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Abstract

| investigated bottom-up climate-mediated control of population of auklets
(Aethia cristatella, A. pusilla, and A. pygmaea) in the Bering Sea over two decades of
environmental variability. Broadly, this thesis comprises two parts: 1) examining the
relationships between chick diet and survival in the context of large-scale climate and
oceanographic patterns; and 2) using stable-isotope analysis to infer foraging patterns
throughout the annual cycle of different age classes of auklets, using information on
chick diet and local oceanography to interpret the results.

| found that large-scale oceanographic patterns during the winter and spring in
the North Pacific were related to auklet productivity the following breeding season. |
hypothesized bottom-up control of auklet productivity through food limitation, but
found that chick meal composition throughout the Aleutian Islands did not differ among
years or sites. Auklets’ main prey, Neocalanus spp. copepods were most prevalent in
chick diets when local sea-surface temperature (SST) during the breeding season was
around 4.5 + 1.0°C, and that outside this range, the proportion of biomass represented
by Neocalanus copepods declined rapidly. There was significant overlap among Least,
Crested, and Whiskered Auklets in the composition of chick meals, suggesting little
trophic segregation.

Using information on moulting patterns, | found that stable-isotope ratios in the
innermost primary feather (grown during incubation) indicated a shift by adult auklets

to a more productive foraging location (e.g., oceanic fronts), presumably as a



mechanism for reducing their own maintenance costs during chick rearing. | then found

that, among three auklet colonies in the Aleutian Islands, there were no differences
among sites or years in the foraging patterns of Least Auklets during pre-breeding
(breast feathers), incubation (primary 1), or post-breeding (primary 10). There
appeared to be some level of segregation among adult Least and Crested Auklets at
Gareloi Island.

Together, these results also indicate that local factors, such as introduced
Norway rats (Rattus norvegicus) at Kiska Island, are important factors in populations’
demography, and that demographic responses are not solely driven by bottom-up
processes. Future studies should focus on the winter ecology and movements of

auklets.
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CHAPTER 1: INTRODUCTION AND OVERVIEW



Seabirds in the marine environment

There is an abundance of literature on the use of seabirds as indicators of
various aspects of the marine environment, including the abundance of commercially
exploited fish stocks, contaminants, and climate change (Cairns 1987; Bost & Le Maho
1993; Barrett 2002; Frederiksen et al. 2007; Piatt et al. 2007; Parsons et al. 2008; Durant
et al. 2009). Indeed, seabirds are conspicuous, generally unexploited, secondary and
tertiary consumers in marine systems, and can therefore provide a unique opportunity
to investigate coupled climate-ecosystem variation (Durant et al. 2009).

In order to establish first if seabirds are indeed indicators of ecosystem
characteristics (abiotic and biotic), there must be robust, reliable data on the process or
state the seabirds may be indicating, as well as the seabirds’ response at varying levels
of the environment (Cairns 1987). This inverse inference, or using a dependent variable
to estimate one or more explanatory variables must be coupled with robust statistical
approaches (Durant et al. 2009). The use of seabirds as ecological indicators can be
strengthened by simultaneous studies of multiple species at multiple sites (Chapters 5,

6).

Climate-mediated bottom-up control

Seabirds’ responses to variation in climate and oceanography has been inferred
typically to be bottom-up through control of the abundance, distribution, or availability

of prey (e.g., Frederiksen et al. 2006; Parsons et al. 2008). There have, however, been



few studies that relate seabird diet to climate or oceanographic conditions (reviewed by
Durant et al. 2009). Indeed, most studies using seabird diet as an ecological indicator
focus on the relationship between seabird diet composition and prey abundance or
foraging location (e.g., Montevecchi & Myers 1995; Nel et al. 2001). In many studies of
seabirds’ demographic responses to climate variability, a bottom-up mechanism is often
invoked, but seldom tested (e.g., Byrd et al. 2008; Hipfner 2008), although several
recent studies do present independent data on prey availability in relation to seabirds’
demographic responses to climate change (e.g., Durant et al. 2003; Watanuki et al.

2009).

Approaches to studying bottom-up control

Many ecologists interested in studying diet have adopted advances in analytical
chemistry and biochemistry, including analyses of fatty acid profiles (Ilverson et al.
2004), and ratios of stable isotopes, particularly those of carbon and nitrogen (Peterson
& Fry 1987; Kelly 2000). Often, these can be used to compliment traditional diet studies
of gut contents or regurgitates (Barrett et al. 2007). Recent methodological and
statistical advances have made these techniques more accessible and widespread (e.g.,
Jaeger et al. 2010; Parnell et al. 2010), but there remain challenges in the interpretation
of results (Bond & Jones 2009b), and the development of techniques (Martinez del Rio
et al. 2009; Wolf et al. 2009a). This is not surprising, as all methods for evaluating

seabird diet have inherent assumptions and limitations (Duffy & Jackson 1986; Barrett et



al. 2007). | have used two methods for studying the seabird diet — stable-isotope

analysis, and prey composition of chick meals delivered by provisioning parents.

Analysis of chick meals

Studies of food delivered or destined for nest-bound chicks (chick meals, food
loads, or bill loads) are used frequently to characterize seabirds’ foraging behaviour and
responses to the environment (e.g., Hall et al. 2000; Baillie & Jones 2003). The
composition of chick meals can often be measured with minimal disturbance to the
parents through direct observation (e.g., Bradstreet & Brown 1985; Bryant et al. 1999),
or through the simple capture of breeding adults en route to their nest, who regurgitate
or drop the chicks’ food (e.g., Montevecchi et al. 1992; Hunter et al. 2002). Chick meals
may not, however, be representative of adult diet because adults and chicks have
different energetic constraints and demands (Ydenberg 1994; Barrett et al. 2007).

As central-place foragers, and long-lived “k-selected” species, adults seabirds
should minimize the transit time to food resources (Baird 1991), balancing the trade-off
between distance to foraging grounds and the nutritional quality of the resources
(Elliott et al. 2009), and the evolutionary trade-off of their own survival and future
reproduction (Stearns 1992). Adults of some species, mostly Procellariiformes, balance
their own energetic requirements with those of their chick by a bimodal foraging
strategy whereby adults make frequent, short trips to provide food for chicks, and less-

frequent, long trips to restore their own nutrient reserves (Chaurand & Weimerskirch



1994; Weimerskirch et al. 1994). This strategy has been described recently in the

Dovekie (Alle alle), a polar non-Procellariiform (Welcker et al. 2009a).

Stable-isotope analysis

There have been several advances in biochemical techniques to studying diet in
the last 20 years, including stable-isotope analysis (Hobson 1987; Hobson & Clark 1992a,
b) and fatty acid analysis (lverson et al. 2004). These techniques offer several
advantages over traditional methods, but have different drawbacks (Bond & Jones
2009b). Stable isotopes of carbon and nitrogen are used frequently in studies of seabird
foraging ecology (Barrett et al. 2007; Inger & Bearhop 2008). Values are expressed as
the parts-per-thousand ratio of the heavier (>N or *3C) to the lighter isotope (**N or **C)
as compared with an international standard (Pee Dee Belemnite for C, atmospheric air
for N). 615N, or the ratio of 15N/“N, is a continuous measure of trophic position, and it
increases between 2-5%o with each trophic step because **N is excreted preferentially in
nitrogenous waste (Steele & Daniel 1978; Minagawa & Wada 1984; Kelly 2000). There is
little trophic enrichment of '°C at higher trophic levels (Rau et al. 1983; Hobson &
Welch 1992), but marine (bicarbonate-based) and terrestrial carbon sources (CO,-
based) differ in their 8"3C values (Peterson & Fry 1987). 8*>C can also provide
information on foraging area in the marine environment because of spatial “isoscapes”
in the environment (Hobson 1999; Cherel & Hobson 2007; Graham et al. 2010; Jaeger et

al. 2010).



Stable-isotope analysis is also useful for examining foraging behaviour when
attaching data loggers is not feasible because of the difficulty in recapturing individuals
to retrieve data, or because the species of interest is too small, and gear attachment
would affect individuals’ behaviour or even survival negatively. Isotope ratios are
indicative of the diet at the time of tissue synthesis (Hobson & Clark 1992a). Feathers
are sampled frequently because they offer a relatively non-invasive way to sample large
numbers of individuals, and if moult patterns are known, different feathers can be
sampled to examine foraging throughout the annual cycle (Marra et al. 1998; Pyle 2009)
because feathers are inert once grown, receiving no additional nutrient input (Hobson &

Clark 1992a; Cherel et al. 2005a).

Reproductive success

Bottom-up influences on seabird demography will be most evident in annual
reproductive success (the number of chicks reared successfully per pair). As long-lived
species, seabirds will balance current and future reproduction, as well as reproduction
and survival (Dobson & Jouventin 2010a, b). Consequently, reproductive success is
more variable than adults’ survival (Hamer et al. 2002), and in years of poor food
availability or increased predation, seabirds will abandon or skip breeding attempts

(Schreiber & Schreiber 1984; Whittam & Leonard 1999).



Climate and auklets in the Aleutian Islands

The Aleutian Islands of Alaska span over 2000 km in the Oceanic Domain the
North Pacific Ocean. The central and western Aleutians are surrounded by deep oceanic
waters with upwelling zones that bring nutrients to the surface, where they are
accessible to avian consumers (Kinder et al. 1983; Harrison et al. 1990; Russell et al.
1999).

Climatically, the Aleutians are influenced by basin-wide climatic patterns,
including the Pacific Decadal Oscillation, the El Nifio-Southern Oscillation, and North
Pacific Gyre Oscillation (Mantua et al. 1997; Di Lorenzo et al. in press). The Aleutian Low
Pressure Index (ALPl) measures the strength of the Aleutian Low from December-March
over the area 20-70°N, 120°E-120°W (Beamish & Bouillon 1993; Beamish et al. 1997),
centred roughly over my study area. ALPIis teleconnected to patterns of the El Nifio
Southern Oscillation (ENSQ), as is the North Pacific Gyre Oscillation (NPGO), which
measures the sea-surface height and sea-surface temperature anomalies north of 20°N
(Di Lorenzo et al. in press). Also related is the Pacific Decadal Oscillation (PDO), a
measure of sea-surface temperature anomalies over the same area as the NPGO
(Mantua et al. 1997; Mantua & Hare 2002). Finally, the North Pacific Index (NPI) is the
area-weighted sea-level pressure over the region bounded by 30°N-65°N and 160°E-
140°W (Trenberth & Hurrell 1994). No single index captures the range of variability of
climate in the North Pacific, so using a variety of measures of climate and oceanography
is recommended (Bond et al. 2003). Previous studies have related auklet demography

to these indices (Jones et al. 2002; Jones et al. 2007).



There has been a long history of ornithological research in the Aleutians, focused
primarily on seabirds (Steller 1751; Stejneger 1885; Murie 1959; Gibson & Byrd 2007).
Many seabird breeding islands are recovering following the eradiation of introduced
Arctic foxes (Alopex lagopus), Norway rats (Rattus norvegicus), and other alien
vertebrate species (Bailey 1993; Ebbert & Byrd 2002). Introduced species have had a
negative effect on Aleutian avifauna (Williams et al. 2003; Major et al. 2006),
highlighting the need to understand local effects when interpreting relationships

between climate and seabird responses (Chapter 2).

Aethia auklets

Auklets (Aethia spp., Merrem, 1788) are the most abundant seabirds in the
North Pacific numerically (Sowls et al. 1978; Gaston & Jones 1998). Auklets are socially
monogamous, lay a single egg per annual breeding attempt, and their chicks have
biparental care (Byrd & Williams 1993; Jones 19934, b). Adults feed chicks by
regurgitating food stored in a blind throat pouch (Portenko 1934). Of the four species of
Aethia auklets, three are considered here.

Least Auklets (A. pusilla (Pallas, 1811)) are the smallest auk (85 g). Their chicks
are nest-bound for about 26-29 days (Roby & Brink 1986a; Piatt et al. 1990b; Renner
2005), during which time they are provisioned with lipid-rich copepods (Neocalanus
spp.) and smaller amounts of euphausiids (Thysanoessa spp.), gastropods, and
amphipods (Bédard 1969a; Day & Byrd 1989; Harrison 1990; Gall et al. 2006). Parents

provision chicks 2-3 times each per day (Roby & Brink 1986a). They are highly sensitive
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to disturbance at their breeding sites (Piatt et al. 1990b), but on average, 50-70% of
breeding pairs will rear a chick successfully (Bédard 1969b; Knudtson & Byrd 1982;
Sheffield Guy et al. 2009). In North America, Least Auklets breed throughout the Bering
Sea and Aleutian Islands (Sowls et al. 1978; Jones 1993b), and in Russia, they breed on
the Chukotka Peninsula, on islands in the Sea of Okhotsk, and on the Kuril Islands
(Dement'ev et al. 1951; Kozlova 1957; Velizhanin 1977b; Konyukhov et al. 1998;
Kondratyev et al. 2000; Artukhin et al. 2001; Zelenskaya 2009). The wintering areas of
Least Auklets are poorly known, but are likely in the western North Pacific, off the coast
of Japan (Shuntov 1965; Velizhanin 1977a; Vyatkin 1981; Kondratyev et al. 2000;
Sydeman et al. 2010). Previous work has shown that the survival of chicks was related
to diet quality (Gall et al. 2006; Sheffield Guy et al. 2009), and that adult interannual
survival was related to large-scale indices of winter climate in the North Pacific (Jones et
al. 2002).

Crested Auklets (A. cristatella (Pallas, 1769)) are similar to Least Auklets
ecologically, but are larger (260 g), and their chicks are nest-bound for longer (33 days;
Fraser et al. 1999). Both parents share the duties of chick rearing, together provisioning
the chick 3-5 times per day (Fraser et al. 2002). They also tend to provision chicks with
larger proportions of euphausiids compared to Least Auklets (Bédard 1969a; Hunt Jr. et
al. 1981; Day & Byrd 1989). As with Least Auklets, between 50-70% of Crested Auklet
breeding pairs raise a chick successfully (Fraser et al. 1999; Gall et al. 2006; Sheffield
Guy et al. 2009). Chick survival in Crested Auklets is also related to diet quality (Gall et

al. 2006). They breed sympatrically with Least Auklets at many sites in the Bering and



Okhotsk seas and on the Kuril Islands (Sowls et al. 1978; Jones 1993a; Konyukhov et al.
1998; Kondratyev et al. 2000; Artukhin et al. 2001), and tend to winter in the eastern
North Pacific in productive island passes (e.g., Unimak Pass; Renner et al. 2008).

Finally, Whiskered Auklets (A. pygmaea (Gmelin, 1789)) differ from congeners in
that they are active at breeding colonies nocturnally. Because adults feed their chicks
only once or twice per night (Konyukhov et al. 2000), they tend to provision chicks with
larger meals, and for a longer period (Hamer et al. 2002; Hunter et al. 2002, Chapter 5).
Whiskered Auklet chick diet tends to be similar to that of Least Auklets (Day & Byrd
1989; Hunter et al. 2002). Unlike Least or Crested Auklets, however, after fledging,
young and adult Whiskered Auklets return to the colony at night for several weeks after
the breeding season (Konyukhov & Zubakin 1994; Zubakin & Konyukhov 1994), which
suggests that they winter in the vicinity of breeding colonies (Stejneger 1885; Byrd &
Williams 1993; Gibson & Byrd 2007). Their breeding distribution and population
numbers are less known than that of their congeners because of their nocturnal habits,
but colonies are found throughout the Aleutian and northern Kuril Islands in areas free
of sea ice year round (Yamashina 1931; Sowls et al. 1978; Kondratyev et al. 2000;

Artukhin et al. 2001).

Study sites

| studied auklets at four breeding colonies in the central and western Aleutian
Islands — Buldir, Kiska, Gareloi, and Kasatochi islands. | also analysed data on auklet

moult from St. George and St. Paul islands in the Pribilofs, and from Cape Ulyakhpen on
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Russia’s Chukotka Peninsula. Buldir Island (52°23’N 175°31’E), the westernmost study
site, is approximately 2000 ha, and the most isolated of the Aleutian islands, being the
sole landmass in a 200 km pass (Byrd & Day 1986). Approximately 140,000 Least,
280,000 Crested, and 30,000 Whiskered Auklets nest on the island (Byrd et al. 2005),
although these numbers should be treated with caution as there are currently no
reliable methods to census auklets (Sheffield et al. 2006; Renner et al. 2010). Alien
predators such as foxes or rats have never been introduced to Buldir, and so it is one of
the most diverse seabird breeding colonies in the world (Byrd & Day 1986). While Buldir
is volcanic, both volcanoes on the island have been inactive in the Holocene (Coats
1953; Wood & Kienle 1990), and vegetative succession may be restricting access to
breeding sites, causing the auklet populations to decline (IL Jones pers. obs., sensu Roby
& Brink 1986b).

Approximately 120 km east of Buldir lays Kiska Island (52°08’N, 177°36’E), the
largest island in the Rat Islands group of the Aleutians (28,711 ha). The large auklet
colony is situated at Sirius Point at the extreme northern tip of the island and at the
base of Kiska Volcano. The colony covers 1.8 km? (Jones et al. 2001), with 1.16 million
Least and 332,000 Crested Auklets breeding, although there is evidence that the Least
Auklet population is declining (Byrd et al. 2005; Major et al. submitted). The colony is
situated on the north face of active Kiska Volcano, and on a parasitic lava cone that
emerged in 1962 (Coats et al. 1961; Miller et al. 1998) creating abundant auklet
breeding habitat (Jones & Hart 2006). Arctic foxes were introduced to Kiska for fur

farming in 1835 (Ashbrook & Walker 1925), and removed in 1986-1987 (Deines &
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McClellan 19874, b). Norway rats were introduced accidentally during military
occupation of the island from 1941-1946, and are still present (Murie 1959; Bond et al.
2010b).

Gareloi Island (51°46’N, 178°45’W) is the northernmost, and largest (67,200 ha)
island in the Delarof Islands group of the Aleutians, and also home to an active volcano.
Gareloi Volcano is one of the most active volcanoes in the Aleutians, erupting several
times in the last century (Coombs et al. 2008). It is home to a large auklet colony,
estimated at 186,000 Crested and 402,000 Least Auklets (Byrd et al. 2005). Arctic foxes
were introduced in 1925, and eradicated in 1996 (Paragi 1996). Gareloi is likely the
largest auklet colony in the Aleutian Islands (Jones & Hart 2006).

Kasatochi Island (52°11’N, 175°31’W) in the Andreanof Islands group of the
central Aleutians was a 287 ha island home to 20,000 Crested and 15,000 Least Auklets
until a catastrophic eruption of Kasatochi Volcano in August 2008 buried the island in
pyroclastic lava floes and ash (Williams et al. 2010). Although the eruption occurred
after most auklets had finished breeding, breeding crevices remained inaccessible.
Arctic foxes were present on Kasatochi from 1927-1991 (Scharf et al. 1996).

St. George Island (56°35’N, 169°35’W) is a 90-km? island in the Pribilof Islands in
the Bering Sea with a high diversity of breeding seabirds (Preble & McAtee 1923), and
an estimated 250,000 Least Auklets breeding in 1977 (Hickey 1977). At the Ulakaia
colony, a photographic count revealed about 88,000 birds (44,000 pairs; Renner &
Renner 2010), a decline from the 129,000 birds reported in the 1970’s (Hickey 1977).

Vegetative succession, which cuts off access to breeding crevices, and predation by

12



native Arctic foxes have caused the number of auklets to decline in the last century
(Roby & Brink 1986b), but because of the challenges of censusing auklets at breeding
colonies, it is not possible to compare the two counts directly (Renner & Renner 2010).
St. Paul Island (57°11’N, 170°16’W) is a 104-km? island also in the Pribilof Islands. The
island is home to more than 23,000 Least Auklets (Hickey 1977). The Pribilofs are near
the continental shelf break (Hunt Jr. et al. 2008), and while sea ice reached the Pribilofs
during most winters before 1977, sea ice extent has been considerably variable, and
frequently north of the islands since then (Stabeno et al. 1999; Overland & Stabeno
2004).

Finally, Cape Ulyakhpen (Russian: Mbice YnaxnaH) on the Chukotka Peninsula
(64°23’N, 173°54’W) is on the eastern end of Bezymyannaya Bay, and is one of only four
mainland auklet colonies on Chukotka. 1.2 million Least and Crested Auklets nested
here in the late 1980s (Konyukhov et al. 1998). This area of the northern Bering Sea is

covered by sea ice annually (Fetterer et al. 2010).

