ $\mathbb{C}[y]$ it implies that $\partial(h) \mathbb{C}[y] \subset R$ and thus $\partial(h) \in h \mathbb{C}[y]$.

Lemma 11. $R=\mathbb{C}[y]$.
Proof. $R_{n} \subseteq \mathbb{C}\left[y, x_{1}, \ldots, x_{n}\right]=A$ by Lemma 7 , and, using Lüroth theorem $\operatorname{Frac}\left(R_{n}\right)=\mathbb{C}\left(y, x_{1}, \ldots, x_{n}\right)$. By Lemma 10 there exists an $h \in R$ such that $h \mathbb{C}[y] \subset R$ and $\partial(h) \in h \mathbb{C}[y]$ for any $\partial \in \operatorname{Der}(R)$. If $h \in \mathbb{C}$ the Lemma is proved. So let us assume that $h \notin \mathbb{C}$.

By the assumption of the Lemma there is a $\partial \in \operatorname{LND}\left(R_{n}\right)$ which is not zero on R. As we know if $h \notin \mathbb{C}$ then $\partial(h) \neq 0$.

We can write $\partial(r)=\sum_{\mathbf{i}} \epsilon_{\mathbf{i}}(a) \mathbf{x}^{\mathbf{i}}$ where $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right)$ is a multi-index and $\mathbf{x}^{\mathbf{i}}=x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}$. As above, $\epsilon_{\mathbf{i}} \in \operatorname{Der}(R)$. Hence by Lemma $10 \partial(h)=h a$ where $a \in A$. By Lemma $9 \partial(A) \subset A$. Hence $\partial^{i}(h)=h a_{i}, a_{i} \in A$. Consider $g=\partial^{k}(h)$ where $k=\operatorname{deg}_{\partial}(h)$. Then $g=h a_{k}$ and $\partial(g)=0$.

We know from Lemma 10 that $h A \subseteq R_{n}$. Therefore $g^{2}=h^{2} a_{k}^{2}=h\left(h a_{k}^{2}\right) \in$ R_{n} and $\partial\left(g^{2}\right)=0$. Since $h a_{k}^{2} \in R_{n}$ both $\partial(h)=0$ and $\partial\left(h a_{k}^{2}\right)=0$ contrary to our assumption that $\partial(h) \neq 0$. Therefore $h \in \mathbb{C}$ and $R_{n}=A$.

Our claim is proved. If $\operatorname{AK}\left(R_{n}\right)=R$ we know what R is, if $\operatorname{AK}\left(R_{n}\right)=\mathbb{C}$ then $R=\mathbb{C}$.

This is a theorem of Abhyankar, Eakin, and Heinzer: Abhyankar, Shreeram S.; Heinzer, William; Eakin, Paul On the uniqueness of the coefficient ring in a polynomial ring. J. Algebra 23 (1972), 310-342.

