The Virtual Haken Conjecture and Relatively Hyperbolic Groups

Eduardo Martínez-Pedroza
Memorial University of Newfoundland.

August 14, 2012
Plan of the Talk.

Borel conjecture
1953

Virtual Haken Conjecture
1968

Geometrization conjecture
1980
Plan of the Talk.

- Borel 1953
- Kneser 1929, Milnor 1962
- Haken 1962
- Waldhausen 1968
- Thurston 1980
- Perelman 2002
- Kahn-Markovic 2009
- Haglund-Wise 2010
- Agol 2012

Borel conjecture 1953

Virtual Haken Conjecture 1968

Geometrization Conjecture 1980
Definition. An n-manifold is a topological space that is locally homeomorphic to \mathbb{R}^n ... and it is also Hausdorff and second countable.
Manifolds

Examples of 2-manifolds

- \mathbb{R}^2, the 2-sphere \mathbb{S}^2, the 2-torus $\mathbb{S}^1 \times \mathbb{S}^1$.
- The infinite cylinder $S^1 \times \mathbb{R}$.
- The genus two surface.

Closed = no boundary and compact.
Orientable = two sided = has no embedded Möbius bands.
Orientable and Closed 2-Manifolds
Classification and Geometrization

Closed = no boundary and compact.
Orientable = two sided = has no embedded Möbius bands.

Dehn-Heegaard, 1907. [Classification of orientable closed surfaces]

Klein, 1870’s. [Geometrization]
Any closed, orientable 2-manifold can be represented as a quotient of \mathbb{S}^2, \mathbb{E}^2 or \mathbb{H}^2 by a discrete group of isometries.

$Isom(\mathbb{S}^2) = O(3)$, $Isom(\mathbb{E}^2) = \mathbb{R}^2 \rtimes O(1)$, $Isom(\mathbb{H}^2) = O(2,1)_+$
The fundamental group

Recall that the fundamental group $\pi_1 M$ of a manifold M is the group of loops, up to homotopy:

- $\pi_1 S^1 = \mathbb{Z}$ since $S^1 = \mathbb{R}/\mathbb{Z}$.
- $\pi_1 S^2 = 1$
- $\pi_1(S^1 \times S^1) = \mathbb{Z} \times \mathbb{Z}$, since the torus $S^1 \times S^1$ equals $\mathbb{R}^2/\mathbb{Z} \times \mathbb{Z}$.
- π_1 of the above surface is $\langle a, b, c, d : [a, b][c, d] = 1 \rangle$.

Figure by N. Dunfield; "Surfaces in finite covers of 3-manifolds"
Orientable and Closed 2-Manifolds
Classification and Geometrization

Dehn-Heegaard, 1907. [Classification of orientable closed surfaces]

Corollary. [2-Dimensional Borel Conjecture] A pair of closed 2-manifolds are isomorphic iff they have isomorphic fundamental groups.

Klein, 1870’s. [Geometrization] Any closed, orientable 2-manifold is modeled in one of the three geometries: $\text{Isom}(S^2)$, $\text{Isom}(\mathbb{H}^2)$, $\text{Isom}(\mathbb{H}^2)$.
3-Manifolds

Examples

- \mathbb{R}^3, the 3-sphere S^3, products as the 3-torus $S^1 \times S^1 \times S^1$, or $S^1 \times S^2$.

- The 3-manifold $\mathbb{R}^3 \setminus \{\text{point}\}$ is isomorphic to the thick 2-sphere $S^2 \times \mathbb{R}$.

- $\mathbb{R}^3 \setminus \{z - \text{axis}\}$ is isomorphic to the solid torus $S^1 \times \mathbb{R}^2$.

- A knot complement: $S^3 \setminus K$
Splitting 3-manifolds into simpler pieces
Cutting 3-manifolds along spheres.

Prime 3-manifold. A 3-manifold is *prime* if it cannot be expressed as a non-trivial connected sum of two 3-manifolds. Non-trivial means that neither of the two is an 3-sphere.

A 2-dimensional illustration:

Kneser 1929, Milnor 1962. [Cutting along spheres] Every closed orientable 3-manifold M factors as a connected sum of prime 3-manifolds $M = P_1 \# \cdots \# P_n$.
Splitting 3-manifolds into simpler pieces
Cutting 3-manifolds along spheres.