Thesis outline and rationale

In this thesis, | investigate climate-mediated control of reproductive success
(Chapter 2) and chick diet (Chapter 3), and attempt to relate foraging patterns of auklets
(Chapters 5 & 6), and other life history stages (moult, Chapter 4) to oceanographic

conditions in the Bering Sea.
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Abstract

Growing evidence indicates relationships between seabird demography and both
large- and small-scale variation in climate and oceanography, yet few studies have
examined multiple species and locations simultaneously. As secondary consumers,
least, whiskered and crested auklets (Aethia pusilla, A. pygmaea and A. cristatella),
congeneric planktivorous seabirds endemic to the Bering and Okhotsk seas, are
expected to respond to changes in ocean climate due to their low trophic positioning.
From 1990 through 2008, we measured reproductive success (productivity) and
breeding phenology (mean hatching date) of auklets at Buldir, Kiska and Kasatochi,
three islands spanning 585 km across the Aleutian Islands, Alaska. A model including
island, species and the winter Aleutian Low Pressure Index best explained productivity,
with reproductive success decreasing among all species with increasing ALPI (f =-0.273
+0.0263 S.E.), likely through control of water temperature and prey (zooplankton)
availability. Auklet productivity also increased with increasing winter sea surface
temperature (SST) in the western North Pacific and western Bering Sea (and
correspondingly decreased with increasing SST in the Gulf of Alaska) and was correlated
negatively with spring sea level air pressure in the North Pacific. These responses are
reflective of positive values of the Aleutian Low. Despite the short time span of our
data, we found similar correlations between climate and auklet productivity among all
species and islands. Together, our results suggested that ocean climatic conditions and

reproductive success of planktivorous auklets are related significantly.
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Introduction

Climate and oceanographic conditions in the North Pacific Ocean covary on
decadal time scales or longer (Overland et al. 1999; Biondi et al. 2001), often
characterized by ‘regimes’ of 20 - 30 years duration (Hare & Mantua 2000; Biondi et al.
2001; d'Orgeville & Peltier 2009). A well known regime shift occurred in 1976-77, with
warmer sea surface temperature (SST), lower sea level pressure (SLP), and a more
intense Aleutian low pressure system (Hare & Mantua 2000; Rodionov et al. 2005). In
the North Pacific and Bering Sea, this shift resulted in greater climatic variability (Bond
et al. 2003; Hunt & Elliott 2004; Rodionov et al. 2005), greater stratification of the water
column, and increased primary productivity (Trenberth & Hurrell 1994; lida & Saitoh
2007). Other purported ecosystem shifts have occurred in 1989-1990 and 1998-1999,
but these putative shifts in system state have not been well documented (Overland et
al. 1999; Hare & Mantua 2000; Mueter et al. 2007).

Seabirds, as conspicuous, generally unexploited, secondary and tertiary
consumers in marine systems, provide a unique opportunity to investigate coupled
climate-ecosystem variation (Durant et al. 2009). Indeed, the relationship between
ocean climate, ranging from direct measures of SST to multivariate climate indices (e.g.,
Pacific Decadal Oscillation, Mantua & Hare 2002), and seabird breeding performance
has been investigated frequently in the North Pacific (e.g., Gjerdrum et al. 2003;
Abraham & Sydeman 2004; Byrd et al. 2008); and elsewhere (e.g., Harris et al. 2005;
Durant et al. 2006; Mgller et al. 2006; Lavers et al. 2008; Jenouvrier et al. 2009). Some

find significant relationships between large-scale climate indices and seabird
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demographic rates (Kitaysky & Golubova 2000; Byrd et al. 2008; Sandvik et al. 2008),
whilst others do not (Wanless et al. 2009). In the North Pacific, variation in seabird
breeding performance is thought to result from “bottom-up” climate forcing of seabird
prey abundance (Lehodey 2004).

While linkage between climatic and oceanographic variability has been found in
many marine organisms (Beamish et al. 1997; Mantua et al. 1997; Chavez et al. 1999;
Hunt Jr. et al. 2002; Durant et al. 2006; Byrd et al. 2008; Hunt Jr. et al. 2008), most
studies do not address spatial components in climatic and oceanographic variability.
Integrating data over large areas can mask smaller-scale variation over space and time.
More recently, there has been a focus on examining relationships between seabirds’
demography and oceanographic variables in spatial terms, providing a better
understanding of how geographic patterns of climate affect marine animals (Byrd et al.
2008; Watanuki et al. 2009).

Auklets (Charadriiformes, Alcidae: Aethia) are a group of planktivorous seabirds
occurring in the Bering and Okhotsk Seas that consume and provision offspring with
zooplankton, primarily euphausiid crustaceans and large copepods (Day & Byrd 1989;
Flint & Golovkin 2002; Gall et al. 2006). Annual reproductive output is reflected by
success in the hatching and rearing offspring from a single egg (Byrd & Williams 1993;
Jones 19933, b). Here, we test the hypothesis that the productivity (and timing of
breeding) of auklets covaries with ocean climate, and that this covariation is consistent
among species and breeding colonies in the western Aleutian Islands. We considered

the correlation between productivity, large-scale ocean climate indices (Aleutian Low
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Pressure Index, PDO), and direct measures of sea surface temperature and sea level air
pressure based on satellite data for three auklet species: least, whiskered and crested
auklets (Aethia pusilla, A. pygmaea, and A. cristatella) breeding at Buldir, Kiska, and
Kasatochi in the central and western Aleutian Islands, Alaska (Fig. 2-1). Our objectives
were to: 1) quantify relationships between auklet reproductive success and indices and
direct measures of ocean climate; 2) identify the oceanographic regions where
productivity-climate correlations are strongest; 3) examine the covariance in
productivity among different island breeding colonies and among different auklet
species; and 4) to better understand underlying mechanisms determining demographic

variation in planktivorous seabird species in the North Pacific.

Methods

Productivity (the proportion of eggs laid that produced independent young) and
phenology (mean date of hatching of eggs) were measured over 18 years (1990-2008) at
Main Talus, Buldir (52°22.45'N 175°54.33'E, WGS 84; least, whiskered (1991-2008), and
crested auklets), Thundering Talus, Kasatochi (52°10.77'N 175°31.48'W, least and
crested auklets, 1996-2008) and at Sirius Point, Kiska (52°08'N 177°36'E, least and
crested auklets, 2001-2008), in the Aleutian Islands, Alaska. No data were collected

from Buldir in 1999 or from Kiska in 2005 due to logistical constraints.
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Auklet productivity

Each year, we checked a sample of auklet breeding nest sites (rock crevices)
from late May until early August, encompassing the entire breeding season for all three
species using established protocols (for details seeFraser et al. 1999; Hunter et al. 2002;
Major et al. 2006). To account for potential variability among islands, years, and
observers, one trained observer was stationed on each island in each year to ensure
consistency. Within each year, the same individual would check the same nest sites,
and all observers used the same methods and criteria (below) for determining nest
success (Fraser et al. 1999; Major et al. 2006). We visited breeding sites every 4-7 days,
and determined their status (empty, egg, chick, adult, unknown). New sites were
located and included in the sample each year, to account for previously monitored sites
that were no longer in use, but the majority of crevice nests in most years were sites
that had been monitored in previous years. We assumed that our annual sample of
breeding sites monitored at each colony was representative and reflective of
productivity at each colony site. We considered sites active when we found an adult on
two consecutive visits, or we saw an egg. We scored sites as successful in fledging a
chick if the chick disappeared after 25 days (Least Auklets, Roby & Brink 1986a), 26 days

(Crested Auklets, Fraser et al. 1999) or 32 days (Whiskered Auklets, Hunter et al. 2002).
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Timing of breeding

We estimated date of hatching for a sub-sample of crevice breeding sites
monitored. We included only crevices that we scored as an egg on one visit, and as a
chick on the very next visit (4-7 days later), and we assumed hatching date to have
occurred at the midpoint between the two visits. We then used the mean hatching date

for each species-island combination in each year as a measure of timing of breeding.

Climate and oceanographic data

We used multiple large-scale atmospheric and oceanographic climate indices,
and evaluated their relationship to auklet reproductive success. While metrics of
climate are interrelated, as might be expected, we chose a variety of indicators since no
one index reflects the variability of the North Pacific adequately (Bond et al. 2003). The
Aleutian Low Pressure Index (ALPI, Beamish & Bouillon 1993; Beamish et al. 1997) is the
anomaly from the 1950-1997 mean of the area with pressure < 100.5 kPa over the area
20-70°N, 120°E-120°W,; positive ALPI values indicate a relatively strong Aleutian low-
pressure system. ALPI is centered on our study area (approximately 51-53°N, 175°E-
175°W). The related North Pacific Index (NPI) is the area-weighted sea-level pressure
over the region bounded by 30°N-65°N and 160°E-140°W (Trenberth & Hurrell 1994).
The Pacific Decadal Oscillation (PDO) is a temporally long (20-30 years) ENSO-like

oscillation based on the leading principle component of sea surface temperature (SST)
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north of 20°N (Mantua et al. 1997). Finally, the North Pacific Gyre Oscillation (NPGO) is
derived output from a model; it represents the second principal component of sea
surface height anomalies measured over the same areas as the PDO (Di Lorenzo et al.
2008). Several of these indices (PDO, ALPI, NPI) have been related to auklet
demography (Jones et al. 2002). For sea-surface temperature (SST), we used the 4 km
AVHRR Pathfinder Version 5 dataset (available at
http://www.nodc.noaa.gov/SatelliteData/pathfinder4dkm/available.html). We measured
SST in a 50km? radius around each colony reflecting the likely foraging range of auklets
(Obst et al. 1995; Thayer et al. 2008; Wolf et al. 2009b). We assessed SST during June
and July when auklets are present at the breeding colonies. For our geospatial approach
(see below), large-scale climate data, (SST and SLP) over the North Pacific were taken

from the NCEP-NCAR reanalysis (Kalnay et al. 1996).

Statistical procedures

All statistical tests were performed in SPSS 16.0.2 (SPSS Inc., Chicago, USA), and
were weighted by the sample size of nest sites studied each year for each species at
each island. To investigate whether there were linear trends in productivity or timing of
breeding over time, we used a linear regression for each species-island combination.
We used nonparametric correlations (Spearman’s p) to look for covariance among and
between species and islands (Byrd et al. 2008). To control for multiple comparisons, we

used the False Discovery Rate (Benjamini & Hochberg 1995), which is less restrictive and
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more powerful than a Bonferroni-type family-wise correction (Garcia 2004; Grosbois et
al. 2008). We use p < 0.10 to determine significance. Setting a higher a level is desired
when the sample size (in this case, number of years) is low, to increase the power to
detect a relationship when one is present (Lebreton et al. 1992; Field et al. 2004;
Grosbois et al. 2008). This approach has been used regularly in other studies of seabirds
in the North Pacific (e.g., Abraham & Sydeman 2004; Byrd et al. 2008).

We used a three-step process to investigate relationships among ocean climate
and auklet productivity. First, we used Spearman rank correlations to search for
potential relationships to include in a statistical model (see below). Second, as this
analysis does not account for spatial variability in variables (e.g., SST and SLP), we
examined spatial correlations to provide inference regarding spatial variability (Szép &
Mgller 2005; Schroeder et al. 2009; Watanuki et al. 2009); we limited this analysis to the
Buldir and Kasatochi time series which were > 10y in duration. Spearman correlation
coefficients between reproductive success and SLP or SST were mapped over the North
Pacific and Bering Sea and areas of significant correlations (p < 0.10) were delineated.
We used generalized linear models with a binomial logit-link function (a logistic
regression approach), to select the most important climate variables. Variable selection
was based upon quasi-Akaike’s Information Criteria adjusted for small sample sizes
(QAIC.) and extra-binomial variation by including an estimate of model deviance (¢
=model deviance/df for the global model). We chose this information-theoretic
approach rather than a null-hypothesis testing because the variation in the dependent

variable (productivity) was generally small (9-16% among all species and all islands;
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Grosbois et al. 2008). We considered the model with the lowest QAIC. value to be the
best fitting model to the data (Burnham & Anderson 2002). We constructed 12 a prioiri
models composed of biologically plausible combinations of five variables of interest,
including a Null Model (intercept only) and a Global Model that included all additive
terms and their interactions for species, and islands. Once the best-fitting model was
identified, the climate and oceanographic covariates of interest, and biologically
important interaction terms were added to subsequent models to examine the effect of
climate, a similar procedure to the modelling of recapture rate and then survival rate in
mark-recapture studies (Lebreton et al. 1992; Grosbois et al. 2008). We only included
potential climate covariates that were correlated significantly with auklet reproductive
performance in our preliminary assessment (see above). This decreases the number of
candidate models, and reduces the risk of multi-collinearity in covariates (Grosbois et al.
2008). Models with AQAIC, > 2 were considered to have substantially less support, and
overall model support was assessed using Akaike weights (wi, Burnham & Anderson
2002). This was done on both the full dataset, and again using data from Buldir and
Kasatochi only, as in the geospatial analysis. This is because the dataset from Kiska is
shorter (7 years), and because Kiska is anomalous in that is also has introduced
predators that affect auklet reproductive performance. Finally, we used the estimated
marginal means (EMMs) from the top-ranked generalized linear model to examine
differences among species and islands, and differences were considered significant if

95% confidence intervals did not overlap.
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Results

We studied between 23-215 breeding pairs of each species on each island in
each year (total = 7733 breeding sites over all years and all species, Appendix 1, Fig. 2-
2). Auklet productivity ranged from 0.10 to 0.85 chicks/nest for most species for most
years, with 2001 and 2002 being unusually low at Kiska and 2003 being an unusually low
at Buldir (Appendix 2).

Linear regression identified only one significant trend in reproductive success (or
phenology Appendix 2), that being an increase in reproductive success over time for
least auklets at Kiska, our shortest dataset (p = 0.012, all other p <0.11), we used raw
data, not detrended values, for further comparisons.

Reproductive success was correlated more frequently than phenology, and all
significant correlations were positive (in phase; Table 2-2). There was a general pattern
of correlation among species within islands, and using our shortest time series (Kiska),
nine of ten correlations are positive despite the small sample size (n = 7 years),
providing reasonably strong evidence of covariation (Figure 2-2).

Timing of breeding was rarely correlated among species or islands; crested

auklet timing of breeding at Buldir and Kiska was correlated positively (Table 2-1).

Relationships to climate indices

Productivity was related frequently and significantly to ocean climate indices

(Table 2-3). Of the climate covariates we considered, the Aleutian Low Pressure Index
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(ALPI) and the winter and spring North Pacific Gyre Oscillation (NPGO) were most often

related to auklet productivity.

Geospatial mapping of climate and reproductive success correlations

In four cases, geospatial correlation analysis found that reproductive success was
correlated with winter (December-January-February) SST (Fig. 2-3), but in different
areas of the North Pacific. Productivity of least and crested auklets at Buldir was
negatively correlated with SST in the Gulf of Alaska region, while that of whiskered
auklets on Buldir was positively related to SST in the western Bering Sea. The spatial
correlation pattern for least auklets on Buldir is characterized by a negative correlation
along the American west coast and a positive correlation in the central North Pacific,
reminiscent of the SST pattern of a negative PDO (Mantua et al. 1997), although the
PDO pattern does not have another action center with the opposing sign in the western
North Pacific. Reproductive success of crested auklets on Kasatochi were positively
related to SST in the northwestern Pacific Ocean between 40-50°N (Fig. 2-3). The only
relationship between reproductive success and spring (March, April, May) SST was for
whiskered auklets breeding at Buldir, and the pattern was identical to that for winter
SST. This pattern is similar to the second mode of SST variations (Bond et al. 2003),
which is closely related to the NPGO (Di Lorenzo et al. 2009). This is consistent with the
relatively high correlation between productivity and climate indices (Table 2-3). No
significant relationships were found between reproductive success and winter SLP, and

only two for spring SLP. Whiskered auklet reproductive success on Buldir was negatively
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related to SLP in the eastern Pacific, while that of least auklets on Kasatochi was

negatively related to the spring SLP in the western Pacific (Fig. 2-4).

Factors affecting auklet productivity

Based on the results from our examination of correlation coefficients and spatial
correlation analysis, we included only ALPI, NPGO (winter and spring) along with local
breeding season SST as covariates in the generalized linear models. The best-fitting
model for productivity of all auklets from 1990-2008 included differences among species
and islands, ALPI and the island x ALPI interaction term. No other model had AQAIC, <
2, and the top model received 72% support, 3 times more than the second-best model
after adjusting for ¢ = 5.62 (Table 2-4). Parameter estimates are presented in Table 2-5.

Using data from only Buldir and Kasatochi, the top two models included effects
of species and ALPI, with one including their interaction. These models were almost
equally supported, but were more than 7 times more supported than the third-ranked
model after correcting for ¢ = 4.23 (Table 2-6).

Based on estimated marginal means (EMMs) from the full dataset, Buldir and
Kasatochi had similar reproductive success rates during the study and both were higher
than Kiska. Among islands, crested and whiskered auklets had higher reproductive
success than least auklets (Table 2-7). An increased ALPI was associated with decreased

productivity among all species on all islands (f =-0.273 £ 0.0263 (S.E.); Fig. 2-5).

26



Discussion

Our results indicate that auklet reproductive success varied with large-scale
climate indices, and that even with a short time series for multi-island comparisons (7
years), the majority (9/10) of correlations were in phase. The combination of only 7
years’ data from Kiska, and the potentially confounding effect of introduced Norway rats
complicate the interpretation, but performing analysis using data from only Buldir and
Kasatochi, combined with independent spatial correlation analysis yielded similar
patterns. We note, however, that the oscillation between ‘warm’ and ‘cold’ phases of
the Pacific Ocean may be masked or accentuated by increasing global temperatures
(d'Orgeville & Peltier 2009), and so our correlations should be treated as minimum
estimates.

Interestingly, we found no evidence of linear trends in our reproductive success
or phenology data, contrary to that found in piscivorous seabirds in the Pribilof Islands
(Byrd et al. 2008) and North Atlantic (Gaston et al. 2005; Moe et al. 2009). It is likely
that our relatively short time series overall (19 years) was insufficient to document
potential climate-linked trends in productivity.

Reproductive success tended to be more correlated among species on the same
island than for any single species among islands. Least and crested auklets tend to
provision their chicks with diets consisting of euphausiids and calanoid copepods
(Bédard 1969a; Day & Byrd 1989; Hunt Jr. & Harrison 1990), so the observed pattern
suggests that general prey availability differences among breeding sites was more

important that species-specific factors. Several studies have now examined the
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relationships between climate indices or local oceanographic conditions and timing of
breeding in the Alcidae, and found trends for earlier breeding (Gaston et al. 2005; Moe
et al. 2009), later breeding (Byrd et al. 2008; Wanless et al. 2009), or no trend over time
(Abraham & Sydeman 2004; Durant et al. 2004, this study). While snow cover, and
consequently air temperature, may delay auklet nesting at northern colonies (Sealy
1975; Moe et al. 2009), breeding colonies in the Aleutian Islands are snow-free when

auklets initiate nesting in late May or early June (authors’ pers. obs.).

The influence of climate on reproductive performance

Overall, a higher Aleutian Low Pressure Index (ALPI), which corresponded with a
stronger, more intense Aleutian low-pressure system, was associated with decreased
productivity in least, whiskered and crested auklets across their range in the Aleutian
Islands, Alaska, although the magnitude of this relationship was variable among species
and islands. A stronger Aleutian low is supposed to correspond with a larger spring algal
bloom in the Bering Sea (lida & Saitoh 2007), but also possibly with a decrease in
zooplankton biomass due to cold temperature limitation (Walsh & McRoy 1986; Huntley
& Lopez 1992; Pinchuk et al. 2008). In the eastern Bering Sea, warmer SST (and positive
values of PDO) were predicted to result in a decrease in zooplankton biomass in surface
waters during the auklets’ breeding season (Coyle et al. 2008; Jin et al. 2009), likely
caused by the copepods’ early descent in the water column to undergo diapause (Miller
et al. 1984; Miller & Nielson 1988). In the northern Bering Sea, auklets are less selective

in the prey species they choose when zooplankton abundance is low (Springer &
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Roseneau 1985; Hunt Jr. & Harrison 1990; Russell et al. 1999). Under these conditions,
prey species that are not typically exploited by auklets because of their lower energy
content (e.g., Calanus marshallae) are more prevalent in adult and chick diet. The same
could be true in the Aleutian Islands during a stronger Aleutian low, leading to a
decrease in productivity. Survival of auklet chicks has been shown to be related to the
quality of prey items delivered by their parents (Gall et al. 2006). In the northern
California Current System, Cassin’s auklets have low reproductive success in warm years
when biomass of their main prey species, Neocalanus cristatus, was early, and
consequently not abundant in chicks’ diet (Sydeman et al. 2006). We do not believe
that such a mismatch occurred with Aethia auklets in the Aleutian Islands, as chick diet
composition has been relatively constant over our study period (authors’ unpubl. data).

Aside from indirect effects of ocean climate via effects on productivity, direct
effects are also possible and non-mutually exclusive to indirect effects (Jones et al.
2007). Heavy rainfall during early chick rearing can flood nesting crevices, resulting in
chick death (authors’ personal observation). The relative importance of such local,
atypical effects as compared with prey availability is unknown.

Another direct affect of stormy weather could operate via increased wave
action, that is thought to decrease availability of zooplankton to predators (Wroblewski
& Richman 1987). Unfortunately, land-based field observational studies (such as ours)
alone do not provide direct information on plankton availability, and are therefore
inadequate to confirm the relative roles of direct and indirect effects of ocean climate

on auklet breeding success.
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ALPI and NPGO

Conveniently, our three study islands lie nearly at the centre of the geographic
area used for ALPI calculations. ALPI is also measured over the period December-March,
and other studies have found significant relationships between seabird reproductive
performance and winter climate (Abraham & Sydeman 2004; Durant et al. 2006; Byrd et
al. 2008; Sandvik et al. 2008), presumably through climate-mediated controls on prey
development, abundance and distribution (Kitaysky & Golubova 2000; Frederiksen et al.
2006; Byrd et al. 2008). We previously found that adult survival in whiskered auklets
covaried with ALPI as well, through either direct (negative effects of a stormy North
Pacific) or indirect effects (i.e., bottom-up control of food supplies, Jones et al. 2007).
This contrasts partly with recent findings that reproductive success in Cassin’s auklet
(Ptychoramphus aleuticus) is driven by local factors rather than large-scale climatic
variables (Wolf et al. 2009b). Cassin’s auklet chicks are fed only at night by their
nocturnally-active parents, grow slower and take much longer to fledge than Aethia
auklets (Ydenberg 1989), meaning that there is a larger timeframe over which nocturnal
species’ reproductive success may be affected by climatic variation. Cassin’s Auklets
breed from southern California to the Aleutian Islands, and so large-scale climate
variation is likely to be inherently more variable over their range than that of Aethia
auklets in our study. Pacific-wide climate patterns affect the coasts of California, British
Columbia, and Alaska differently and span several oceanic domains (California Current,

North Pacific Current, Alaska Coastal Current). Our study of auklets in the Aleutian
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Islands spans one oceanic domain where large-scale climate effects would likely be
more consistent than those experienced by Cassin’s Auklets in the study by Wolf et al.
(2009b).

The NPGO is an index of sea surface height and temperature anomalies over
110-180°W and 25-62°N (Di Lorenzo et al. 2008), and tends to explain more of the SST
anomaly than the PDO (Bond et al. 2003). It is controlled largely by basin-wide
variations in upwelling and advection in the ocean, and therefore influences nutrient
abundance and salinity directly (Di Lorenzo et al. 2009), which in turn affects the
abundance of plankton (Di Lorenzo et al. 2008). In all cases where the relationship
between Aleutian auklet productivity and either winter or spring NPGO was significant,
the relationship was negative such that a higher NPGO index corresponded with lower
reproductive success. A high NPGO is associated with a stronger Aleutian Gyre in the
Gulf of Alaska, and a stronger North Pacific Current, the main warm-water current that
runs west-to-east along the south of the Aleutian chain at about 40-50°N. Furthermore,
the NPGO mode has been strengthening since about 1993 (Bond et al. 2003; Di Lorenzo
et al. 2008), and may be the result of anthropogenic climate change (Di Lorenzo et al.
2008). Furthermore, the NPGO and the Aleutian low-pressure system are linked to El
Nifio Southern Oscillation (ENSO) dynamics. There is an atmospheric teleconnection
between the Aleutian low and ENSO, and the North Pacific Oscillation (which is related
to the NPGO) leads ENSO by approximately 8-12 months (Di Lorenzo et al. 2010).
Biologically, this means that there should be concern about the Aleutian Islands

population of auklets, as both increased ALPI and NPGO are related to decreased
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reproductive success, likely through a bottom-up mechanism of limiting prey availability
during either the pre-breeding period (Schroeder et al. 2009), or during chick rearing
(Gall et al. 2006). Combined with vegetative succession (Roby & Brink 1986b), and the
detrimental effects of rats at Kiska (Major et al. 2006), the effects of oceanography or

climate may be masked or dampened by colony effects.

Geospatial mapping of climate and reproductive success

The strongest geospatial correlations provided evidence that reproductive
success of least auklets on Buldir might be related to the PDO based on winter SST
correlations (Fig. 2-3). Similarly, the correlation map for whiskered auklet reproductive
success on Buldir and winter/spring SST (Fig. 2-3) resembled the Victoria mode of SST
anomalies (Bond et al. 2003). The Victoria mode is the atmospheric expression of the
NPGO in the North Pacific Oscillation, an atmospheric SLP pattern, although we again
found weak correlations, possibly because of our short time scale.

The negative relationship between auklet productivity and winter SST in the Gulf
of Alaska further suggests a bottom-up mechanism. Warmer SST is related to earlier
timing of life history events by copepods (Mackas et al. 2007), including diapause, which
may render the copepods unavailable to auklets (Goldblatt et al. 1999; Richardson
2008). Data from continuous plankton recorders in the North Pacific showed a marked
decrease in copepod abundance in winter (December-March), although smaller

numbers may remain accessible to seabird predators (Fort et al. 2010).
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Critical to an understanding of geospatial patterns of demography/oceanography
relationships in seabirds is an understanding of the birds’ spatial distribution during the
time of interest, which in our case is winter and spring. Knowledge of the non-breeding
distributions of Aethia auklets, especially from the ice-free Aleutians, is poor.
Whiskered auklets are believed to be non-migratory, spending winters in the vicinity of
the breeding colony (Stejneger 1885; Konyukhov & Zubakin 1994; Zubakin & Konyukhov
1994; Gibson & Byrd 2007). Crested auklets winter in the eastern Aleutians, particularly
in productive upwelling areas such as Unimak Pass (Renner et al. 2008; Sydeman et al.
2010), and least auklets are more abundant in the western Pacific during the winter and
spring (Vyatkin 1981; Sydeman et al. 2010), and some winter in the Sea of Japan off the
coast of Primoye, Russia (Shuntov 1965; Velizhanin 1977a; Kondratyev et al. 2000),
although the extent of mixing between Russian and North American populations is
unknown. Nevertheless, large-scale climate patterns would be expected to influence
the species differently during the winter, but as the relationships between ALPI and
productivity among all species on all islands was similar, the differing effects may

manifest in a similar way.

Other factors affecting reproductive success

All species’ reproductive success was negatively related to the ALPI across all
islands generally, but local factors must also have been important. These factors
included variable abundance and predation by avian predation such as Glaucous-winged

Gulls (Larus glaucescens), Peregrine Falcons (Falco peregrinus), and/or Bald Eagles
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(Haliaeetus leucocephalus), and rainstorms during peak hatching periods when chicks
were vulnerable to chilling, and earthquakes collapsing crevices. An extreme example of
local effects was the August 7, 2008 eruption at Kasatochi buried the entire auklet
colony site under thousands of tons of hot volcanic ash, entombing late auklet chicks
and any accompanying adults (Williams et al. 2010). Another example is introduced
Norway rats that have been present at Kiska since the 1940’s (Murie 1959), which were
thought to be implicated in severe reproductive failure in least auklets there in 2001 and
2002 (Major et al. 2006). Auklets form a considerable portion of the rats’ diet, and
caches of dead birds were found annually, being especially large in the years of breeding

failure (Major et al. 2007).

Conclusions

Our results indicated that ocean climate and associated effects on ocean
productivity and storminess influences variation in Aleutian Aethia auklet reproductive
performance. Colony-specific effects, such as variation in the abundance and behaviour
of naturally occurring and introduced predators, vegetative succession, and even

seismic and volcanic activity must also be considered.
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Figure 2-1. Map of the North Pacific Ocean indicating productivity measurement study

sites at Buldir, Kiska, and Kasatochi islands, Aleutian Islands, Alaska.
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Figure 2-2. Productivity anomalies (differences from the overall mean) of least, crested

and whiskered auklets at Buldir, Kiska and Kasatochi, Aleutian Islands, Alaska during

1990-2008.
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the assumption that each year’s productivity measure was independent.
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Figure 2-5. Productivity (number of fledglings/number of eggs laid) of least, crested and

whiskered auklets at Buldir, Kiska, and Kasatochi during 1990-2008 showing the

generally negative relationship with the Aleutian Low Pressure Index (ALPI), least

auklets, Buldir (slopes: -0.0096), Kiska (-0.0657), Kasatochi (-0.0045); crested auklets,

Buldir (-0.0281), Kiska (-0.0320), Kasatochi (-0.0169); whiskered auklets, Buldir (-0.0372).
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Tables

Table 2-1. Spearman’s p correlation matrix for breeding phenology (mean hatch date)
of least (LEAU), crested (CRAU), and whiskered auklets (WHAU) at Buldir, Kiska, and
Kasatochi in the Aleutian Islands from 1990-2008. Significant correlations after

correcting for false discovery date (see text) are indicated with *.

Buldir Kiska Kasatochi Buldir Kiska Kasatochi
LEAU LEAU LEAU CRAU CRAU CRAU

Kiska LEAU -0.239

Kasatochi LEAU  0.458 -0.373

Buldir CRAU 0.581 -0.108 0.378

Kiska CRAU 0.667 0.200 0.616 0.900*

Kasatochi CRAU  0.388 -0.248 0.519 0.208 0.051

Buldir WHAU 0.452 0.673 -0.196 0.445 0.821 0.092
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Table 2-2. Spearman’s p correlation matrix for productivity of least (LEAU), crested
(CRAU), and whiskered auklets (WHAU) at Buldir, Kiska, and Kasatochi in the Aleutian
Islands from 1990-2008. Significant correlations after correcting for false discovery date

(see text) are indicated with *.

Buldir Kiska Kasatochi Buldir Kiska Kasatochi
LEAU LEAU LEAU CRAU CRAU CRAU
Kiska LEAU 0.206

Kasatochi LEAU -0.260 0.216

Buldir CRAU 0.569 0.090 -0.249

Kiska CRAU 0.581 0.643 -0.601 0.219

Kasatochi CRAU  0.162 0.865* 0.373 0.127 0.543

Buldir WHAU 0.375 0.793 0.018 0.469 0.402 0.565
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Table 2-3. Spearman’s p correlations for productivity and climate indices for least

(LEAU), crested (CRAU), and whiskered auklets (WHAU) at Buldir, Kiska, and Kasatochi in

the Aleutian Islands from 1990-2008. Significant correlations after correcting for false

discovery date (see text) are indicated with *.

NPGO NPGO NPI NPI PDO PDO
DEC- MAR- DEC- AUG- DEC- AUG-
ALPI FEB MAY MAR APR MAR APR SST

Buldir
LEAU -0.161 -0.127 -0.148 0.258 0.35 -0.532 -0.411 -0.436
Kiska
LEAU -0.707 -0.729 -0.528 0.021 0.029 0.281 0.054 0.406
Kasatochi
LEAU -0.103 0.283 0.271 -0.133 -0.278  -0.128  -0.142 0.368
Buldir
CRAU -0.313 -0.387 -0.297 0.227 0.264 -0.192 -0.295 -0.027
Kiska
CRAU -0.469  -0.945* -0.835*  0.287 0.436 0.029 -0.086 0.091
Kasatochi
CRAU -0.373 -0.169 -0.038 0.191 0.128 -0.122 -0.324 0.198
Buldir
WHAU -0.529 -0.474  -0.415 0.307 0.231 0.114 0.033 0.053
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Table 2-4. Summary of the model set for predicting productivity of least, crested, and

whiskered auklets at Buldir, Kiska, and Kasatochi, Aleutian Islands, Alaska from 1990-

2008.
#

Model* Parameters QAIC, AQAIC. w;

[+S+ALPI+I*ALPI 8 1818.624 0.000 0.72
[+S+ALPI+I*ALPI+S*ALPI 11 1820.790 2.166 0.24
[+S+ALPI 6 1825.154 6.529 0.03
[+S+ALPI+S*ALPI 8 1826.500 7.876 0.01
[+S+NPGO/DJF 7 1832.111 13.486 0.00
[+S+NPGO/MAM 7 1839.563 20.939  0.00
I+S 5 1844.406 25.782 0.00
[+S+SST 6 1845.380 26.756 0.00
[+S+1*S 8 1847.243 28.619 0.00
S 3 1854.478 35.854  0.00
I 3 1856.643 38.018 0.00
Intercept Only 1 2496.983 678.359 0.00

*Note: Models are sorted by increasing QAIC. (quasi Akaike’s information criteria
corrected for small sample size) value with the most parsimonious model at the top.
Akaike weight (w;) is the likelihood that a given model of the model set is the best

approximation of the data. Model parameters: I: Island, S: Species, ALPI: Aleutian Low



Pressure Index, NPGO: North Pacific Gyre Oscillation (DJF: December-March; MAM:

March-May), SST: Sea Surface Temperature. Model corrected for ¢ = 5.62.
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Table 2-5. Parameter estimates from the top-ranked generalized linear model (Table 7)

for productivity of least, crested, and whiskered auklets at Buldir, Kiska, and Kasatochi,

Aleutian Islands from 1990-2008.

Lower Upper
Std. 95%  95% Wald

Parameter B Error  C.L C.. x’ df p-value
Intercept 0.391 0.1009 0.193 0.588 14975 1 <0.001
Crested auklet 0.203 0.0794 0.047 0.358  6.508 1 0.011
Least auklet -0.274  0.0784 -0.428 -0.121 12246 1 <0.001
Whiskered auklet 0°

Buldir 0.200 0.0824 0.039 0.362  5.903 1 0.015
Kasatochi 0.148 0.0849 -0.018 0.315  3.049 1 0.081
Kiska 0°

ALPI -0.273  0.0263 -0.325 -0.222 108.252 1 <0.001
Buldir * ALPI 0.168 0.0317 0.106 0.23 27.926 1 <0.001
Kasatochi * ALPI 0.220 0.033 0.155 0.285  44.49 1 <0.001
Kiska * ALPI 0°

®This parameter is set to 0 because it is redundant.
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Table 2-6. Summary of the model set explaining productivity of least, crested, and
whiskered auklets in the Aleutian Islands from 1990-2008 using only data from Buldir

and Kasatochi.

#

Model Parameters QAIC, AQAIC, w;

S+ALPI+S*ALPI 6 1942.986 0.000 0.49
S+ALPI 4 1943.267 0.281 0.43
S+NPGO/DJF 4 1947.378 4.391 0.05
S+NPGO/MAM 4 1949.853 6.866 0.02
S 3 1951.288  8.302 0.01
S+SST 4 1952.190 9.203 0.00
[+S+1*S 5 1953.267 10.281 0.00
Intercept Only 1 1964.425 21.439 0.00
I 2 1965.426 22.440 0.00

*Note: Models are sorted by increasing QAIC. (quasi Akaike’s information criteria
corrected for small sample size) value with the most parsimonious model at the top.
Akaike weight (w;) is the likelihood that a given model of the model set is the best
approximation of the data. Model parameters: I: Island, S: Species, ALPI: Aleutian Low
Pressure Index, NPGO: North Pacific Gyre Oscillation (DJF: December-March; MAM:

March-May), SST: Sea Surface Temperature. Model corrected for ¢ = 4.23
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Table 2-7. Estimated marginal mean (EMM) productivity for least, crested and

whiskered auklets at Buldir, Kiska, and Kasatochi in the Aleutian Islands, 1990-2008 was

derived from the top-ranked generalized linear model. Differences were considered

significant when confidence intervals do not overlap.

Parameter EMM 95% Confidence Interval
Least auklet 0.45 0.43-0.47
Crested auklet 0.60 0.56-0.64
Whiskered auklet 0.62 0.59-0.65
Buldir 0.62 0.60-0.63
Kiska 0.35 0.29-0.41
Kasatochi 0.61 0.59-0.63
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CHAPTER 3: DIET OF AUKLET CHICKS IN THE ALEUTIAN ISLANDS, ALASKA:

SIMILARITY AMONG ISLANDS, INTER-SPECIES OVERLAP, AND RELATIONSHIPS

TO OCEAN CLIMATE
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Abstract

Seabirds are effective samplers of the marine environment, and can be used to
measure resource partitioning among species and sites via food loads destined for
chicks. We examined the composition, overlap, and relationships to changing climate
and oceanography of 3216 food loads from Least, Crested, and Whiskered Auklets
(Aethia pusilla, A. cristatella, A. pygmaea) breeding in Alaska, during 1993-2006. Meals
comprised calanoid copepods (Neocalanus spp.) and euphausiids (Thysanoessa spp.)
that reflect secondary marine productivity, with no difference among Buldir, Kiska, and
Kasatochi islands across 585 km of the Aleutian Islands. Meals were very similar among
species (mean Least-Crested Auklet overlap C = 0.68; Least-Whiskered Auklet overlap C
=0.96) and among sites, indicating limited partitioning of prey resources for auklets
feeding chicks. The biomass of copepods and euphausiids in Least and Crested Auklet
food loads was related negatively to the summer (June-July-August) North Pacific Gyre
Oscillation, while in Whiskered Auklets food loads this was negatively related to the
winter (December-January-February) Pacific Decadal Oscillation, both of which track
basin-wide sea-surface temperature (SST) anomalies. We found a significant quadratic
relationship between the biomass of calanoid copepods in Least Auklet food loads at all
three study sites and summer (June-July) SST, with maximal copepod biomass between
3-6°C (r2 =0.71). Outside this temperature range, zooplankton becomes less available
to auklets through delayed development. Overall, our results suggest that auklets are

able to buffer climate-mediated bottom-up forcing of demographic parameters like
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productivity, as the composition of chick meals has remained constant over our study.
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Introduction

Seabirds are useful models for investigating dietary resource use and overlap in a
community setting. In particular, seabird nestling diets reflect availability, desirability,
and perhaps competition for prey in a changing marine environment (Cairns 1987; Piatt
et al. 2007). During the breeding season, parents are tied to their breeding sites, as
chicks cannot feed themselves for several weeks in most species (Hamer et al. 2002).
Forced into becoming central-place foragers, adults must balance their own energetic
investment with the need to obtain and deliver food to the chick (Elliott et al. 2009). In
environments where food resources are potentially limiting, seabird populations
experience bottom-up control (Furness & Birkhead 1984).

Ecologists have long been interested in how multiple similar species coexist in
stable communities (Darwin 1859; Wallace 1876), leading to the development of the
concepts of “niche” and “niche overlap” (Grinnell 1917; Geisel 1955; Hutchinson 1957;
Pianka 1974). The idea that two or more species cannot occupy the same niche in space
and time (“competitive exclusion principle”; Gause 1934) has led to innumerable studies
of how species accommodate their ecological similarity (Hubbell 2001; Chase & Leibold
2003). This overlap can be reduced by exploiting different resources, or by exploiting
the same resources but in different areas or at different times, especially during peak
resource demand (Schwemmer et al. 2008). Decreasing competition would be expected
to benefit individual survival and reproductive success (Hutchinson 1957), and is

therefore central to studies of demography. The coexistence of five small planktivorous
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auklet (Alcidae, genera Aethia and Ptychoramphus) in the Aleutian Islands (Jones 1999;
all five breeding at Buldir Island, Alaska) thus presents a potential test case for
evaluating hypotheses about food resource competition.

Seabirds could act as sentinels of climate change over multiple spatial and
temporal scales (Parsons et al. 2008; Durant et al. 2009), a possibility that has led to
some studies relating demographic parameters (e.g., breeding success, adult survival) to
large-scale multivariate climate indices such as the North Atlantic Oscillation, Pacific
Decadal Oscillation, or El Nifio Southern Oscillation (e.g., Jones et al. 2002; Sandvik et al.
2005). Some studies invoked a bottom-up control mechanism whereby oceanographic
conditions limit prey availability (e.g., Durant et al. 2003; Irons et al. 2008; Mills et al.
2008) or cause a temporal mismatch between consumer requirements and prey
availability (e.g., Hipfner 2008; Gaston et al. 2009). Auklet foraging may provide an ideal
subject for testing the ‘sentinel’ hypothesis as foraging by these planktivores would be
expected to relate closely to secondary ocean productivity.

In the North Pacific Ocean, changes in climate and oceanography have been well
documented (Overland et al. 1999; Hare & Mantua 2000; Biondi et al. 2001). Following
a marked change in climate and oceanography in 1976-77, climatic variability increased
(Bond et al. 2003), sea surface temperature (SST) increased, and sea-level pressure
decreased (Hare & Mantua 2000; Rodionov et al. 2005). These changes had
demographic consequences for several seabird species (e.g., Gjerdrum et al. 2003;

Abraham & Sydeman 2004; Jones et al. 2007; Byrd et al. 2008; Chapter 2).
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Least (Aethia pusilla, mean adult mass 85 g), Crested (A. cristatella, 260 g) and
Whiskered (A. pygmaea, 108 g) auklets are planktivorous alcids endemic to the Bering
and Okhotsk seas of the North Pacific. They breed sympatrically in dense colonies on
remote islands, are socially monogamous, and share incubation and chick rearing (Byrd
& Williams 1993; Jones 19933, b). Auklet chick diet consists mainly of calanoid
copepods (Neocalanus spp.) and euphausiids (Thysanoessa spp.), with some amphipods,
decapods, and other invertebrates (Day & Byrd 1989; Harrison 1990; Gall et al. 2006).
The quality of chick diet (e.g., the amount of lipid-rich zooplankton; Roby et al. 1986) is
related to chick survival in auklets (Gall et al. 2006; Sheffield Guy et al. 2009), and other
seabirds (e.g., Durant et al. 2003). Reproductive success of auklets in the Aleutian
Islands may be linked to foraging success through climate- and oceanographic-mediated
processes (Chapter 2). To explore this possibility further, we quantified auklet chick diet
over the same period, and investigated the relationship of auklet chick diet to indices of
North Pacific climate and oceanography. Sometimes it is assumed that auklet adult and
chick diets are the same, but Crested Auklet adults may feed heavily on cephalopods,
which were never fed to chicks (Hunt Jr. et al. 1998); our study therefore focuses on
food loads captured by adults and destined for their nest-bound chick. Previous work
suggested that breeding Aethia auklets reduce competition through dietary differences
(e.g., Hunt Jr. et al. 1998) or spatial separation (Russell et al. 1999), ideas that have not
been tested at multiple colony sites over time.