Prime 3-manifold. A 3-manifold is *prime* if it cannot be expressed as a non-trivial connected sum of two 3-manifolds. Non-trivial means that neither of the two is an 3-sphere.

$$M = P_1 \# P_2 \# P_3 \# P_4$$

Kneser 1929, Milnor 1962. [Cutting along spheres] Every closed 3-manifold M factors as a connected sum of prime 3-manifolds $M = P_1 \# \cdots \# P_n$.
The Borel Conjecture
Manifolds determined by their fundamental group

\[M \longrightarrow N \]

\[\pi_1 M \longrightarrow \pi_1 N \]

The conjecture appeared in a letter of May 2nd, 1953 from Armand Borel to Jean Paul Serre. The letter discusses a paper of Mostow.

Borel Conjecture for 3-manifolds. Suppose that \(M \) and \(N \) are *irreducible* with infinite fundamental group. If \(\pi_1 M \) and \(\pi_1 N \) are isomorphic groups, then \(M \) and \(N \) are isomorphic 3-manifolds.
The Borel Conjecture
Manifolds determined by their fundamental group

A letter of May 2nd, 1953 from Armand Borel to Jean Paul Serre.

"...Nevertheless you have probably seen the abstract of Mostow announcing that if G_1 and G_2 are solvable Lie groups, and if G_1/H_1 and G_2/H_2 are compact and have isomorphic fundamental groups, they are homeomorphic. I read his paper, ... and noticed a basic point of the following kind: Let B_1 and B_2 two compact manifolds, classifying spaces for a group G (say, discrete) and in any dimension. Are they homeomorphic? and if so, are they homeomorphic by the projection of a homomorphism of universal spaces? Mostow, by clever choices of subgroups and inductions, essentially reduces to the case where B_1 and B_2 are tori, and the answer to both questions is then obviously yes. Overall, the paper is very interesting ..."

Borel Conjecture for 3-manifolds. Suppose that M and N are irreducible with infinite fundamental group. If π_1M and π_1N are isomorphic groups, then M and N are isomorphic 3-manifolds.
Haken manifold. A 3-manifold M is *Haken* if it is prime and contains an embedded 2-sided surface S such that $\pi_1 S \to \pi_1 M$ is injective and S is not a sphere.

Haken manifolds are called *sufficiently large*.

Haken, 1962 Algorithm to cut a Haken 3-manifold M into simpler 3-manifolds. Start cutting along an *incompressible surface*, the algorithm ends in a finite number of steps with information of how to reconstruct M starting from a collection of 3-balls.
Haken manifold. A 3-manifold M is *Haken* if it is prime and contains an embedded 2-sided surface S such that $\pi_1 S \to \pi_1 M$ is injective and S is not a sphere.

Borel Conjecture for 3-manifolds, 1953. Suppose that M and N are *irreducible* with infinite fundamental group. If $\pi_1 M$ and $\pi_1 N$ are isomorphic groups, then M and N are isomorphic 3-manifolds.

Waldhausen, 1968 The Borel conjecture holds in the class of Haken aspherical 3-manifolds.
On irreducible 3-manifolds which are sufficiently large

By Friedhelm Waldhausen

We are mainly concerned with the questions whether any homotopy equivalence between compact orientable PL 3-manifolds can be induced by a homeomorphism, and whether homotopic homeomorphisms are also isotopic.

Corollary 6.5. Let M and N be manifolds which are irreducible and boundary-irreducible. Suppose M is sufficiently large. Let $\psi: \pi_1(N) \to \pi_1(M)$ be an isomorphism which respects the peripheral structure. Then there exists a homeomorphism $f: N \to M$, which induces ψ.

Remark. Of those irreducible manifolds, known to me, which have infinite fundamental group and are not sufficiently large [19], some (and possibly all) have a finite cover which is sufficiently large.

Waldhausen: The modern study of 3-manifolds
The Virtual Haken Conjecture

Borel Conjecture for 3-manifolds, 1953. Suppose that M and N are prime with infinite fundamental group. If $\pi_1 M$ and $\pi_1 N$ are isomorphic groups, then M and N are isomorphic 3-manifolds.

Waldhausen, 1968 The Borel conjecture holds in the class of Haken aspherical 3-manifolds.

The Virtual Haken Conjecture. Every 3-manifold has a finite cover that is Haken.