Our objectives were to: 1) quantify diet of Least, Crested, and Whiskered Auklet

chicks sampled across a 585 km span of the Aleutian Islands from 1993-2006; 2)
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determine diet variation among species, islands, and stage of the breeding season; 3)
examine relationships diet to key indices of annual oceanographic and climatic

variability; and 4) investigate correlations between dietary change and climate change.

Methods

Study sites

We collected food brought by parents returning to the colony at three colonies:
Main Talus, Buldir Island (52°23’N, 175°55’E; 1993-2006, Crested, Least, and Whiskered
Auklets); Sirius Point, Kiska Island (52°08’N, 177°36’E; 2001-2006, Crested and Least
Auklets): and Thundering Talus, Kasatochi Island (52°11’N, 175°31’'W; 1996-2006,
Crested and Least Auklets). These colonies span 585 km of the Aleutian chain (Fig. 3-1),
and because auklets forage within 50 km of their breeding colony (Hunt Jr. & Harrison
1990; Obst et al. 1995; Flint & Golovkin 2002), we assume that there was little spatial
overlap of foraging birds from different sites.

Adults carry food for the chick in a throat pouch (Portenko 1934), and regurgitate
this food when captured in a noose carpet or mist net (Jones et al. 2002; Jones et al.
2004; Jones et al. 2007). We sampled food regurgitated by adults throughout the chick-
rearing period (late June-early August) in each year. Each year, we collected food
samples in the same 24-hour period over 2-calendar days during early, mid, and late

chick rearing on each island, weather permitting. Early was defined as just after the
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peak of hatching (late June or early July); mid was defined as the period when all chicks
had hatched (mid July, about 10 days following the first collection period); and late was
defined as 10 days after the second collection (just before the start of fledging). We
estimated the percentage of food recovered from regurgitated contents to the nearest
5%, and stored samples in 75% ethanol. We identified prey to the lowest taxonomic
level possible and counts of individuals were converted into biomass using our own
measurements and published data (Appendix 4). The mass of some food loads was
estimated based on the proportion (5%, as noted above) of each food load collected.
To measure pair-wise dietary overlap between species within islands in a given
year, we used Horn’s (1966) modification of Morisita’s Index (1959), as recommended
by Diamond (1983). This provides an annual index 0 < C < 1, where identical diets have

C=1, and completely dissimilar diets have C = 0.

Prey availability

As a measure of prey availability, we used data from a continuous plankton
recorder (CPR) during the period of chick rearing (late June to early August) 2000-2006
between 173°W - 173°E and 52-54°N. The Pacific CPR program of the Sir Alister Hardy
Foundation for Ocean Science (SAHFOS) provided the data. Nets were towed for 18 km

at a depth < 15m; further details are in Richardson et al. (2006).
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Climatic and oceanographic indices

We used multiple large-scale atmospheric and oceanographic climate indices, as
no single index reflects the entire variability of climate or oceanography in the North
Pacific Ocean (Bond et al. 2003). The Aleutian Low Pressure Index (ALPl, Beamish &
Bouillon 1993; Beamish et al. 1997) is the anomaly from the 1950-1997 mean of the
area with pressure < 100.5 kPa over the area 20-70°N, 120°E-120°W; positive ALPI
values indicate a relatively strong Aleutian low-pressure system. ALPI is centred on our
study area (approximately 51-53°N, 175°E-175°W). The related North Pacific Index (NPI)
is the area-weighted sea-level pressure over the region bounded by 30°N-65°N and
160°E-140°W (Trenberth & Hurrell 1994). The Pacific Decadal Oscillation (PDO) is a long
(20-30 years) oscillation based on the leading principal component of sea-surface
temperature (SST) north of 20°N (Mantua et al. 1997). Finally, the North Pacific Gyre
Oscillation (NPGO) is the second principal component of sea surface height anomalies
measured over the same areas as the PDO, but also matches the second empirical
orthogonal function (EOF; a spatial statistic similar to a principal component score) of
SST anomalies closely (Di Lorenzo et al. 2008). Several of these indices have been
related to auklet demography in previous studies (Jones et al. 2002; Jones et al. 2007,
Chapter 2). These metrics of climate are interrelated, but each is based on slightly
different primary components (Trenberth & Hurrell 1994; Bond et al. 2003; Di Lorenzo
et al. 2008). We used seasonal averages of three monthly means (e.g., winter:

December-January-February, or DJF) for all indices except ALPI, which is an annual
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value.

For sea-surface temperature (SST), we used the 4 km AVHRR Pathfinder Version
5 dataset (available at
http://www.nodc.noaa.gov/SatelliteData/pathfinder4dkm/available.html). We extracted
SST in a 50 km radius around each colony site, which is the likely foraging range of
auklets during June and July (Hunt Jr. & Harrison 1990; Obst et al. 1995; Thayer et al.

2008; Wolf et al. 2009b).

Statistical analyses

All statistical tests were conducted in SPSS 16.0.2 (SPSS Inc., Chicago, IL, USA).
For food load size, we fitted a generalized linear mixed model for each species, using
island and food-sampling period (early, middle, or late chick rearing) as predictors of
load size for each species, and year as a random factor. We used the estimated
marginal means and 95% confidence intervals from the parameter estimates to
determine significant pairwise differences; pairs with non-overlapping confidence limits
were considered to differ statistically.

We used nonparametric correlations (Spearman’s p) to look for covariance
between overlap indices, load composition, and oceanographic or climatic variables.
The same approach was used to examine changes in load composition over time. To
control for multiple comparisons, we used the False Discovery Rate and p < 0.10

(Benjamini & Hochberg 1995; Garcia 2004; Grosbois et al. 2008). Setting a higher o level
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is desired when the sample size (in this case, number of years) is low, as this increases
the power for detecting a genuine relationship between climate and ecological variables
(Lebreton et al. 1992; Field et al. 2004; Grosbois et al. 2008).

After significant diet-climate relationships were identified, we included those
climate variables in a series of generalized linear models with a gamma function error
structure and identity link, and used quasi-Akaike’s Information Criteria adjusted for
small sample sizes and extra-binomial variation (QAIC.) for model selection. Using only
a subset of covariates decreases the number of candidate models, and reduces the risk
of multicollinearity (Grosbois et al. 2008). We considered the model with the lowest
QAIC, value to be the best-fitting model to the data (Burnham & Anderson 2002). We
constructed a Null Model (intercept only) and models that included additive terms and
their interactions for sampling periods (early, middle, or late chick rearing), and islands
(the Global Model). Once the best-fitting model was identified, the climate and
oceanographic covariates of interest, and biologically significant interaction terms were
added to subsequent models to examine the effect of climate (a procedure similar
modelling recapture rate and then survival rate in mark-recapture studies; Lebreton et
al. 1992; Grosbois et al. 2008). Models with AQAIC, > 2 were considered to have
substantially less support, and overall model support was assessed using Akaike weights
(denoted as wi, Burnham & Anderson 2002). This was done on both the full dataset and
on data from Buldir and Kasatochi islands because the dataset from Kiska Island is
briefer (5 years), and because Kiska is anomalous because it has introduced predators

that might affect provisioning behaviour (Major et al. 2006).
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Results

We identified 40 prey taxa categories in Least Auklet food loads (n = 810), 29 in
Crested Auklet food loads (n = 1110), and 32 in Whiskered Auklet food loads (n = 486;
Appendices 5, 6, 7). Food loads were composed mainly of Neocalanus copepods and
Thysanoessa euphausiids (Appendices 5, 6, 7). Fine taxonomic resolution was not
possible in all years, so items were grouped for subsequent analysis into higher-level
taxa as “Neocalanus” or “euphausiids”; other taxa (e.g., amphipods, decapods, Calanus

marshallae) were not included in analyses because they often comprised < 5% biomass

in any given year. Notable exceptions were for Least Auklet on Kasatochi in 1997, 1999,

and 2006 (18.9%, 38.5%, and 13.1% decapods, respectively), Crested Auklets on Buldir in

2003 (12.9% Themisto amphipods), and on Kasatochi in 2004 (20.5% Themisto
amphipods; Figures 3-2, 3-3, 3-4).

After correcting for the False Discovery Rate, we found no significant annual
trends in the proportion of Neocalanus or euphausiids in loads of Least, Crested, or

Whiskered auklets (all P> 0.12).

Food load size

Food load mass was estimated for 683 Least, 1071 Crested, and 316 Whiskered

Auklet food loads (64% of the total). Meal size differed significantly among sampling
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periods (all P < 0.01), but not among islands (all P> 0.32). The random effect of year
explained less than 5% of the variance in all three species. Based on 95% confidence
intervals of marginal means, load sizes increased significantly throughout the chick-
rearing period for Crested, and Least Auklets. In Whiskered Auklets, load size was
smaller in the early than in the mid period, and load size in the late period did not differ
from that in other periods (Table 3-3). As a percentage of adult body mass, Least Auklet
loads averaged 3.5-6.1%, Crested Auklets chick meals 3.2-5.7%, and Whiskered Auklet

chick meals 7.4-10.1%.

Dietary overlap and similarity among species and islands

Within-island dietary overlap between species was considerable. At Buldir,
overlap was highest between Least and Whiskered auklets, followed by Crested and
Whiskered auklets, and in many years, overlap between species was > 0.90 (Table 3-1).
At Kasatochi, overlap between Least and Crested Auklets was higher than that on Buldir,
and was > 0.90 in 5 of 11 years (Table 3-1). At Kiska, overlap between Least and Crested
Auklets was low, but based on only three years’ data (Table 3-1). Based on 95%
confidence intervals given above, we conclude that at Buldir there was more dietary
overlap between Least and Whiskered auklets than between other species, and that
overlap between Least and Crested Auklets differed among three sites (Kasatochi >
Buldir > Kiska). Overlap between Least and Crested auklets on Buldir was positively

correlated with overlap between Least and Whiskered Auklets on Buldir after correcting
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for the False Discovery Rate (P < 0.001).

We also used the overlap index C as a measure of dietary similarity within
species among islands. Load composition was consistent among islands for all species.
Least Auklet diet was identical on all islands. Similarity in Crested Auklet loads was
lower than that for Least Auklets, but still high. We conclude that load composition of

Least and Crested auklets did not differ among islands (Table 3-2).

Prey availability: CPR data

After correcting for multiple comparisons using the False Discovery Rate, we
found no significant relationships between auklet load composition (proportion of
Neocalanus or euphausiid biomass in chick meals) and total zooplankton biomass,
Neocalanus (stage V copepodite) biomass, or euphausiid biomass, in plankton tows

during chick rearing in 2000-2006.

Relation to climate/oceanographic indices

After correcting for the False Discovery Rate, we identified only two significant
correlations between load composition and climate indices. The proportion of
euphausiids in Least Auklet loads was positively correlated with winter (December-
January-February) NPGO on Buldir (p = 0.72, P = 0.006), and with spring (March-April-

May) NPI on Kiska (p = 0.98, P = 0.005). Given the paucity of significant monotonic
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correlations, and the potential for more complex relationships (e.g., parabolic; Gjerdrum
et al. 2003), we included all climate and oceanographic variables as covariates in
subsequent analyses.

A model that included differences among islands, sampling periods, island x
period interaction, and a negative relationship to the summer (June-July-August) NPGO
best predicted the biomass of Neocalanus in Crested Auklet loads, after correcting for
overdispersion by using ¢ = 1.8. This model received 57% of the weight, and 2.6 times
more support than the next-ranked model (identical, but with a negative relationship to
winter NPGO), which also received considerable support (AQAIC. = 1.54). The same
model (covariation with summer NPGO) best predicted euphausiid biomass in Crested
Auklet loads (58% weight, 2.2 times more support).

Both Neocalanus and euphausiid biomass in Least Auklet loads was best
predicted by a model that included differences among islands, periods, period x island
interaction, and a negative relationship with summer (June-July-August) PDO
(Neocalanus: 100% weight, 429 times more support; euphausiids: 100% weight, 427
times more support). Data were not over- or underdispersed, so we did not adjust the
model using €.

A model that included only a negative relationship with winter (DJF) PDO best
predicted the biomass of Neocalanus and euphausiids in Whiskered Auklet loads on
Buldir (Neocalanus : 98% weight, 96 times more support; euphausiids: 98% weight, 130

times more support). Again, no adjustment using ¢ was required.
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Both NPGO and PDO track basin-wide SST anomalies, and as local SST was not
among the highly-ranked models, we investigated other possible relationships between
food load composition and SST using Neocalanus in Least Auklet diet. Neocalanus
accounted for most biomass in most years, and sample sizes were large on all three
islands. We found a parabolic relationship of Neocalanus biomass to local summer SST
(r* = 0.25). Major et al. (2006) hypothesized that introduced Norway rats (Rattus
norvegicus) could affect the provisioning behaviour of auklets at Kiska; when data from
Kiska were excluded, the parabolic relationship of Neocalanus biomass to SST increased
(r* = 0.71). Maximal Neocalanus biomass occurred when summer (June-July) SST was
~4.5°C, was relatively constant between 3-6°C, and declined sharply outside this range
(Fig. 3-5).

Correcting for False Discovery Rate, dietary overlap of Least Auklets among all
three islands was correlated with winter (DJF) NPGO, and overlap between Kiska and
Kasatochi was related to NPGO in spring (March-April-May, MAM) and summer (June-
July-August, JJA). Within islands, overlap between Least and Crested Auklets was not
related to any climate variable at Kiska or Kasatochi. At Buldir, Least and Whiskered

Auklet overlap was related to spring (MAM) NPI.

Discussion

Overall, our results confirm previous studies of auklet chick diet (using adult food

loads as a proxy) in the Aleutian Islands (Day & Byrd 1989) which indicated that Least
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and Whiskered auklets rely heavily on large-bodied oceanic copepods, whereas Crested
Auklet adults also deliver a significant amount of euphausiids to their chicks. Unlike
studies from St. Paul Island in the Pribilof Islands, and on the continental shelf and shelf
break, we found very few Calanus marshallae in chick meals of the three species. The
amount of C. marshallae, a neritic copepod, in chick meals was negatively related to
auklet chick survival at colonies on the continental shelf (St. Lawrence Island, Gall et al.
2006). Unlike the larger oceanic copepods Neocalanus spp., C. marshallae has lower
lipid content, and Least Auklets are thought to seek out Neocalanus spp. preferentially
over less profitable prey resources (Hunt Jr. & Harrison 1990; Hunt Jr. 1997; Russell et al.
1999). Oceanic Neocalanus spp. copepods (N. plumchrus, N. flemingeri, and N.
cristatus) are rich in lipids and wax esters required by auklets (Roby et al. 1986). At St.
Lawrence Island, oceanic copepods are advected by the Anadyr Current (Springer et al.
1989), and contribute to higher chick survival (Gall et al. 2006; Sheffield Guy et al. 2009).
Such oceanographic fronts concentrate zooplankton, including Neocalanus spp. (Hunt Jr.
& Harrison 1990; Hunt Jr. 1997; Russell et al. 1999).

Around St. Lawrence Island, Crested Auklets were often associated with
epibenthic advected euphausiid swarms (Russell et al. 1999), and their chicks’ diet
consisted largely of Thysanoessa spp. euphausiids (Bédard 1969a; Piatt et al. 1990a;
Sheffield Guy et al. 2009). In addition to euphausiids, Crested Auklets in the Aleutians
appear to also rely heavily on calanoid copepods to provision their chicks in most years
(Appendix 5, Day & Byrd 1989), unlike their counterparts in the Bering Sea (Bédard

1969a; Hunt Jr. et al. 1981; Sheffield Guy et al. 2009). Crested Auklets provisioning
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chicks exploit large bodied oceanic copepods when they are available (Searing 1977), in
some years delivering meals consisting wholly of these, consistent with copepods’
availability being generally greater in the oceanic domain of the western Aleutian Islands
(Hunt Jr. 1997).

Whiskered Auklets have a much smaller breeding range than Least or Crested
Auklets, and are restricted to the Aleutian Islands, the Commander Islands, and the
northern Kurile Islands (Averin 1957; Byrd & Williams 1993; Kondratyev et al. 2000;
Artukhin et al. 2001). Consequently, much less is known about their diet. Our results
agree with previous studies of chick meals on Buldir (Day & Byrd 1989; Hunter et al.
2002), but contrast with studies of adult stomach contents in the eastern Aleutians,
where euphausiids dominated diet (Troy & Bradstreet 1991), pointing to differences in
the provisioning behaviour of adults depending on whether self-feeding or providing

meals to chicks, or perhaps geography.

Dietary overlap and similarity among species

In the northern Bering Sea and eastern Aleutians, previous work has suggested
that distributional differences among species are related to dietary differences (Hunt Jr.
et al. 1998; Russell et al. 1999). We found considerable dietary overlap between species
and among years, could be the result of two non-exclusive hypotheses: adult auklets
acquire similar prey from different locations, or, because Neocalanus copepods are so

abundant (Mackas et al. 1998), competition for them is insignificant.
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Chick diet of auklets in the Aleutian Islands exhibits high interspecific overlap
compared with other seabirds. For example, over 10 years, and nearly 80% of all C-
estimates were > 0.6, indicating significant overlap (Catry et al. 2009). Dietary overlap
among Aleutian auklets was similar to that in other subarctic and temperate seabird
communities (Pearson 1968; Baltz & Morejohn 1977; Barrett et al. 1997; Gonzalez-Solis
et al. 1997; Minich 2007), and generally higher than that in tropical communities
(Ashmole & Ashmole 1967; Diamond 1983; Catry et al. 2009). Overlap among auklets
was also higher than among seabirds at the more diverse subantarctic Crozet Island
(Ridoux 1994). While this high degree of overlap is noteworthy, it agrees with the
prediction that overlap is greater in temperate and sub-polar communities where small
numbers of exploited prey taxa are very abundant (Diamond 1983). Dietary overlap was
greater in the Aleutians than among auklets breeding at St. Matthew Island in the
northern Bering Sea, where overlap between Least and Crested Auklets of C = 0.52 was
at the lower end of the values we recorded (Harrison 1990).

To our knowledge, ours is the first study of dietary overlap among years, and we
have shown that there is considerable variation from year to year and among sites,
highlighting the need for long-term investigations to elucidate the ecological
relationships among closely-related members of the same foraging guild in the context
of coexistence. Dietary overlap at multiple sites has received little attention. We found
that Least Auklet chick diet across the Aleutian Islands was nearly identical in all years
and exhibited high overlap between islands. These trends, combined with lack of

interannual differences in the proportion of Neocalanus or euphausiids in chick diet,
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suggest that auklets were able to locate suitable prey for their chicks in most conditions.
Overlap was lower between islands for Crested Auklets but was significant, further
supporting the interpretation that chick diet is similar among all three sites. Previous
research at Kiska quantified near failure of Least Auklet breeding in 2001 and 2002, with
productivity in those years being far lower than recorded at any Least Auklet colony in
any year anywhere in Alaska (Major et al. 2006; Chapter 2). Most breeding sites failed
during the chick rearing stage, with rat activity and nutritional stress being explanatory
hypotheses. Our results here are relevant to this issue because we found no difference
in Least Auklet chick diet (C = 0.99) between Buldir (where auklets had high productivity;
Chapter 2) and Kiska. Food load composition did not correlate with breeding failure at
Kiska, nor was it aberrant in any way in the years of failure. This adds to the evidence
that introduced Norway rats were responsible for auklet breeding failure in 2001 and

2002 at Kiska.

Food load size

Food load size varied across sampling periods within the breeding season in all
three species. In Least and Crested Auklets (and to a certain extent in Whiskered
Auklets), food load size increased as the breeding season progressed, paralleling
increased energy demands of the chicks. Food load size in the Least Auklet was smaller
in our study than load size recorded on the Pribilof Islands, (5.28g, Roby & Brink 1986a).

If energy requirements of Least Auklet chicks are the same in the Pribilof and Aleutian
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islands, then adults in the latter location must deliver food to the chicks more frequently
(Roby & Brink 1986a; Roby 1991). To our knowledge, there are no data from Crested of
Whiskered auklets to make similar comparisons. The Dovekie (Alle alle), similar to
auklets ecologically, adapts to changes in zooplankton abundance by increasing the rate
of food load deliveries to chicks (Jakubas et al. 2007).

Load size was larger relative to adult body mass in the Whiskered Auklet than in
Least or Crested auklets. Whiskered Auklet parents provision their chicks only once or
twice per night (Konyukhov et al. 2000), much less than the other species (Roby & Brink
19864; Fraser et al. 2002). Whiskered Auklets forage in tide rips closer to shore than
other auklet species (Byrd & Williams 1993), which may allow them to carry a heavier
load over a shorter distance. In addition, because most provisioning of chicks is
nocturnal, adults may be under pressure to deliver larger loads to meet their chicks'
energy and growth demands, as nocturnal alcids tend to grow slower and fledge at older

ages relative to diurnal species (Ydenberg 1989; Hunter et al. 2002).