Remark. VHC implies BC for 3-manifolds
Three-dimensional manifolds, Kleinian groups and hyperbolic geometry

By William P. Thurston

Three-manifolds are greatly more complicated than surfaces, and I think it is fair to say that until recently there was little reason to expect any analogous theory for manifolds of dimension 3 (or more)—except perhaps for the fact that so many 3-manifolds are beautiful. The situation has changed, so that I feel fairly confident in proposing the

1.1. Conjecture. The interior of every compact 3-manifold has a canonical decomposition into pieces which have geometric structures.
Thurston: A revolution in 3-manifold topology

The Geometrization Conjecture

A manifold M split into a connected sum of prime manifolds $M = P_1 \# \ldots \# P_m$. Each prime factor can be splitted along tori. Each component of the splitting admits a geometric structure modeled in one of the eight geometries.

\[S^3, \text{Nil}, \text{PSL}, \text{Sol}, H^3, S^3 \times E^1, E^3, H^2 \times E^1. \]
THREE DIMENSIONAL MANIFOLDS, KLEINIAN GROUPS
AND HYPERBOLIC GEOMETRY

BY WILLIAM P. THURSTON

1.1. Conjecture. The interior of every compact 3-manifold has a canonical
decomposition into pieces which have geometric structures.

A 3-manifold M^3 is called a Haken manifold if it is prime and it contains a
2-sided incompressible surface (whose boundary, if any, is on ∂M) which is not
a 2-sphere.

Theorem. Conjecture 1.1 is true for Haken manifolds.
Theorem. The Dehn surgery manifold $M_{(m,l)}$ is irreducible, and it is a Haken-manifold if and only if $(m,l) = (0, \pm 1)$ or $(\pm 4, \pm 1)$.
After Thurston and before 2002...

Virtual Haken Conjecture
1968

Borel conjecture
1953

Geometrization conjecture
1980
The solution of geometrization by Perelman in 2002

The virtual Haken the remaining major problem

After geometrization, it is enough to prove the virtual Haken conjecture for hyperbolic 3-manifolds. This is an algebraic problem on lattices of $PSL(2, \mathbb{C})$ solved by Ian Agol in 2012 relying on work of Kahn-Marcovic and Hanglund-Wise.
2. Subgroup Separability.
Strategy: Let M be a closed hyperbolic manifold. If $\pi_1 M$ is subgroup separable and contains a closed surface subgroup, then M is virtually Haken.

Khan-Markovic, 2009: If M is a hyperbolic closed manifold, then $\pi_1 M$ contains a surface subgroup.

Agol, Hanglund-Wise, 2012: If M is a hyperbolic closed manifold, then $\pi_1 M$ is subgroup separable.
Subgroup Separability
Separating f.g subgroups from elements in finite quotients

Definition. A subgroup Q of G is separable if for each $g \not\in Q$, there is a homomorphism φ onto a finite group such that $\varphi g \not\in \varphi(Q)$.

\[G \xrightarrow{\varphi} \text{Finite Gp} \]

\[\begin{array}{c}
G \\
\begin{array}{c}
g \cdot \\
Q
\end{array}
\end{array} \quad \xrightarrow{\varphi} \quad \begin{array}{c}
\text{Finite Gp} \\
\begin{array}{c}
\cdot \varphi(g) \\
\varphi(Q)
\end{array}
\end{array} \]
Subgroup Separability

Separating f.g subgroups from elements in finite quotients

Definition. A subgroup Q of G is separable if for each $g \not\in Q$, there is a homomorphism φ onto a finite group such that $\varphi g \not\in \varphi(Q)$.

A group G is **subgroup separable** if every finitely generated subgroup is separable.
Subgroup Separability

Examples

Definition. A subgroup Q of G is separable if for each $g \notin Q$, there is a homomorphism φ onto a finite group such that $\varphi g \notin \varphi(Q)$.

A group G is **subgroup separable** if every finitely generated subgroup is separable.

Examples of Subgroup Separable Groups
Subgroup Separability

Examples

Definition. A subgroup Q of G is **separable** if for each $g \notin Q$, there is a homomorphism φ onto a finite group such that $\varphi g \notin \varphi(Q)$.

A group G is **subgroup separable** if every finitely generated subgroup is separable.