Relationship of food loads to prey availability, and indices of ocean climate

We found no relationship of food load composition to prey availability as assessed by
CPR data from near breeding colonies. Auklets generally forage in areas of oceanic
fronts and upwelling zones, which have high concentrations of zooplankton (Kinder et
al. 1983; Hunt Jr. et al. 1998; Russell et al. 1999); CPR data are averaged over an entire

tow, and would not indicate the presence of upwelling areas.
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The summer North Pacific Gyre Oscillation (NPGO) predicted food load
composition of Crested Auklets, with a higher NPGO value corresponding with a
decrease in the biomass of Neocalanus copepods and euphausiids. Least Auklet food
load composition was related to the summer Pacific Decadal Oscillation (PDO), where a
higher PDO value corresponded with a smaller biomass of both Neocalanus copepods
and euphausiids. The NPGO is an index of sea-surface height and temperature
anomalies over 110-180°W and 25-62°N (Di Lorenzo et al. 2008), and tends to explain
more of the SST anomaly than the PDO (Bond et al. 2003). Our examination of the
relationship between local summer SST and least Auklet Neocalanus biomass showed a
parabolic relationship, with copepod biomass peaking between 3-6°C, and declining
significantly outside this range. Such a parabolic relationship is found when an optimum
exists, such as the relationship between Tufted Puffin (Fratercula cirrhata) breeding
success and summer SST (Gjerdrum et al. 2003). Neocalanus copepods require cooler
temperatures to develop (ideally less than 10°C; lkeda et al. 1990), but when
temperatures are cooler than 3°C, development may be delayed significantly as the
copepods take longer to acquire the necessary lipids to grow and moult (Batten et al.
2003).

Interestingly, we found a decrease in Neocalanus copepods in Least Auklet chick
meals at temperatures above 6°C. Such temperatures should be favourable for copepod
growth and development (lkeda et al. 1990; Batten et al. 2003), meaning that copepod
abundance would likely remain high. Warmer temperatures correspond with an earlier

start of the peak abundance of Neocalanus, and a difference of 4°C in SST between
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southern and northern sampling stations along the west coast of North American is
reflected in a difference of 3-4 weeks in the timing of the Neocalanus bloom (Batten et
al. 2003). Despite this, the variation in local SST measured around auklet breeding
islands in June and July each year remained within the thermal limits of Neocalanus

development (< 10°C; Ikeda et al. 1990).

Implications of climate-influenced diet on demography

Many studies of relationships between climate and oceanographic indices and
demographic parameters in seabirds suggest bottom-up control mechanisms, although
seldom are these tested explicitly (e.g., Durant et al. 2004; Votier et al. 2005; Chapter 2).
In the Aleutian Islands, both adult survival and reproductive success are related to large-
scale climate indices (Jones et al. submitted; Chapter 2). A more detailed analysis of the
relationship between auklet demography and diet is warranted, but the similarity in
food load composition from year to year suggests that other factors (e.g., direct
predation, density dependence, competition) are regulating auklet populations in the

Aleutian Islands.
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Figure 3-2 — Crested Auklet chick diet (as inferred from adult food loads) had greater
proportions of euphausiids than that of Least or Whiskered Auklets. Data are presented
as the proportional biomass of Neocalanus copepods, euphausiids, and other prey
types. Colour shades represent samples from early (light) mid (medium) and late (dark)
chick rearing. Data are presented for Buldir (top, 1994-2006), Kiska (middle, 2001-
2006), and Kasatochi (bottom, 1996-2006).
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Neocalanus copepods, euphausiids, and other prey types. Colour shades represent
samples from early (light) mid (medium) and late (dark) chick rearing. Data are
presented for Buldir (top, 1994-2006), Kiska (middle, 2001-2006), and Kasatochi
(bottom, 1996-2006).
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Figure 3-4 Whiskered Auklet chick diet (as inferred from adult food loads) at Buldir
(1995-2006) was very similar to that of Least Auklets, with large proportions of
copepods. Data are presented as the proportional biomass of Neocalanus copepods,
euphausiids, and other prey types. Colour shades represent samples from early (light)

mid (medium) and late (dark) chick rearing.
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Tables

Table 3-1. The overlap among Least, Crested, and Whiskered auklet food loads at Buldir,
Kiska, and Kasatochi islands in 1994-2006 is variable, but consistently high. Values are
presented as Horn’s (1966) modification of Morisita’s (1959) overlap index (C), where C
=0 indicates completely dissimilar diets with no overlap, and C = 1 indicates identical

diets (i.e. complete overlap).

Buldir Kasatochi  Kiska
Crested- Crested- Least- Crested- Crested-
Year Least Whiskered  Whiskered Least Least
1994 0.697 0.981 0.803
1995 0.634 0.746 0.985
1996 0.412 0.460 0.998 0.813
1997 0.513 0.496 0.999 0.949
1998 0.499 0.469 0.999 0.952
1999 0.873 0.897 0.995 0.836
2000 0.977 0.976 1.000 0.553
2001 0.324 0.328 0.998 0.822 0.010
2002 0.836 0.971 0.932 0.703
2003 0.170 0.684 0.765 0.740 0.015
2004 0.993 0.990 0.999 0.927
2005 0.949 0.962 0.999 0.958
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2006 0.915 0.879 0.995 0.953 0.839
Mean 0.676 0.757 0.959 0.837 0.288
95% C.1. 0.149 0.132 0.044 0.077 0.540
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Table 3-2. The composition of food loads of Least and Crested auklets at Buldir, Kiska,
and Kasatochi islands in 1994-2006 are very similar. Values are presented as Horn’s
(1966) modification of Morisita’s (1959) overlap index (C), where C = 0 indicates
completely dissimilar diets with no overlap, and C = 1 indicates identical diets (i.e.

complete overlap).

Crested Auklet Least Auklet

Buldir- Buldir- Kasatochi- Buldir- Buldir- Kasatochi-
Year Kasatochi Kiska  Kiska Kasatochi Kiska  Kiska
1996 0.944 0.959
1997 0.702 0.929
1998 0.743 0.992
1999 1.000 0.877
2000 0.626 0.969
2001 0.806 0.815 0.527 0.995 1.000 0.996
2002 0.937 0.995 0.999 0.993
2003 0.785 0.897 0.652 0.988 1.000 0.991
2004 0.968 0.995 0.999 0.997
2005 0.998 0.993
2006 0.945 0.981 0.990 0.973 0.934 0.964
Mean 0.859 0.898 0.723 0.969 0.986 0.988
95% C.l.  0.076 0.094 0.271 0.022 0.026 0.012
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Table 3-3. The food load mass for Least, Crested, and Whiskered auklets increases as
the breeding season progresses at three breeding sites in the Aleutian Islands, Alaska, in
1994-2006. Samples were pooled among breeding sites and years. Values are
estimated marginal means £ S.E. (n) in grams (wet weight). Values sharing the same

letter are not significantly different based on overlapping 95% confidence intervals.

Species Early Middle Late

Crested Auklet  8.27 +0.83 (282)° 11.77 +0.74 (342)® 14.78 +0.73 (447)°
Least Auklet 2.94 +0.24 (234)° 4.23+0.24 (249)°  5.20 + 0.24 (200)°

Whiskered Auklet 8.02 +0.66 (113)° 10.90 + 0.67 (108)® 9.29 +0.70 (95)*°
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Abstract

Along with breeding and migration, moult is one of the most energetically expensive
components of birds’ circannual cycles. Auklets (Alcidae, tribe Aethiini) are apparently
unique among the auks in that flight feather moult and breeding overlap. We
investigated the degree of overlap of primary moult and breeding in Least Auklets
(Aethia pusilla) at four colonies — Kiska Island (Aleutian Islands, Alaska, 52°N), St. George
Island (Pribilof Islands, Alaska, 56°N), St. Paul Island (Pribilof Islands, 57°N), and Cape
Ulyakhpen (Chukotka Peninsula, Russia, 64°N). Flight feather moult commenced during
incubation with up to four primaries replaced by the end of chick rearing. We found no
difference in moult rate between adult breeders and non-breeders, or between adults
and subadults at Kiska. Adult auklets replaced their first four primaries faster and
initiated moult later at higher latitudes despite similarities in the length of the breeding
season among colonies. The cold-water Anadyr Current, which advects lipid-rich
oceanic Neocalanus spp. copepods, likely contributes to the increased energetic
requirements of Least Auklets breeding and moulting at higher latitudes. In Least
Auklets and other members of their tribe Aethiini, sequential primary moult, rather than
simultaneous moult typical of other alcids, may be possible because of auklets’ lower

body mass, wing loading, mass loss at hatching and foraging patterns.
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Introduction

The regular replacement of feathers through moult is costly both in energy and
time (Murphy 1996; Rohwer et al. 2009). Despite the importance of moult, studies of
inter-annual and inter-colony variation of moult of pelagic seabirds, and possible
influencing factors are rare (Emslie et al. 1990; Underhill & Crawford 1999). Because of
the cost of feather synthesis and the aerodynamic and thermoregulatory costs of
missing feathers, understanding patterns of moult can be crucial to investigations of
avian physiology, ecology, and behaviour (Hoye & Buttemer 2011). Ecological inference
from stable isotopes of carbon and nitrogen (83C and 8*°N) in animal tissues has
increased in recent years (Inger & Bearhop 2008), and feathers are used commonly in
such studies because of the ease and minimal invasiveness with which they can be
sampled. Essential to understanding and interpreting stable-isotope data from feathers,
however, is knowledge of the range of dates over which a feather was grown, as
feathers usually incorporate exogenous nutrients from the time of synthesis (Hobson &
Clark 1992a) and, in species with moult migrations, endogenously catabolised nutrients
that were laid down prior to migration (Fox et al. 2009).

Auklets (Aethiini) are unusual alcids because several species moult their primary
feathers sequentially beginning during the breeding season (Bédard & Sealy 1984;
Emslie et al. 1990; Konyukhov 2001, 2009). Most other auks moult all their flight
feathers simultaneously after they leave the breeding colony, rendering individuals

flightless for several weeks (Stresemann & Stresemann 1966; Harris & Yule 1977; Sealy
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1977; Bédard 1985; Ewins 1988; Harris & Wanless 1990b; Bridge 2006; Pyle 2008).
Moulting patterns for some species of auk are largely unknown (e.g., Spectacled
Guillemot (Cepphus carbo), Craveri’s Murrelet (Synthliboramphus craveri) and Japanese
Murrelet (S. wumizusume)).

The Least Auklet (Aethia pusilla) is endemic to the Bering and Okhotsk seas and
adjacent North Pacific Ocean, where they breed at a few dense colonies (Gaston &
Jones 1998). In North America, major colonies are in the western Aleutian Islands, on
the Pribilof Islands, and in the northern Bering Sea (Jones 1993b). In Russia, Least
Auklets breed on Ratmanov (Big Diomede) Island (Bering Strait), on the Chukotka
Peninsula, and on islands in the Sea of Okhotsk and Kuril Archipelago (Dement'ev et al.
1951; Kozlova 1957; Konyukhov et al. 1998; Kondratyev et al. 2000; Artukhin et al. 2001;
Zelenskaya 2009). Northern colonies in the Bering Sea and Sea of Okhotsk are
surrounded by sea ice during part of the year, whereas all Aleutian most Kuril Island
colony sites are ice-free year round (Fetterer et al. 2010).

Moult is often timed with birds’ circannual cycles (Dawson 1998; Dawson et al.
2001), and in Least Auklets, is probably related to the timing of breeding. Auklet
breeding phenology is later at higher latitudes; e.g. Least Auklets nest 3-4 weeks later at
St. Lawrence Island (63°24’N) than colonies in the Aleutian Islands (Sealy 1975; Jones
1993b; Gaston & Jones 1998). We therefore predicted that the timing of moult would
show a similar gradient in Least Auklets. Such latitudinal variation in timing and rate of

moult has been observed in mammals (Todorovi¢ 1955; King & Moody 1982) and land
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birds (Williamson & Emison 1971; Medwaldt & King 1978; Dawson et al. 2000), but ours
is the first investigation of this phenomenon in marine birds.

By including data from all major breeding areas (northern Bering Sea, Pribilof
Islands, Aleutian Islands, Chukotka Peninsula), our goal was to investigate how the
timing of primary replacement varied with breeding phenology, age class, breeding
status (breeder vs. non-breeder), and latitude of the colony. Because Least Auklets
begin replacing flight feathers during incubation and continue through chick rearing, we
predicted that adults from more northerly colonies affected by sea ice and snowmelt
would moult later and faster than adults in the south. Based on previous studies we
also predicted that subadults would initiate moult later, but replace primaries faster
than adults (Bédard & Sealy 1984; Emslie et al. 1990). Finally, we evaluated hypotheses
to explain why the tribe Aethiini is unique among the Alcidae in overlapping primary

replacement and breeding.

Methods

Capture and moult status of wild Least Auklets

We caught Least Auklets at: Sirius Point, Kiska Island, Aleutian Islands, Alaska
(52°08’N, 177°37’E) in June-July 2008 and 2009; Ulakaia Ridge, St. George Island, Pribilof
Islands, Alaska (56°35’N, 169°35’W) in June-August 2005; Tolstoi Point, East Landing,

and Zapadni Point colonies on St. Paul Island, Pribilof Islands, Alaska (57°11'N,
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170°16’W) in June-August 2000 and June-July 2004; and Cape Ulyakhpen on the
Chukotka Peninsula, Russia (64°23’N, 173°54’W) in June-September 1988-1990 (Fig. 4-
1). Summaries of data from St. Paul, St. George, and Cape Ulyakhpen are also presented
by Konyukhov (2009). Birds were caught using noose carpets or with a ground net
placed over breeding crevices (Konyukhov 2009). We weighed, measured, and banded
each bird, and recorded the number of replaced and missing primaries. Adults were
identified as having a black forehead with white streaks; subadults (individuals 11-13
months old) have a brown forehead and worn flight feathers (Pyle 2008). On Kiska
Island only, we determined the apparent breeding status of each adult by resighting
marked birds and recording whether they carried a chick meal, which is evident by the
distended throat pouch (Portenko 1934; Bédard 1969a). Individuals were identified as
breeders in a given year if they were observed with chick meals at least twice during the
chick-rearing period (late June to late July). This underestimates the number of actual
breeders, as some captured birds were not seen following release and could have been
breeding elsewhere in the colony, and because some breeders whose attempt failed
during incubation would not have been seen carrying chick meals (Jones et al. 2002).

At St. Paul Island, St. George Island, and Cape Ulyakhpen, newly grown primaries
were measured to the nearest 0.1 mm with callipers. At Kiska Island, we recorded the
number of newly grown and missing primaries only. We then converted feather lengths
to proportion of feather mass grown (PFMG, Underhill & Summers 1993) by assuming
that the mass deposition within each new feathers was linear, and using masses of fully

grown primaries obtained from auklets encountered dead at Kiska (all feathers) or

87



sampled for stable-isotope analysis (P1 and P10, Table 4-1). PFMG is preferable, as it
describes the energetic costs more accurately (Underhill & Zucchini 1988), whereas
counting replaced and missing feathers assumes that each feather is energetically
identical (Rohwer 2008). Statistical analyses were performed on the PFMG relative to
the feather mass of the first four primaries, as only these are replaced during the
breeding season (see Results). Data from Kiska were converted to PFMG by assuming
that the outermost new primary was half-grown, the next outermost was 75% grown,
and all others were fully-grown. This pattern is consistent with our observations based

on measured lengths at other colonies (unpubl. data).

Museum specimens

To study Least Auklet moult outside the breeding season, we examined
specimens collected between September-January in museum collections in Canada, the
United States, and Russia (Appendix 8). As with live auklets, each specimen was aged
(adult or subadult), and moult was scored where old feathers received a score of 0, and
new feathers 5 (Remisiewicz et al. 2010). Because we assumed some mixing of winter
populations, and lacked any a priori knowledge about segregation of individual Least
Auklets from different breeding areas during the non-breeding season, all specimens

from outside the breeding season (mostly autumn) were included in a single analysis.
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Statistical methods

Using the mass of each primary (Table 4-1), we converted the measured lengths
of feathers to PFMG for analysis in an Underhill-Zucchini type 5 analysis (Underhill &
Zucchini 1988; Underhill et al. 1990), hereafter “U-Z 5” analysis. U-Z 5 is used when
individuals sampled have either not yet started, or are currently moulting primaries, and
no individual has finished primary moult at the end of the study (Underhill et al. 1990).
U-Z models use a maximum likelihood approach to estimate duration (and therefore,
rate) or moult and date of moult initiation. Models were constructed using the package

‘moult’ in R 2.12.1 (R Development Core Team 2010).

Results

Moult of Least Auklets at breeding colonies

The relationship between feather length and mass was not uniform among
primaries (Table 4-1); outermost primaries had greater mass per mm than did inner
primaries.

On Kiska Island, we examined 214 live birds between 8 June-26 July 2008 and
115 birds between 10 June-19 July 2009. We examined 232 adult birds from St. George
Island between 30 June-5 August 2005, and 143 adults between 25 June-31 July 2007.
At St. Paul Island, we examined 310 birds between 10 June-9 August 2000, and 182 birds

between 29 June-30 July 2004. At Cape Ulyakhpen, we captured 129 adults between 4
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June-7 September 1988, 195 adults between 5 June-25 August 1989, and 386 adults
between 2 June-31 August 1990. We found that Least Auklets begin growing up to four
primary feathers sequentially during late incubation and early chick rearing.

Because of the small number of birds examined on Kiska in 2009 (n = 65), it was
not possible to construct a meaningful U-Z model for this group, so it was removed from
subsequent analysis. Neither the duration nor start date of primary moult varied among
Least Auklet breeders, non-breeders, and subadults, although subadults tended to be
more variable in when moult was initiated (Table 4-2). Among colonies, there was much
inter-annual variation in both rate and initiation date of moult: rate was faster (i.e.
duration was briefer) and moult started later at Cape Ulyakhpen than in the Pribilof or

Aleutian Islands (Table 4-3, Fig. 4-2).

Museum specimens

We examined 105 museum specimens. Of these, 35 were collected between
September and December. Some birds had completed primary moult by the end of
September, and others a month later. No birds were moulting primaries after 27

November (Table 4-4).

Discussion

Least Auklets replace the innermost primary feathers at the breeding colony
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during chick rearing, and complete primary moult by October or November. Our results
contrast with moult patterns of the closely related Cassin’s Auklet (Ptychoramphus
aleuticus) in which subadults tend to moult primary feathers faster, presumably because
the costs of breeding reduce the amount of energy and resources available for moulting
(Emslie et al. 1990). We found no difference: adults (breeders and non-breeders/failed
breeders) moulted at the same rate as subadults. Bédard and Sealy (1984) also found
no difference in wing moult progress between adult breeders and failed breeders.
Bédard and Sealy (1984: 467) defined “subadults” as “birds in their second summer
after hatching and in their first Alternate (I) plumage” (i.e. ~¥23-25 months old), whereas
we believe that these birds were in their first summer after hatching, hence only 11-13
months old (Pyle 2008).

The similar moult and duration, but higher variability in primary moult of
subadults, likely reflects interaction among several factors. First, young inexperienced
birds may be less successful in foraging around breeding colonies, where dense
aggregations of experienced adult breeders may outcompete them. Subadults may
therefore be unable to sustain their first primary moult at a rate similar to adults, which
would be more experienced in acquiring the nutrients required for feather replacement
(Barta et al. 2008). Body mass is the best indicator of body condition in birds without an
established and independently verified body condition index (Schamber et al. 2009), and
subadult Least Auklets are lighter than adults (Jones 1993b, authors' unpubl. data),
which supports the inexperience hypothesis. Second, faster moult is associated with

poor feather quality (Dawson et al. 2000; Pap et al. 2008). Subadults do not expend
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energy breeding, and may therefore produce feathers of higher quality than breeding
adults. We found no difference in moult rate or timing between breeding and non-
breeding adults at Kiska (see below), but have observed high inter-annual variability at
other colonies. In any case, one of the most distinctive features of subadults is their
extremely worn and faded flight feathers (Jones 1993; originally grown a year before as
a nestling), which are certainly in need of replacement if this was possible.

We found that breeding status had no relationship to moult progress, as Bédard
and Sealy (1984) also noted for wing moult in three Aethia auklets. Two points must be
considered however: first, our method underestimates the number of actual breeders,
as individuals that failed during incubation were not counted, and some breeders may
only be seen once with a chick meal. Some birds captured using noose carpets were
non-breeders not tied to a specific part of the colony or were breeding birds that bred
elsewhere on the colony (Jones et al. 2002). Second, timing of primary moult differs
among colonies and years. Timing and rate of moult vary considerably across years and
in other auklets (Emslie et al. 1990).

Birds breeding at high latitudes often experience a briefer summer breeding
period (e.g., Summers et al. 2004; Coppack 2007), and moult is often faster than at
more northerly locations, presumably to minimize overlap of two life-history stages
(moult and breeding, Wingfield 2008). Delays in moult can result in an increase in moult
rate and decrease in feather quality (Dawson 2004). Interestingly, Least Auklets do not
show a compressed breeding season at higher latitudes, where incubation (30 d) and

fledging periods (29 d; Piatt et al. 1990b) from St. Lawrence Island (63°24’N) are similar
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in duration to those in the Aleutian Islands (29 d; Renner 2005). There is little
information on auklet moult outside the breeding season (e.g. in migration, on
wintering grounds) and few museum specimens have been collected between October
and May. Auklets from more northerly locations face longer migrations, as colonies in
the northern Bering Sea and the Sea of Okhotsk are covered by sea ice, unlike the
Aleutian Islands (Fetterer et al. 2010), so may have to moult faster (de la Hera et al.
2009).

Least Auklets breeding in Chukotka likely exploit the cold-water Anadyr Current,
which advects oceanic zooplankton, like Neocalanus copepods (Springer et al. 1987;
Piatt & Springer 2003). Sea-surface temperature of the Anadyr Current is colder than
around the Pribilof and Aleutian islands (Piatt & Springer 2003). Combined with the
increased rate of moult at Cape Ulyakhpen compared with other colonies in our study,
we conclude that northerly-breeding Least Auklets must consume more calories per unit
time than their southern conspecifics — a situation made possible by the Anadyr
Current’s advection of oceanic copepods.

Our estimate of the complete duration of growth of Least Auklets’ P1 feather is
around 20-30 days (Konyukhov 2009; Rohwer et al. 2009). Our modelled values for
primary initiation indicated that moult starts during incubation and that the first primary
is often replaced by the mean hatch date. The rate of PFMG increase per day is not
likely linear among feathers, so estimating a moult completion date in the absence of a
large sample of birds is difficult. Based on observations of museum specimens, primary

moult concludes before the end of November. This is similar to estimates of moult
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duration for the congeneric and similar-sized (118 g) Whiskered Auklet (Aethia
pygmaea) at Buldir Island, Aleutian Islands, where moult was predicted to end around
October (Konyukhov 2001). In adult auklets, it is therefore possible to select feathers
representing three different times in the annual cycle — the last (outermost) primary
grown the previous winter after young have fledged, body feathers grown during the

spring (Pyle 2008), and the first primary grown during incubation.

Primary moult in the Alcidae

Least Auklets (subfamily Aethiinae) are the smallest of the auks, and therefore
have smaller feathers to replace. Dovekies (Alle alle, subfamily Alcinae) are not closely
related to the auklets, but are ecologically similar (small planktivorous auks), breed at
higher latitudes than auklets and thus experience shorter briefer summers, and have
short breeding periods (Stempniewicz 1981). Dovekies are thought to moult their
primaries synchronously (Salomonsen 1944; Dement'ev et al. 1951; Storer 1960;
Stresemann & Stresemann 1966; Bédard 1985), although recent evidence suggests that,
like Common Murres (Uria aalge), primary moult originates at a single foci between P4
and P7, proceeding in two concurrent waves towards P1 and P10 (Thompson et al.
1998); further investigation is required on the precise moulting pattern. Nevertheless,
the difference between Dovekies and the Aethiini is clear: Dovekie’s primaries are
moulted rapidly and moult is accompanied by a flightless period, whereas auklets have a

relatively protracted moult and maintain flying ability. We agree with Thompson et al.
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(1998) that this difference is likely because of Dovekie’s long-distance post-breeding
migration. Unlike auklets, Dovekies travel several thousands of km and must moult
before migration. Auklets move on the order of hundreds of km after the breeding
season (see below), and are therefore not under as much pressure to complete moult as
Dovekies.

The auklets have among the lowest wing loading (body mass per unit wing area)
of the alcids (Stempniewicz 1982; Minami et al. 1991; Spear & Ainley 1997; Ortega-
Jiménez et al. 2010) and thus are able to fly with missing primaries. The larger auks
(murrelets, puffins, murres, guillemots, and Razorbill) would experience a significant
decrease in wing area were they to moult flight feathers sequentially. This would result
in greater wing loading (Bridge 2004), likely rendering them flightless for a lengthy
period of time (Livezey 1988). In contrast, the flightless Great Auk (Pinguinus impennis)
likely had a primary moult similar to that of Common Murres (Salomonsen 1945;
Thompson et al. 1998). Least Auklets experience an abrupt mass loss when chick
rearing commences, and may obtain their own food from more inshore areas, which
reduces wing loading and flight costs (Jones 1994; Chapter 5). This may be a mechanism
to accommodate flight feather replacement while maintaining flying ability. Other auks
also decrease in mass during chick rearing, but this is apparently insufficient to allow for
a reduction in wing area via moult (Croll et al. 1991).

Moult-breeding overlap is also associated with species that have limited post-
breeding migration or dispersal (Bridge 2006). Least Auklets’ wintering areas are largely

unknown, but they are more abundant in the western Pacific during the winter and
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spring (Vyatkin 1981; Sydeman et al. 2010), and some winter in the Sea of Japan off the
coast of Primoye, Russia (Shuntov 1965; Velizhanin 1977a; Kondratyev et al. 2000). Sea
ice cover in the Bering Sea and Sea of Okhotsk, however, requires some auklets to
disperse up to 1000 km from their breeding colony (Fetterer et al. 2010). Bridge (2006)
classified Least Auklets as “dispersive”, or “birds that leave the breeding area after
fledging chicks but that spend the non-breeding period in the general area or region of
the breeding site” (Bridge 2006: 9). It is clear, however, that Least Auklets breeding in
the northern Bering Sea (Chukotka Peninsula, Ratmanov, Little Diomede, St. Lawrence,
St. Matthew islands) and the Sea of Okhotsk (Yamskiye Islands, and lona Island, for
example) must disperse at least hundreds of km during winter (Fetterer et al. 2010).

Our results indicate that primary moult in Least Auklets responds to local
oceanographic conditions that differ with latitude, and that, like land birds, auklets’ rate
of moult is greatest at high latitudes. Physiological and behavioural factors, including
mass loss and a change in foraging area, allow Least Auklets to moult during chick

rearing, presumably the time of highest food availability.
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Figure 4-1 — We investigated Least Auklets’ primary moult at four colonies throughout

their breeding range in the Bering Sea.
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Figure 4-2 — Duration and initiation date of primary moult in Least Auklets varied among
years and colonies, with adults from the northern colony (Cape Ulyakhpen) moulting
later (higher x-intercept) and faster (shorter duration; greater slope). The solid lines are
the mean estimates and 95% confidence intervals, and dots represent individual
observations. Researchers arrived after the start of primary moult on St. Paul in 2004,
and on St. George in 2005.
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Tables

Table 4-1 — The mass and length of Least Auklet primary feathers used to calculate the
proportion of feather mass grown for Underhill-Zucchini moult models (n = 5 individuals,
except for P1 and P10, where n = 13 individuals). Primary lengths are from Konyukhov
(2009). Total feather mass £ S.D. is given for the five individuals for whom all 10

primaries were weighed.

Primary Number Mass +S.D.(mg) Length+S.D.(mm) Mean mgmm™

1 11.1+1.3 43.1+1.7 0.26
2 129+2.3 46.0+1.9 0.28
3 143127 48.7+1.5 0.29
4 16.5%+2.6 51.1+£2.0 0.32
5 18.3+2.8 545+1.4 0.34
6 19.1+£3.2 559+1.7 0.34
7 19.8+3.6 57.1+£1.6 0.35
8 20.8+3.7 57.8+2.1 0.36
9 22.8+3.4 583 %17 0.39
10 245+2.38 56.5+1.8 0.43
Total 176.6 £ 30.0 0.33
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Table 4-2 — At Kiska Island in 2008, adult breeding status, and age class had no effect on

the duration or initiation date of primary moult in Least Auklets. Subadults’ initiation

date was significantly more variable than that of adults. Groups sharing the same letter

have overlapping 95% confidence intervals and are not considered statistically different.

Group n Initiation Date Initiation Date Duration + S.E.
+ S.E. (days) S.D. = S.E. (days) (days)

Adult breeders 84 167 +5.9° 18.3+0.2° 79.5 +24.8°

Adult non- 71 162 +3.7° 18.7 £0.2° 104.5 + 16.8°

breeders

All adults 155 164 +3.0° 19.5+0.1° 93.0+12.4°

Subadults 56 182 +7.7° 24.3+0.5° 100.7 + 52.6°
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Table 4-3 — Adult Least Auklets from the most northern colony (Cape Ulyakhpen) tended

to moult their primaries faster, and to start their primary moult later than conspecifics

in the Pribilofs (St. Paul, St. George), or the Aleutians (Kiska). Groups sharing the same

letter have overlapping 95% confidence intervals and are not considered statistically

different.
Colony Year n Initiation Date Initiation Date Duration + S.E.

+ S.E. (days) S.D. +S.E. (days)

(days)

Cape 1988 129 28Jul+1.8° 11.3+0.1° 54.4 +6.6°
Ulyakhpen
Cape 1989 195 6Jul+2.5° 11.3+0.1° 75.2 +8.3%
Ulyakhpen
Cape 1990 386 12Jul+2.2° 10.2 +0.1° 60.5 +7.2°
Ulyakhpen
St. Paul 2000 310 9Jul+2.3° 11.5+0.1° 66.1+ 8.6°
St. Paul 2004 182 10Jun+5.3° 17.9 +0.2° 114.0 + 18.b°
St. George 2005 232 14Jun*6.3° 23.0+0.2° 133.2+23.1°
St. George 2007 143 7Jul£2.2° 10.3+0.1° 76.6 £9.1%°
Kiska 2008 214 13 Jun+3.5° 19.6 +0.1° 93.6 + 14.3%°
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Table 4-4 — The majority of Least Auklets examined from museum collections had
completed primary moult by the end of October, and all had completed primary moult
by the end of November. Data are pooled among sampling locations, age classes,

and years. PFMG = proportion of feather mass grown (P1 through P10).

Month n PFMG £ S.D. Range
Sept 15 0.36+0.22 0.19-1.00
Oct 10 0.96 +0.12 0.62-1.00
Nov 4 0.98 +0.03 0.93-1.00
Dec 6 1.00 £ 0.00 1.00-1.00

103



CHAPTER 5: STABLE ISOTOPES REVEAL DAILY VARIATION IN FORAGING
ACTIVITY OF INCUBATING LEAST AUKLETS (AETHIA PUSILLA)

Alexander L. Bond and lan L. Jones

Department of Biology, Memorial University of Newfoundland, St. John’s,

Newfoundland and Labrador, A1B 3X9 Canada
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Abstract

Central-place foraging birds, such as breeding seabirds, face a trade-off between
satisfying the energetic demands of growing nestlings and meeting their own nutritional
requirements. We investigated the foraging patterns of breeding adult Least Auklets
(Aethia pusilla) at Kiska Island, Aleutian Islands, Alaska, in 2009. Because of Least
Auklets’ small size (85 g), suitable attached data recorders were not available at the
time of our study, so we used daily within-feather variation in §"2C and 8"°N stable
isotopes of the first primary feather (P1), which is grown during the incubation period.
Controlling for individual differences, both §3C and 8"°N increased as the breeding
season progressed, indicating that Least Auklet adults shifted their foraging patterns
significantly. These results could be explained by adults gradually switching to different
prey taxa, a seasonal change in isotopic ratios in a constant prey taxon, or a shift to a
slightly more productive foraging location, such as an oceanographic front. Other work
has shown that no seasonal change in chick diet prey taxa occurs, perhaps pointing to
the latter hypothesis, which could involve a mechanism to balance adults’ own
energetic requirements with the energy required for the successful survival of their
single egg and chick. Together, these results indicate that adult Least Auklets may
balance their own demands with those of their egg and chick by a shift in foraging

activity.
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Introduction

Stable-isotope ratios in seabird feathers, which are grown incrementally, provide
information about foraging patterns, distribution, and environmental variability
experienced by individuals during periods when they are inaccessible outside the
breeding season (Cherel & Hobson 2007; Bond et al. 2010a). Hidden aspects of
breeding birds’ foraging activity can be revealed by stable-isotope ratios in feathers that
are grown during the breeding season. Apart from advances in laboratory techniques
and equipment that have reduced the cost of analyses, many recent advances in the
application of stable isotopes to ecological questions have been because tissues such as
feathers, blood, or claws can be sampled non-destructively (Hobson & Clark 1992a;
Bearhop et al. 2004). Because only a small amount of tissue is required for analysis
(approximately 0.25 mg), large feathers can be sub-sampled several times to gain insight
into species’ foraging ecology with greater temporal resolution. Variation in foraging
patterns during feather growth will result in within-feather isotopic heterogeneity
because exogenous nutrients are incorporated immediately into growing feathers
(Murphy 1996).

We examined within-feather variation in §">C and 8"N in the first primary
feather (P1) of Least Auklets (Aethia pusilla), a small planktivorous auk endemic to the
Bering and Okhotsk seas. Adults eat calanoid copepods, mainly Neocalanus plumchrus
and N. flemingeri (Bédard 1969a; Hunt Jr. et al. 1998), which are advected by

oceanographic fronts (Hunt Jr. & Harrison 1990; Hunt Jr. 1997; Russell et al. 1999).
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Nothing is known about differences between adult and chick diet during the nestling
stage of the breeding season (Jones 1993b; Chapter 3). Previous studies of adult auklet
diet were based on stomach contents (Bédard 1969a; Harrison 1990; Hunt Jr. et al.
1998), which often represent the previous meal only, and do not account for temporal
variation (Duffy & Jackson 1986). Auklets’ foraging distribution has also been studied in
relation to oceanographic features (Kinder et al. 1983; Harrison et al. 1990; Russell et al.
1999), but vessel surveys are indicative of population-level patterns, do not address
individual differences, and are at too coarse a resolution to infer differences at a fine
temporal scale (e.g., within the incubation period). Because of Least Auklets’ small size
(85 g), and difficulty in recapturing individuals at large colonies (> 1 million individuals;
Sowls et al. 1978), attached data recorders are not yet practical. The stable-isotope
analysis approach therefore offers a unique opportunity to investigate adult foraging
activity with a fine temporal resolution, and to examine potential changes in adult self-
feeding as chicks’ demands increase.

Least Auklets’ P1, the innermost primary, is approximately 43 mm long. The old
P1 feather is shed near the beginning of incubation, and the new replacement feather
takes 20 days to grow at approximately 2.13 mm day'1 (Konyukhov 2009; Rohwer et al.
2009; Chapter 4). Least Auklets incubate their egg for approximately 30 d (Sealy 1984;
Piatt et al. 1990b), and at Kiska, peak hatching date is around 30 June + 3 d (Chapter 2).
With a mean moult initiation date at Kiska of 13 June + 3.5 d (Chapter 4), the majority of
the feather is replaced during incubation, when adults must balance their own

nutritional requirements with the successful incubation of their egg. Our objectives
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were to 1) quantify within-feather heterogeneity in §3C and 8"N in Least Auklet P1
primaries replaced during the incubation period; 2) use these isotopic signatures to
elucidate possible changes in adult foraging patterns, and 3) to identify important areas
for future investigation of questions related to the trade-off between self-maintenance

and parental care in this planktivorous alcid.

Methods

We sampled the right P1 from ten adult Least Auklets at Sirius Point, Kiska Island,
Aleutian Islands, Alaska (52°08’N, 177°37’E), in July 2009 (Bond & Jones 2009a).
Feathers were 75-100% grown. We cleaned feathers by washing in 0.25M NaOH
(Bearhop et al. 2000a; Bond & Diamond 2009). Feathers were divided into four regions
(A-D), from distal to proximal ends of feathers, each representing approximately 5-8 mm
of the feather vane. Approximately 0.25 mg of feather barb was sampled from each
region, representing tissue that was grown during days 1-3 (A), 4-8 (B), 9-12 (C), and 13-
18 (D) for each feather. Not all vane areas were sampled (e.g., days 19-20), because
some feathers were not fully-grown. Each sample was placed in a tin cup, crushed, and
combusted at 1800°C in a Carlo Erba NA1500 Series Il elemental analyzer for analysis of
compounds for isotope ratios. Resultant gases were separated by a packed GC column
and analyzed by a Delta V Plus continuous-flow isotope ratio mass spectrometer (CF-
IRMS). Isotope values were calibrated using international (mean * SD of repeated

measurements; IAEA-N1 °N: 0.52 + 0.13, IAEA-N2 8™°N: 20.32 + 0.04, IAEA-CH6 82C: -
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10.45 + 0.06, USGS-24 Graphite 8"C: -16.04 + 0.14, USGS-25 §™°N: -30.25 + 0.04) and lab
standards (MUN Sulphanilamide 8"C: -28.23 + 0.22, §*°N: -1.51 + 0.09, MUN-CO-2 8"3C:

-40.11 + 0.09), which cover the range of isotopic values in our samples.

Statistical Analysis

We analysed trends within individuals using a repeated measures ANOVA in SPSS
16.0.2 (SPSS Inc., Chicago, IL, USA), and tested the assumption of sphericity using
Maulchy’s W (Mauchly 1940) and homogeneity of variance using Levene’s test (Levene
1960). We also included a post-hoc analysis to detect any linear or quadratic trends

over the feather length of the feather.

Results

Within individuals, the range of values of 83C was between 0.70-2.43%o, and
differences within feathers in 8*°N were between 0.30-2.42%o. Isotope ratios met the
assumptions of the linear model (Levene’s test, all p > 0.10), but not sphericity for §*C
(Maulchy’s W, 8'°C: p < 0.033, 8"°N: p = 0.473). We therefore used the Greenhouse-
Geisser (1959) correction for subsequent analyses of 8C, as € < 0.75 (Girden 1992).
Controlling for individual differences, there were significant within-feather differences
in 8"3C (p < 0.001) and "N (p = 0.021). There were also significant linear trends within

individuals, with both "3C and 8"N increasing through the chick-rearing period (mean
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difference between sections A and D + SD; §*3C: +1.5 + 0.7%o, p <0.001, 8N: +0.8 +

0.7%o, p = 0.022; Fig. 5-1).

Discussion

Seabirds, as central-place foragers, are expected to minimize transit time
between their breeding colony and food resources (Baird 1991), and to balance the
trade-off between distance to foraging grounds and the energy and nutrients acquired
(Obst et al. 1995; Elliott et al. 2009). Differences in time allocated to self-maintenance
and parental care should balance the life-history trade off between current
reproduction and survival in adults (Clark & Ydenberg 1990a; Stearns 1992; Dobson &
Jouventin 2010b). In auks that forage by wing-propelled pursuit-diving and have high
wing-loadings, such as Least Auklets, the energetic costs of flying between foraging
areas and the breeding site are high (Obst et al. 1995).

In Least Auklets, we found a consistent shift towards higher §"C in feather tissue
deposited as incubation progressed, with a similar but weaker trend for 8"°N. These
results could be explained by several processes: 1) adults gradually switched to
different prey taxa; 2) a seasonal change in isotopic ratios in prey; 3) a shift in foraging
location; or 4) metabolism of endogenous nutrients.

Heterogeneity in feather §"3C and 8"N can reflect changes in the isotopic
content of diet (and hence in foraging patterns) at a fine temporal resolution. We did

not sample adult stomachs to determine diet, but there were no within-season
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differences in chick diet during 1993-2006 (Chapter 3), so we have no reason to suspect
a diet shift in adults. Least Auklets’ primary prey in the Aleutians (Neocalanus
copepods) are the most abundant zooplankter in the North Pacific Ocean (Mackas et al.
1998), and their peak abundance coincides with Least Auklets’ nesting period (June and
July; Batten & Mackas 2009). We therefore have no a priori reason to suspect that adult
diet composition changes throughout the breeding season, although independent
verification is required to verify this assertion.

A seasonal change in prey isotopic ratios (hypothesis 2) would explain the
change in feather isotope ratios we observed (assuming taxonomic constancy in diet).
Such a phenomenon has not been documented in the Bering Sea (but see Rau et al.
2003 for discussions on inter-annual variability in plankton stable isotope ratios in the
California Current). Because no such data exists for the Bering Sea, we cannot confirm
or refute this hypothesis.

Least Auklets lose up to 7% of their body mass around the time the egg hatches,
while maintaining a relatively constant mass during incubation. This mass loss is
presumably a mechanism to decrease flight costs while adults provision nest-bound
chicks (Jones 1994). Mass loss may be related to replacement of up to four flight
feathers at the same time (Chapter 4). Metabolising endogenous nutrient reserves
(hypothesis 4) could influence the isotopic ratios in feathers during this time (Fox et al.
2009), and would be represented in the most proximal feather section (section D) in our

study.
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A change in foraging behaviour during incubation, such as foraging closer to the
colony site, might also explain the results (hypothesis 3). “Isoscapes,” or geographic
patterns in stable-isotope ratios, have been described for calanoid copepods in the
Bering Sea (Schell et al. 1998). These isoscapes show relatively constant 8"*C and 8*°N
values in copepods in the western Aleutian Islands, but at a coarse resolution (areas
pooled in 2%o contours), and there is no information on temporal variability. The
consistent shift among individuals along a geographic isotope gradient suggests a
geographic shift. Higher 8'3C is associated to increase phytoplankton growth as occurs
in nutrient-rich waters, such as inshore systems or oceanic fronts (Goericke & Fry 1994;
Popp et al. 1998; Graham et al. 2010). Least Auklets preferred prey, Neocalanus
copepods, are often concentrated in such fronts in the Bering Sea (Hunt Jr. et al. 1998;
Russell et al. 1999). A shift towards more productive systems at the end of incubation
and beginning of chick rearing could be related to adults’ increased energetic demands
as chicks hatch, and require their parents to provision them several times per day, with
increasing amounts of food (Roby & Brink 1986a; Chapter 3).