Examples of Subgroup Separable Groups

Hall: Free groups.
Subgroup Separability

Examples

Definition. A subgroup Q of G is **separable** if for each $g \notin Q$, there is a homomorphism φ onto a finite group such that $\varphi g \notin \varphi(Q)$.

A group G is **subgroup separable** if every finitely generated subgroup is separable.

Examples of Subgroup Separable Groups

- **Hall**: Free groups.
- **Scott**: Surface groups.
Subgroup Separability

Examples

Definition. A subgroup Q of G is separable if for each $g \notin Q$, there is a homomorphism φ onto a finite group such that $\varphi g \notin \varphi(Q)$.

A group G is subgroup separable if every finitely generated subgroup is separable.

Examples of Subgroup Separable Groups

Hall: Free groups.

Scott: Surface groups.

Agol-Long-Reid: Bianchi groups (arithmetic lattices in $PSL(2; \mathbb{C})$).
Subgroup Separability

Non-examples

Definition. A subgroup Q of G is separable if for each $g \notin Q$, there is a homomorphism φ onto a finite group such that $\varphi g \notin \varphi(Q)$.

A group G is **subgroup separable** if every finitely generated subgroup is separable.

Examples:

Subgroup Separability

Non-examples

Definition. A subgroup \(Q \) of \(G \) is separable if for each \(g \not\in Q \), there is a homomorphism \(\varphi \) onto a finite group such that \(\varphi g \not\in \varphi(Q) \).

A group \(G \) is subgroup separable if every finitely generated subgroup is separable.

Examples:

Mihailova: \(F_2 \times F_2 \) is not subgroup separable.
Subgroup Separability

Non-examples

Definition. A subgroup Q of G is separable if for each $g \notin Q$, there is a homomorphism φ onto a finite group such that $\varphi g \notin \varphi(Q)$.

A group G is subgroup separable if every finitely generated subgroup is separable.

Examples:

Mihailova: $F_2 \times F_2$ is not subgroup separable.

Stebe: $SL(n, \mathbb{Z})$ for $n > 2$ is not subgroup separable.
Subgroup Separability

Non-examples

Definition. A subgroup Q of G is separable if for each $g \notin Q$, there is a homomorphism φ onto a finite group such that $\varphi g \notin \varphi(Q)$.

A group G is subgroup separable if every finitely generated subgroup is separable.

Examples:

Mihailova: $F_2 \times F_2$ is not subgroup separable.

Stebe: $SL(n, \mathbb{Z})$ for $n > 2$ is not subgroup separable.

Proof for $n \geq 4$: $SL(2, \mathbb{Z})$ contains a copy of F_2, and $SL(n, \mathbb{Z})$ contains a copy of $SL(2, \mathbb{Z}) \times SL(2, \mathbb{Z})$ if $n \geq 4$.
Subgroup Separability

Non-examples

Definition. A subgroup Q of G is separable if for each $g \notin Q$, there is a homomorphism φ onto a finite group such that $\varphi(g) \notin \varphi(Q)$.

A group G is subgroup separable if every finitely generated subgroup is separable.

Examples:

Mihailova: $F_2 \times F_2$ is not subgroup separable.

Stebe: $SL(n, \mathbb{Z})$ for $n > 2$ is not subgroup separable.

Proof for $n \geq 4$: $SL(2, \mathbb{Z})$ contains a copy of F_2, and $SL(n, \mathbb{Z})$ contains a copy of $SL(2, \mathbb{Z}) \times SL(2, \mathbb{Z})$ if $n \geq 4$.

Burns-Karrass-Solitar: There are 3-manifold groups that are not subgroup separable.
Subgroup Separability

3-manifold connection

Definition. A subgroup Q of G is separable if for each $g \notin Q$, there is a homomorphism φ onto a finite group such that $\varphi g \notin \varphi(Q)$.

A group G is **subgroup separable** if every finitely generated subgroup is separable.

Thurston’s question: Are lattices of $\text{PSL}(2, \mathbb{C})$ subgroup separable?

Motivation: Let M be a hyperbolic manifold. If $\pi_1 M$ is subgroup separable and contains a closed surface subgroup, then M is virtually Haken.
Subgroup Separability
Separating in Non-uniform lattices

Definition. A subgroup Q of G is separable if for each $g \not\in Q$, there is a homomorphism φ onto a finite group such that $\varphi g \not\in \varphi(Q)$.