During incubation, adults expend energy caring for their egg, and have
developed several strategies to accommodate chicks” demands. Incubation shifts
average 23.6 + 5.6 h (Roby & Brink 1986a), and during this time, off-duty parents can
range wider, and exploit more distant resources. Once the chick hatches, it is brooded
continuously for the first five days (Jones 1993b), restricting the parents’ ability to travel

far. By foraging in highly productive areas, such as oceanic fronts, close to the breeding
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colony, adults reduce their costs of self-maintenance, and can increase the time allotted
to chick provisioning.

There was also a trend in increasing 8'°N through the incubation period. This
change was small in 7 of 10 cases (range < 1.0%o), but might also reflect a dietary
change based on shift in foraging area. Quantitative estimates of adult auklet diet using
stable isotope analysis are not possible because discrimination factors, the change in
d'3C or 8N between prey and consumer, are specific to each consumer (Caut et al.
2008), and can influence mixing model output greatly (Bond & Diamond 2011); no such
discrimination factors are available for auklets.

Continued miniaturization of data loggers will permit telemetric studies in the
near future that would provide much more detailed insight into adult auklets’ foraging
patterns. Isotopic investigations of differences in adult and chick diet are also possible
providing that the differences in metabolism between growing chicks and adults can be

accounted for (Ponsard & Averbuch 1999; Cherel et al. 2008; Sears et al. 2009).
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Figure 5-1 — Controlling for individual differences, both "3C (A, p < 0.001) and 8°N (B, p
=0.022) in individual Least Auklets’ first primary feather (P1) increased from incubation
(feather section A) to early chick rearing (feather section D). Each line represents

isotope values from a single individual.
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Abstract

Least and Crested Auklets (Aethia pusilla and A. cristatella) replace breast
feathers during the pre-breeding period, and primaries form during the incubation and
post-breeding periods. Thus, by sampling different feathers from a single individual on
one occasion, we can obtain foraging information from the majority of the annual cycle
using stable-isotope analysis. (SIA). We sampled adult and subadult Least Auklets and
adult Crested Auklets at Buldir, Kiska, and Gareloi Islands, in the western Aleutian
Islands, Alaska, from 2007-2010, and Least Auklet chicks at Kiska in 2009. There were no
differences in isotope ratios among islands or years, but significant differences between
species, among seasons (feather types), and within species between age classes. Adult
Least Auklets had higher d'N than subadults during the pre-breeding period, and chicks
during chick rearing. Crested Auklets had higher "°N than Least Auklets at Gareloi
throughout the year. Both species showed a trophic shift during the post-breeding
season, characterised by an increase in 8"°N, and for Least Auklets, in 8"3C as well.
Species’ isotopic differences were likely caused by differences in diet composition of
Crested (euphausiids) and Least Auklets (copepods). Subadults are inherently less
experienced than adults, probably still learning to forage during their first winter and
thus taking different food items than adults. Least Auklet adults’ higher 8°N relative to
chicks likely reflects the abundance of zooplankton during the breeding season, and
changes in adult physiology and self-feeding patterns during chick rearing. Our results

provide hypotheses for testing in future studies using attached data loggers to measure
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foraging locations and movement outside of the breeding season.
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Introduction

Prey availability and variability in the diet of marine animals have profound
influences on demography (Gall et al. 2006; Sorensen et al. 2009), are influenced by
oceanographic and climatic patterns at the landscape level (Durant et al. 2003; Hobson
et al. 2004), and determine individual health and breeding condition (Sorensen et al.
2010). During the breeding season, adult seabirds provision nest-bound young, and
often face a trade-off between their own energetic demands, and the requirements of
their egg or young (Clark & Ydenberg 1990b). This has resulted in a diversification of
strategies to balance current reproductive effort with future survival, including
alternative strategies when adults self-provision. A frequent assumption of seabird
dietary studies is that adult and chick diet are similar, but this is not often the case
(Wehle 1982, 1983; Wilson et al. 2004). This is best exemplified by the bimodal foraging
strategy of some species, where adults make short, frequent trips to provision young,
but make longer, less frequent foraging trips to replenish their stores with high energy
content prey (e.g., Chaurand & Weimerskirch 1994; Weimerskirch et al. 1994; Welcker
et al. 2009a). Thus, to gain a full understanding of the foraging behaviour and
requirements of adults, quantifying the diet provided to nestlings is insufficient.

In the North Pacific Ocean and Bering Sea, auklets (Aethia spp.) are the most
numerous seabirds (Gaston & Jones 1998). Auklets breed in dense colonies in the
Aleutian Islands, Alaska, and winter in the North Pacific Ocean (Jones 199343, b). Auklet

diet during the breeding season is relatively well studied, although most information
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concerns nestling diet. In the Aleutian Islands, adults provision chicks with calanoid
copepods (Neocalanus spp.) and euphausiids (Thysanoessa spp.) (Day & Byrd 1989;
Chapter 3). Limited information suggests that, in the Aleutians, adults themselves
consume copepods, euphausiids, and smaller numbers of amphipods and cephalopods
during the breeding season (Day & Byrd 1989; Troy & Bradstreet 1991; Hunt Jr. et al.
1998). The winter ecology and behaviour of auklets is largely unknown, and
consequently there are few reliable quantitative descriptions of winter diet (Stejneger
1885; Troy & Bradstreet 1991). The diet of subadult Least Auklets, birds in their second
year of life is unknown. These individuals attend breeding colonies sporadically as non-
breeders and, not burdened with the constraints of raising a chick, their diet may differ
from that of breeding adults.

In the past 25 years, biochemical techniques to evaluate avian diet indirectly
have been developed (Hobson 1987; Iverson et al. 2004). Using these forensic
techniques has enabled researchers to study seabird diet during periods when birds are
away from breeding colonies, which for many species, covers the majority of the annual
cycle. Stable-isotope ratios of carbon and nitrogen are now used frequently to
characterize seabird foraging behaviour (Barrett et al. 2007). Values are expressed as
the parts-per-thousand ratio of the heavier (>N or *3C) to the lighter isotope (**N or **C)
as compared with an international standard (Pee Dee Belemnite for C, atmospheric air
for N). 615N, or the ratio of 15N/“N, is a continuous measure of trophic position, and it
increases between 2-5%o with each trophic step because **N is excreted preferentially in

nitrogenous waste (Steele & Daniel 1978; Minagawa & Wada 1984; Kelly 2000). There
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is little trophic enrichment of 8"C at higher trophic levels (Rau et al. 1983; Hobson &
Welch 1992), but marine (bicarbonate-based) and terrestrial carbon sources (CO,-
based) differ in their 8*3C values (Peterson & Fry 1987). 8*>C can also provide
information on foraging area in the marine environment because of spatial “isoscapes”
in the environment (Hobson 1999; Cherel & Hobson 2007; Graham et al. 2010).
Variation in §"3C results from varying levels of primary production, with areas of greater
phytoplankton growth such as upwellings and inshore areas being enriched in *C
relative to unmixed pelagic systems (Goericke & Fry 1994; Popp et al. 1998).

Feathers are very useful for stable-isotope analysis because they can be sampled
with minimal invasiveness, stored easily in remote field settings, and because feathers
are inert once grown, the isotope ratios will represent the diet at the time of synthesis
(Hobson & Clark 1992a; but see Fox et al. 2009). Auklets begin moulting primary
feathers sequentially, starting near chick hatching, and continuing from P1 to P10
(innermost to outermost primary) until late October or early November (Konyukhov
2009; Chapter 4); the same is likely true for Crested Auklets (Bédard & Sealy 1984; Pyle
2008). Body feathers are replaced during the spring, in March-May (Pyle 2008), thus by
sampling three feathers from each individual, we can investigate stable isotopes from
late incubation/early chick rearing (P1), autumn post-breeding (P10), and spring pre-
breeding (body; Pyle 2009).

Using stable isotope analyses of feathers, our objectives were to 1) compare the
spring pre-breeding diet of Least Auklet adults and subadults at Kiska Island between

2007-2010; 2) compare the diet of Least Auklet adults from three breeding colonies
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throughout the annual cycle; 3) compare the diet of adult Least and Crested Auklets
from Gareloi Island throughout the annual cycle; and 4) provide insight into the

comparative foraging behaviour and ecology of these closely related planktivores.

Methods

Auklet capture & field sampling

We captured Least Auklets on Main Talus, Buldir Island (52°23’N, 175°33’E;
adults in 2008 and 2009), Sirius Point, Kiska Island (52°08’N, 177°35’E; adults and
subadults in 2007-2010, chicks in 2008), and Southeast Colony, Gareloi Island (51°46’N,
178°45’'W; adults in 2009). Crested Auklets were captured at Gareloi in 2009 only. Birds
were captured using noose carpets set in the breeding colony during the auklets’ activity
period between 0900-1600 Hawaii-Aleutian Daylight Time (Byrd et al. 1983; Jones
1992). Adult Least Auklets were those in definitive alternate plumage, indicated by
extensive white streaks on the forehead, a redder bill tip, and less-worn primaries.
Subadults (birds beginning their second year — 12 months old in July) have a brown
forehead with no streaking, worn primaries that appear brown, and a darker bill and
often have dark spotted or entirely dark throat feathering (Bédard & Sealy 1984; Jones
1993b). Crested Auklet adults were identified by their large, orange bill
rhamphothecae, grey forehead (vs. brown in subadults), and fresher primaries (Jones

1993a). Once aged, birds were measured, banded, and feather samples were taken.
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Feathers were then placed in individual paper envelopes, kept cool in the field, and

frozen at -20°C upon our return.

Laboratory analysis

Prior to analysis, feathers were washed with 0.25M NaOH and then air dried to
remove external contamination (Bearhop et al. 2000b; Bond & Diamond 2009).
Individual auklet feathers show considerable heterogeneity in stable-isotope ratios
(Chapter 5), so we sampled each feather in the same way. Approximately 0.2-0.3 mg
from the distal tip of the vane was cut, placed in tin cups, and crushed. Samples were
combusted at 1800°C in a Carlo Erba NA1500 Series Il elemental analyzer for continuous
flow analysis of compounds for isotope ratios. The resultant gases were separated by a
packed GC column and analyzed by a Delta V Plus isotope ratio mass spectrometer
through a continuous flow interface (CF-IRMS). Isotope values were calibrated using
method blanks and standard reference materials IAEA-N2 (mean + S.D., 8°N: 20.32 +
0.09%o), IAEA-CH6 (83C: -10.45 + 0.09%o), USGS-24 (graphite, 8"3C: -16.11 + 0.15%o) and
USGS-25 (8"3C: -30.25 + 0.05%0) and internal lab standards MUN-CO-2 (8*3C: -40.11 +
0.10%0) and MUN Sulfanilamide (§"°C: -28.36 + 0.81, 8"°N: -1.42 + 0.09). Standards
covered the range of isotopic values in our samples. Mean recovery of all standards
ranged from 99-101%. Within-run duplicate samples (9% of total samples) yielded

mean standard deviations of 0.42%. for 8*3C and 0.45%. for 8*°N.
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Statistical methods

Quantitative isotope mixing models are highly sensitive to variation in species-
specific discrimination factors, the change in §"3C or 8'°N between prey and consumer
(Bond & Diamond 2011), and because no discrimination factors have been established
for auklets, we have restricted our analysis to a comparative description.

All analyses were conducted in SPSS 16.0.2 (SPSS Inc., Chicago, IL, USA). Because
d"C and 8™N from the same sample are not independent statistically, we used
multivariate analysis of variance (MANOVA) to assess differences among species and
age classes in stable-isotope ratios, with univariate analysis of variance (ANOVA) to
examine each isotope ratio separately in cases where the MANOVA revealed a
significant difference. To test for differences among feather types within individuals, we
used repeated measures ANOVA, and tested sphericity using Mauchly’s W (Mauchly
1940). When the sphericity assumption was not met, used the Greenhouse-Geisser
(1959) correction when € < 0.75, and the Huynh-Feldt (1976) correction when ¢ > 0.75
(Girden 1992). We assessed homogeneity of variance using Levene’s test (Levene 1960).
We used 95% confidence intervals for post hoc comparisons. All tests were considered

significant when p < 0.05. Isotope data are presented as means £ S.D.

Results

Differences among Least Auklet age classes
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Variances of 83C were homogenous, but those of 3N were not (Levene’s test,
8"C: p = 0.08, 8°N: p = 0.03). MANOVA detected significant differences between age
classes in isotope ratios (adults and subadults, Wilks’ A = 0.66, F;60 = 17.73, p < 0.001),
but not years (Wilks” A = 0.97, Fg 135 = 0.42, p = 0.87) or the year*species interaction
(Wilks’ A = 0.93, Fg 135 = 0.82 p = 0.56). Adults had higher 8">C (-18.81 + 1.8%o vs. -19.95
+ 1.88%o, F170 = 6.88, p = 0.011) and 8"°N (13.21 + 1.68%o vs. 11.10 + 1.44%o, F1 70 =
34.94, p < 0.001) isotope ratios than subadults during the pre-breeding period (Fig. 6-1).

To compare adults and chicks, we used chick breast feathers and adult P1
feathers, which were grown at the same time. Because we found no differences among
years in adult P1 feathers (see below), data from Kiska in 2008 and 2009 were pooled.
Neither 8"3C nor 8"°N had homogenous variances (Levene’s test, both p < 0.001). There
were significant differences between age classes in isotope ratios (Wilks” A = 0.103, F; 35
=108.93, p < 0.001). Adults had significantly higher '°C (-18.98 + 1.85%o vs. -20.67
0.35%o, F1 26 = 6.43, p = 0.018) and §"°N (12.30 % 0.95%o vs. 8.88 + 0.23%o, F1 26 = 98.32, p

< 0.001) than chicks (Fig. 6-2).

Differences among colonies and seasons

Neither 8*C nor 8N had homogenous variances (Levene’s test, both p < 0.001).
There were significant differences in Least Auklet isotope ratios among islands, feather
types, years, and some of their interactions, so we used repeated measures univariate
analyses to examine differences in detail. 8">C did not meet the assumptions of
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sphericity (Mauchly’s W = 0.80, x*, = 9.44, p = 0.009), and we used the Huynh-Feldt
correction (¢ = 0.94). There were significant differences among feather types within
individuals (F1.89,83.01 = 11.09, p < 0.001). P10 feathers had a higher 8¢ values than
either P1 or breast feathers (Fig. 6-3). Between individuals, there were no differences in
dBc among the three islands (F;44 = 1.59, p = 0.22), or years (F1,44 = 3.48, p = 0.07), and
the island*year interaction was not significant (F1 44 = 0.86, p = 0.36). 8N also did not
meet the assumption of sphericity (Mauchly’s W = 0.78, x*, = 10.87, p = 0.004), and we
again applied the Huynh-Feldt correction (¢ = 0.92). There were significant differences
among feather types within individuals (F1.84,51.12 = 13.54, p < 0.001). P10 were also
enriched in ©°N compared to P1 and breast feathers (Fig. 6-3). Between individuals,
there was no difference in 8"°N among islands (F2,44=0.77, p = 0.47), or years (F1 44 =

1.82, p =0.19), and the island*year interaction was not significant (F1 44 = 1.76, p = 0.19).

Differences among species

Data met the assumptions of our linear models, and variances of both isotopes
were equal (Levene’s test, both p > 0.20). There were significant differences in isotope
ratios among feather types (Wilks’ A = 0.78, p = 0.01) and species (Wilks’ A =0.72, p <
0.001), and the feather type*species interaction was not significant (Wilks’ A =0.93, p =
0.42). Both 8"*C and 8"°N met the assumptions of sphericity (Mauchly’s W, 8'3C: 0.87,
x’2=2.37,p=0.31, 8N: 0.79, %%, = 3.97, p = 0.14). There were no differences in 8"C
among species at Gareloi (F1,15 = 1.40, p = 0.25) or feather types (F115 = 0.70, p = 0.41),
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and the species*feather type interaction was not significant (F; 13 = 0.04, p = 0.85).
Least Auklets had lower 8N values than Crested Auklets (F1,18 =5.15, p = 0.036, Fig. 6-
4), and for both species, P10 was enriched in >N compared with P1 or breast feathers
(F1,18 = 13.06, p = 0.002. Fig. 6-4). Again, the feather type*species interaction was not

significant (F1 15 = 0.62, p = 0.44).

Discussion

Differences among age classes

Stable isotopes revealed both differences and similarities among groups of
auklets that could not have been studied otherwise. We found significant age-related
differences in both 8'°C and 8"°N of breast feathers of adult and subadult Least Auklets
at Kiska. Breast feathers are replaced during the pre-breeding period in both age
classes, around March-May (Pyle 2008). The difference in ">C between adults (at least
3 years old) and subadults (approximately 12 months old, Pyle 2008) was about 1%, a
difference within the error estimates of each group of auklets, and that of common prey
(Schell et al. 1998). There is a known distribution of zooplankton 8"3C in the Bering Sea
(Schell et al. 1998), with zones defined in 2%o gradients. Furthermore, very little is
known about Least Auklets’ pre-breeding distribution, and there is no information on
whether there is geographic segregation between ages (Vyatkin 1981; Sydeman et al.

2010). Differences in *3C are therefore likely the result of variation in the precise time
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and location of feather replacement among individuals rather than spatial trophic
segregation.

The difference between adults and subadults in 8*°N, however, was relatively
larger (2%o). There are three possible explanations for this difference. First is that
adults and subadults forage in separate areas that differ in prey §°N. Our results
showing very small differences among age classes in 8"*C make this hypothesis less
likely. Second, there may be metabolic differences that cause differences in isotopic
discrimination because growing seabirds’ discrimination factors differ from adults (Sears
et al. 2009). While subadult Least Auklets are smaller than adults (Jones 1993b, authors'
unpubl. data), Sears et al. (2009) found that once juveniles reached a stable mass,
isotopic discrimination was similar to that of fully-grown adults. When Least Auklet
chicks depart from Kiska at the end of the breeding season, they are 90% of adult mass
(73 g vs. 81 g, Major et al. 2006). The mass of subadults we sampled (79 + 4 g) was
similar to that of adults sampled (82 + 3 g), so differences in isotopic discrimination
were not likely the cause of differences in dN. The final possibility is that the
difference in 8"°N between age classes was the result of dietary differences.
Quantitative data on the winter diet of Least Auklets is lacking (Stejneger 1885; Troy &
Bradstreet 1991), and no data exist on the diet of subadults. In general, diet data for
pre-breeding-aged seabirds are sparse because they attend breeding colonies
irregularly, and are seldom captured (Hamer et al. 2002). Previous studies have found
differences in the diets of adult and subadult Tufted Puffins (Fratercula cirrhata) in the

Aleutian Islands (Wehle 1982) and in the North Pacific (Tanaka 1989). Our results
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suggest that subadult Least Auklets forage at a lower trophic position than adults during
the pre-breeding period. This is most likely the result of subadult birds learning to
forage for themselves, as younger birds are often less proficient at finding and capturing
high quality prey (Recher & Recher 1969; Cherel et al. 2008).

Adult Least Auklets had higher §'°C and 8"°N than chicks during the breeding
season. As mentioned, growing chicks’ metabolism likely contributes to some of these
differences, but the magnitude of the differences we found (1.5%. for d13C, 3.5%o for
d'°N) are likely larger than growth-related effect (Sears et al. 2009). There may also be a
small effect of feather type (contour vs. primary), caused by differences in the
concentration of the pigment melanin (Michalik et al. 2010; Wiley et al. 2010), breast
feathers being mostly white, and primaries mostly dark (Jones 1993b). We therefore
believe that our qualitative comparisons remain valid (Ponsard & Averbuch 1999;
Vanderklift & Ponsard 2003; Cherel 2008) — adults had a different summer diet than the
nestlings they were provisioning. Least Auklet chick diet in the Aleutian Islands is well
documents, and consists mainly of Neocalanus spp. copepods (often > 90% of biomass),
and Thysanoessa spp. euphausiids (Day & Byrd 1989; Chapter 3). Adult diet during the
breeding season is less well known, but the few studies have indicated similar prey in
adult stomachs (Bédard 1969a; Harrison 1990; Hunt Jr. & Harrison 1990; Hunt Jr. et al.
1998; Russell et al. 1999).

Adult Least Auklets experienced a shift in diet through the breeding season,
increasing both their 8"°N and 8*C values from incubation to early chick rearing

(Chapter 5), while the composition of food delivered to chicks remained relatively
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constant during the same time (Chapter 3). Adults therefore forage for prey from
different trophic positions (8'°N) and in different areas (8*>C) depending on whether the
prey is meant for self-feeding or delivery to their chick. Increased d'3C is associated with
increased phytoplankton photosynthetic activity and growth (Goericke & Fry 1994; Popp
et al. 1998), and is characteristic of inshore and upwelling systems (Graham et al. 2010;
Jaeger et al. 2010). Least Auklets forage in upwellings and areas where zooplankton is
advected, where Neocalanus copepods are concentrated (Springer & Roseneau 1985;
Hunt Jr. 1997; Hunt Jr. et al. 1998; Russell et al. 1999; Piatt & Springer 2003; Springer et
al. 2007). Nevertheless, the question of why there was a significant difference in stable-
isotope ratios between adults in chicks remains puzzling. Least auklet individuals are
very difficult to observe at sea, so direct observations are unlikely to provide useful
clues, and this species is too small (85 g mean mass) to carry telemetric equipment that
would measure foraging behaviour in detail. Further experiments using existing captive
populations should quantify Least Auklets’ stable-isotope discrimination factors, and use
these to construct quantitative isotope mixing models for all age classes.