A group G is subgroup separable if every finitely generated subgroup is separable.

Thurston’s question 1980: Are discrete subgroups of $PSL(2, \mathbb{C})$ subgroup separable? Agol. Yes.

Proof.

- Morgan, 1984: any discrete subgroup of $PSL(2, \mathbb{C})$ embeds in a lattice of $PSL(2, \mathbb{C})$.

- Joint with J. Manning 2010: In $PSL(2, \mathbb{C})$, subgroup separability of uniform lattices implies subgroup separability of non-uniform lattices.

- Agol 2012: Uniform lattices in $PSL(2, \mathbb{C})$ are subgroup separable.
Toral Relatively Hyperbolic Groups

Main example

Farb. Any lattice in $\text{PSL}_2(\mathbb{C})$ is a hyperbolic group relative to its maximal parabolic subgroups. The maximal parabolic subgroups are virtually free abelian groups.
Subgroups of Toral Relatively Hyperbolic Groups
Geometric and Non-geometric subgroups

Subgroups of a (relatively) hyperbolic group:
- Distorted Subgroups
- Quasiconvex
- Fully-Quasiconvex
Separation of Quasiconvex Subgroups

MP-Manning: Let G be a (toral) relatively hyperbolic group.

Thm 1: If Q is quasiconvex and $g \not\in Q$, then there is a fully quasiconvex $H < G$ such that $Q < H$ and $g \not\in H$.

Thm 2: If H is fully-quasiconvex and $g \not\in H$, then H and g are separated in a hyperbolic quotient \tilde{G}. The image of H is quasiconvex in \tilde{G}.
Separation of Quasiconvex Subgroups

MP-Manning: Let G be a (toral) relatively hyperbolic group.

Thm 1: If Q is quasiconvex and $g \notin Q$, then there is a fully quasiconvex $H < G$ such that $Q < H$ and $g \notin H$.

Thm 2: If H is fully-quasiconvex and $g \notin H$, then H and g are separated in a hyperbolic quotient \bar{G}. The image of H is quasiconvex in \bar{G}.

![Diagram](image.png)

- **Q:** Quasiconvex
- **H:** Fully Quasiconvex
- **G:** Rel. Hyp. Group
Separation of Quasiconvex Subgroups

MP-Manning: Let G be a (toral) relatively hyperbolic group.

Thm 1: If Q is quasiconvex and $g \not\in Q$, then there is a fully quasiconvex $H < G$ such that $Q < H$ and $g \not\in H$.

Thm 2: If H is fully-quasiconvex and $g \not\in H$, then H and g are separated in a hyperbolic quotient \bar{G}. The image of H is quasiconvex in \bar{G}.

\[G: \text{Rel. Hyp. Group} \]

\[\begin{array}{c}
g \ast \\
\hline
H \\
\hline
Q \\
\end{array} \]

\[Q: \text{Quasiconvex} \]

\[H: \text{Fully Quasiconvex} \]
Separation of Quasiconvex Subgroups

MP-Manning: Let G be a (toral) relatively hyperbolic group.

Thm 1: If Q is quasiconvex and $g \notin Q$, then there is a fully quasiconvex $H < G$ such that $Q < H$ and $g \notin H$.

Thm 2: If H is fully-quasiconvex and $g \notin H$, then H and g are separated in a hyperbolic quotient \bar{G}. The image of H is quasiconvex in \bar{G}.

![Diagram]

- Q: Quasiconvex
- H: Fully Quasiconvex
- \bar{H}: Quasiconvex
- \bar{g}: Hyperbolic Group
- g: Rel. Hyp. Group
Separation of Quasiconvex Subgroups

MP-Manning: Let G be a (toral) relatively hyperbolic group.

Thm 1: If Q is quasiconvex and $g \notin Q$, then there is a fully quasiconvex $H < G$ such that $Q < H$ and $g \notin H$.

Thm 2: If H is fully-quasiconvex and $g \notin H$, then H and g are separated in a hyperbolic quotient \bar{G}. The image of H is quasiconvex in \bar{G}.

Corollary In $PSL(2, \mathbb{C})$, subgroup separability of uniform lattices implies subgroup separability of non-uniform lattices.

Thurston: 2π-filling theorem

Agol, Calegari-Gabai: Geometrically infinite subgroups of lattices in $PSL(2, \mathbb{C})$ are separable.