Our results contrast with bimodal foraging strategies, reported mainly in tropical
and subtropical Procellariiformes (Cherel et al. 2005b; Congdon et al. 2005; Kojadinovic
et al. 2008; Bond et al. 2010a), and recently described for Dovekies (Alle alle), a polar
non-Procellariiform, and ecological counterpart to Least Auklets in the Atlantic Ocean
(Welcker et al. 2009b). Bimodal-foraging species alternate between frequent, short
trips to provision chicks, and less frequent longer foraging trips to replenish their own

nutrient reserves (Chaurand & Weimerskirch 1994; Weimerskirch et al. 1994). For
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several possible reasons, this appears not to be the case in Least Auklets. During the
breeding season, auklets forage heavily on Neocalanus spp. copepods, the most
abundant zooplankter in the North Pacific (Mackas et al. 1998), and copepods are
advected by oceanic fronts, where auklets are found often in vessel surveys (Kinder et
al. 1983; Harrison et al. 1990; Troy & Bradstreet 1991; Hunt Jr. 1997; Hunt Jr. et al.
1998). There is also little annual variation in the proportion of Neocalanus spp.
copepods in food loads brought by adult Least Auklets to their chick (Chapter 3).
Together, this implies that, unlike less productive tropical and subtropical systems, or
more variable polar systems, Least Auklets’ preferred prey is readily available, and in
large supply. Adults’ response to increased energetic demand by their chick is likely
therefore reflected in a geographic shift and a shortening of their own foraging distance
(Chapter 5).

There is no consistent pattern among seabird species in differences in §*°N
between adults and chicks. In some studies, chicks’ 8"°N is higher, presumably because
of their increased nutritional demands, and the assumption that higher-8"°N foods are
of higher quality (e.g., Bocher et al. 2000; Hodum & Hobson 2000; Cherel 2008; Richoux
et al. 2010). In others, adults’ higher §"°N is thought to be because of a bimodal
foraging strategy (e.g., Cherel et al. 2002; Harding et al. 2008; Bond et al. 2010a), and in
other still, there is no difference (Hedd & Montevecchi 2006; Cherel et al. 2008; Davies
et al. 2009). The difference we found in mean >N between adult and chick Least

Auklets (3.42%o) is the greatest difference reported where adults have higher 8"N.
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Differences among colonies and seasons

We found no differences in 8**C or 8*°N among Least Auklets from Buldir, Kiska,
or Gareloi during any season, represented by different feather types. This suggests that
adult Least Auklets feed on similar prey during the breeding season, and likely moult in
the same locations during the fall and spring. While attached geolocators were too
large for Least Auklets during our study, our results suggest that results from future
equipped birds from one colony may be generalized to auklets from other western
Aleutian breeding sites. There were also no differences between years in any isotopic
comparison, which implies that birds moult in similar areas year to year (Cherel et al.
2000).

We documented significant seasonal shifts in d'3C and 8"°N within individual
Least and Crested Auklets. Both species showed a trophic shift following breeding, as
P10 feathers (autumn, post-breeding) had higher 8"°N than breast (spring, pre-breeding)
or P1 (summer, chick rearing) feathers. The relatively rapid and distinct change in 8"*C
in Least Auklets likely resulted from migration to wintering grounds. Unlike the
congeneric Whiskered Auklet (Aethia pygmaea), which is resident near breeding
colonies year-round (Byrd & Williams 1993; Zubakin & Konyukhov 1994), Least Auklets
likely disperse to the northwestern Pacific Ocean to areas around Japan (Shuntov 1965;
Vyatkin 1981; Kondratyev et al. 2000; Sydeman et al. 2010). Some Crested Auklets,

however, are thought to winter close to the Aleutian Islands (Renner et al. 2008), and
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therefore a less significant change in §">C was expected. The similarity between breast
and P1 feathers’ 8"*C and "N suggests that body contour feathers may be moulted
near breeding colonies. When auklets return to Aleutian breeding colonies is not
exactly known - adults have been observed at colony sites in April (Jones 1993a, b), and
may perhaps arrive earlier. Both species showed a dietary shift during the post-
breeding season, and within-individual changes ranged from increases of 0-5.64%o
(mean +£S.D.: 2.05 £ 1.40%o). It is possible that this shift related to adults improving
their condition following chick rearing and concurrent primary moult (Chapter 4). A
portion of this increase could also be an artefact of protein metabolism resulting in
nutritive stress, which can alter >N (Hobson et al. 1993; Sears et al. 2009). Within
species, however, there was a large amount of variation in 8C and N during each
season among individuals (Appendix 9). This suggests that there could be considerable
individual specialization on certain prey types, or that individuals forage in different

areas (Bearhop et al. 2006; Cherel et al. 2007).

Differences among species

We found significant differences between species sampled at Gareloi. Crested
Auklets had higher 8™°N than Least Auklets, and we found no difference in §*C. In the
southern Bering Sea, euphausiids have higher 8"°N than copepods (Schell et al. 1998),
and remains of higher trophic prey (squid beaks, gadid otoliths) have also been found in

adult Crested Auklet stomachs (Bradstreet 1985; Harrison 1990; Hunt Jr. et al. 1998),
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but not at all, or very infrequently in Least Auklets. Together, this suggests some degree
of differentiation between Least and Crested Auklets in their foraging patterns,
specifically, their food composition, expected between two species that differ by more
than a factor of 2 in body size and mass. This contrasts with previous studies near
Gareloi that have shown geographic segregation between the two species (Hunt Jr. et al.
1998). This segregation is at a much finer spatial resolution, at the level of eddies and

upwellings, rather than the more coarse resolution of §>C (Schell et al. 1998).

Conclusions

Combined with knowledge of moulting patterns, stable isotopes offer unique
insight into the foraging patterns of small seabirds, including auklets, for which attached
data loggers remain too large. We found significant age differences in foraging of Least
Auklets, no variation among breeding colonies spanning over 250 km in the western
Aleutian Islands, and a significant trophic shift during the post-breeding season for both
Least and Crested Auklets. These differences will serve as testable hypotheses for

future studies when data loggers become small enough for reliable use on auklets.
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Figure 6-1 — Adult Least Auklets had significantly higher §°N during the pre-breeding

season than subadults sampled in 2007-2010 from Kiska Island, Aleutian Islands, Alaska.
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Figure 6-2 — Least Auklet chicks had significantly lower §"°N than adults during the chick-

rearing period on Kiska Island, Aleutian Islands, Alaska in 2009.
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Figure 6-3 — Least Auklets from the Aleutian Islands showed a seasonal dietary shift
during the post-breeding season (P10 feather), and no change from pre-breeding

(breast feather) to chick rearing (P1 feather).
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Figure 6-4 — At Gareloi Island, Aleutian Islands, Alaska, there were significant differences

in 8N, but not "°C between Least and Crested Auklets sampled in 2009.
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CHAPTER 7: GENERAL DISCUSSION
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Seabirds are useful ecosystem sentinel species for investigating the effects of
climate variability on populations over time, and over large spatial extents (Harris &
Wanless 1990a; Frederiksen et al. 2007). Furthermore, by studying ecological factors
and population responses at multiple sites, local effects and population-=specific factors
can often be identified (Weise et al. 2004; Lavers et al. 2009). In this series of studies, |
sought to investigate the relationships between large-scale indices of climate in the
marine environment, and the responses of planktivorous auklets at multiple sites
throughout their breeding range.

An initial hypothesis was that, because auklets are planktivores, changes in
oceanographic conditions would affect their primary prey, Neocalanus copepods and
Thysanoessa euphausiids, which could influence reproductive success (Chapter 2). This
study was one of the first to investigate the relationships between oceanography and
reproductive success in multiple species of seabird at multiple sites over multiple years
(Durant et al. 2009). We found differences in the number of chicks fledged per nest
among species and island, but productivity on all species on all islands was negatively
correlated with the Aleutian Low Pressure Index, a measure of the intensity of the
Aleutian low pressure system between December and March (Chapter 2). We
hypothesized that this relationship was the result of bottom-up control by limiting
zooplankton abundance during the following breeding season.

We then addressed this hypothesis by examining the composition of chick meals
brought by adults to nest-bound chicks over the same period. We found that breeding-

season oceanographic conditions influenced the proportion of main prey taxa in
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auklets’ diet, with the exception of Whiskered Auklets, whose diet composition was
related to winter conditions. We noted very little change among years in the proportion
of copepods and euphausiids in one of the first studies to relate seabird diet to
oceanography (Durant et al. 2009). Based on this analysis, we concluded that auklets
are able to buffer bottom-up forcing of demographic parameters, like productivity,
because the composition of chick meals has remained relatively constant over 14 years
of environmental variability in the Bering Sea (Chapter 3).

In addition to breeding, moult is an important, but expensive, life history stage,
especially for smaller birds (Holmgren & Hendenstrom 1995; Schieltz & Murphy 1997;
Barta et al. 2008; Wingfield 2008; Newton 2009). Unlike many other species, the Aethia
auklets moult during the breeding season (Bédard & Sealy 1984; Konyukhov 2001; 2009,
Chapter 4). We used data collected on the progress of primary feather moult in Least
Auklets at four colonies from 52-64°N to test the hypothesis that birds at higher
latitudes initiate moult later, and moult faster than southern conspecifics (Medwaldt &
King 1978; Hemborg et al. 2001; Ryder & Rimmer 2003; Dawson 2004). We found that
Least Auklets breeding at higher latitudes did moult later, and faster than those
breeding at more southerly latitudes, even though the length of the breeding season is
similar among locations (Chapter 4). The cold-water Anadyr Current sweeps south of
Cape Ulyakhpen, our most northerly study site, bringing with it oceanic copepods that
can fuel auklets’ moult-breeding overlap (Pavlov & Pavlov 1996; Stabeno et al. 1999;

Piatt & Springer 2003; Geinrikh 2005). Detailed descriptions of moulting patterns are
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required to interpret results of stable isotope analysis from feathers properly (Inger &
Bearhop 2008; Bond & Jones 2009b).

We then used our knowledge of moulting patterns in auklets to examine two
aspects of their foraging patterns using stable isotope analysis of feathers: seasonal and
species differences between Least and Crested Auklets sampled throughout the Aleutian
Islands, and within-individual differences during the Least Auklets’ incubation period at
Kiska Island. Because feathers often represent the foraging activity of birds at the time
of tissue synthesis, stable isotope ratios in Least Auklets’ innermost primary (P1) will
indicate the birds’ foraging patterns during incubation (Chapter 4). We found that both
d"C and 8N increased throughout the 20 days of feather growth, likely indicating a
shift in foraging location towards more productive oceanographic fronts that have high
concentrations of Neocalanus copepods (Harrison et al. 1990; Russell et al. 1999). This
shift, accompanied by the relatively unchanging composition of meals brought to nest
bound chicks (Chapter 3), may indicate that adults balance the trade-off between self
maintenance and chick provisioning by shifting their own foraging location to more
productive oceanographic features in the seascape (Chapter 5).

Feathers moulted at different times of the annual cycle can provide information
on birds’ foraging away from the breeding colony. Auklets’ outermost primary (P10) is
moulted in the autumn following breeding (Chapter 3), and breast feathers are replaced
during the spring pre-alternate moult (Pyle 2008). We found similar 8**C and 8N
values in each year and at each site within groups. Adult and subadult (one year-old)

Least Auklets differed significantly in their foraging patterns during the pre-breeding
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period, as did adults and chicks during chick rearing. Crested Auklets fed at a
consistently higher trophic position than Least Auklets throughout the annual cycle
(Chapter 6). These results differ from our observations of chick meal composition
(Chapter 3) in that they indicate a lesser degree of overlap among species. Similar to
chick meals, however, there were no differences among islands or years. They expand
on Chapter 3, however, in elucidating the trophic relationships among species and age
classes, showing differences outside the breeding season, and among age classes whose

diets are not sampled easily.

Introduced Norway rats at Kiska Island

Since the 1940s, introduced Norway rats have been present at Kiska (Murie
1959). We found significant differences in reproductive success between Kiska and rat-
free Buldir and Kasatochi islands, driven primarily by near reproductive failure in 2001
and 2002 (Chapter 2). In an initial assessment (Major et al. 2006), two hypotheses were
put forward to explain the poor reproductive success: 1) poor food resources around
Kiska, and 2) predation and disturbance by rats. We found no significant differences in
chick meal composition among years at Kiska, or between Kiska and rat-free islands in
the Aleutian Islands (Chapter 3). Furthermore, we found no significant differences in
the pre-breeding diet as inferred by stable isotopes between Kiska and rat-free Buldir
and Gareloi islands (Chapter 6). These results strongly implicate introduced rats in the

breeding failures of 2001 and 2002.
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Least Auklet reproductive success was significantly lower on Kiska than on Buldir
or Kasatochi, and a paucity of consistent correlations with basin-wide oceanographic or
large-scale climatic indices in the North Pacific further suggests that colony-specific
factors play an important role in influencing auklet demographics (Chapter 2). The Least
Auklet population on Kiska is declining (Major et al. submitted), and the Crested Auklet
population is also likely declining as well (Bond et al. unbpublished). Long-lived species,
such as seabirds, typically have high survival and low fecundity, and survival is often the
most influential demographic parameter in determining population growth (Hamer et
al. 2002). Least and Crested Auklets at Kiska had significantly different survival than
those on Buldir or Kasatochi that was often less-related to large-scale indices of climate
than their conspecifics on rat-free islands (Jones et al. submitted). Together, these
results suggest that introduced rats have had a negative effect on the auklet populations

at Kiska Island.

Novel techniques and findings

We were the first to incorporate a spatial approach to examining the
relationships between oceanographic and climatic variables and the demography of top
marine predators. Spatially variable parameters, such as SST or SLP are used often in
studies of climate-linked demography (Durant et al. 2009), but often over a restricted
area. By examining landscape-wide variation in SST and SLP, and its relationship to

reproductive success, we moved closer to a mechanistic approach that provided
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hypotheses for future studies.

In addition, we were also the first to demonstrate a latitudinal gradient in the
intensity of primary moult in a marine bird. Such detailed study of moult, and
investigation of the moult/breeding overlap in auklets, made detailed study of foraging
using stable isotopes available. This included an analysis of auklet foraging during the
pre- and post-breeding periods, and of subadults and chicks. Prior to this study, no

information on auklet foraging was available for these periods or groups.

Future directions

Future auklet research should focus on three areas: winter ecology, meta-
population dynamics, and quantification of isotopic discrimination factors. The first two
of these overlap to some degree, since the degree of mixture of breeding populations
during the non-breeding period is unknown. The migratory patterns and wintering
areas of auklets are known mostly through anecdotal observations and ship-based
surveys (Gizenko 1955; Velizhanin 1977a; Vyatkin 1981; Zubakin & Konyukhov 1994;
Renner et al. 2008). Much of the new information presented here is interpreted in the
light of limited data on the winter distribution, behaviour, and ecology of auklets. Least
and Whiskered Auklets (85 and 118 g body mass respectively) are, at present, too small
for attached telemetry equipment, such as geolocators or satellite transmitters; Crested
Auklets (260 g) are more suitable. Such telemetric studies should use a multi-colony

approach. There are fundamental differences in the environmental pressures on auklets
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breeding in the Aleutian Islands, the Pribilof Islands, and the northern Bering Sea,
primary among these is the degree of winter sea ice and spring snow cover. Auklets
breeding at high latitudes must disperse farther than those breeding in the Aleutians,
and may therefore differ in their nutritional requirements, moult characteristics, and
demography.

Somewhat related is the degree of inter-colony movement, especially in light of
possible population declines throughout the Aleutian Islands. Reliable, repeatable
survey methods for Aethia auklets are currently lacking, so demographic modelling may
provide the only information on population trends. In the Aleutian Islands, Least and
Crested Auklets currently breed at six main sites (Buldir, Kiska, Segula, Semisopochnoi,
Gareloi, Chagulak), and formerly at Kasatochi, prior to its volcanic eruption in August
2008 (Smith et al. 2010; Williams et al. 2010). Of these, populations at the two colonies
with any monitoring (Buldir, Kiska, Segula) are declining (Renner & Reynolds 2006;
Major et al. submitted; Bond et al. unpubl. data; IL Jones pers. obs.). Populations in the
Bering Sea may also be declining (Roby & Brink 1986b; Renner & Renner 2010), and the
status of Russian populations is poorly known (Gaston & Jones 1998; Kondratyev et al.
2000). Introduced predators, (Kondratyev et al. 2000; Major et al. 2006; Major et al.
2007), encroaching vegetation (Roby & Brink 1986b; Renner & Reynolds 2006), and
volcanism (Williams et al. 2010; Bond et al. submitted) can threaten auklet populations,
and population declines observed at some colonies may also include a certain degree of
inter-colony movement. Colonies of millions of auklets and irregular monitoring at most

colonies make measuring immigration or emigration challenging. Indeed, as of 2011,
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there is only one Alaskan auklet colony where demographic information will be
collected (Buldir). There is considerably less information on the distribution of
nocturnal Whiskered Auklets, despite their listing as a species of Conservation Concern
by the U.S. Fish and Wildlife Service (2008).

Second, isotopic studies would be greatly improved by determining stable
isotope discrimination factors for auklets. Discrimination factors, the change in "*C and
8N between prey and consumer, are tissue- species- and prey-specific (Caut et al.
2008, 2009). Captive populations are often required for the accurate determination of
discrimination factors, and few exist for Aethia auklets. By determining auklet
discrimination factors, quantitative isotopic mixing models (e.g., MixSIR, SIAR; Moore &
Semmens 2008; Parnell et al. 2010) can be used to estimate the proportional
contribution of prey types to auklets’ diet. By combining isotopic studies with
oceanographic sampling during the auklets’ pre- and post-breeding season to establish
possible prey abundance, and composition, and data from telemetry studies, we can
gain further insight into the ecology of these abundant planktivores during the 9 months
when they are away from their breeding colonies, and relatively inaccessible to

researchers.
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APPENDICES

Appendix 1. The number of breeding pairs of least (LEAU), crested (CRAU) and

whiskered auklets (WHAU) studied at Buldir, Kiska, and Kasatochi during 1990-2008.

Buldir Kiska Kasatochi
Year | LEAU CRAU WHAU | LEAU CRAU LEAU CRAU
1990 | 61 67 - - - - -
1991 | 81 74 46 - - - -
1992 | 89 79 55 - - - -
1993 | 44 49 54 - - - -
1994 | 64 67 57 - - - -
1995 | 64 66 67 - - - -
1996 | 57 66 57 - - 54 43
1997 | 84 82 90 - - 91 76
1998 | 76 70 78 - - 95 104
1999 | - - - - - 100 110
2000 | 69 78 70 - - 89 110
2001 | 65 75 75 210 31 85 109
2002 | 50 81 100 205 23 94 109
2003 | 83 45 44 208 20 110 136
2004 | 81 67 66 197 31 91 107
2005 |73 79 70 - - 93 103
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2006

2007

2008

84

68

67

73

66

75

68

67

68

180

173

157

34

36

29

77

124

98

88

143

109
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Appendix 2. Reproductive success (number of chicks fledged/number of eggs laid) of

least, crested and whiskered auklets at Buldir, Kiska, and Kasatochi from 1990-2008.

Abbreviations and sample sizes are in Appendix 1.

Year  Buldir Kiska Kasatochi
LEAU CRAU WHAU  LEAU CRAU LEAU CRAU
1990 0.38 0.49 - - - - -
1991 0.62 0.58 0.50 - - - -
1992 0.54 0.72 0.60 - - - -
1993 0.50 0.78 0.57 - - - -
1994 0.41 0.69 0.74 - - - -
1995 0.70 0.77 0.67 - - - -
1996 0.60 0.61 0.70 - - 0.69 0.74
1997 0.60 0.76 0.66 - - 0.55 0.55
1998 0.45 0.76 0.53 - - 0.49 0.66
1999 - - - - - 0.46 0.69
2000 0.48 0.62 0.46 - - 0.66 0.75
2001 0.55 0.64 0.36 0.13 0.39 0.55 0.45
2002 0.60 0.60 0.48 0.10 0.43 0.53 0.59
2003 0.34 0.11 0.55 0.50 0.45 0.63 0.63
2004 0.53 0.45 0.53 0.52 0.68 0.53 0.70
2005 0.60 0.78 0.76 - - 0.39 0.61
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2006 0.75 0.64 0.62 0.54 0.85 0.44 0.66

2007 0.66 0.85 0.85 0.58 0.58 0.61 0.76

2008 0.70 0.83 0.84 0.64 0.59 0.61 0.77
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Appendix 3. Timing of breeding (mean egg hatch date) of least, crested and whiskered

auklets at Buldir, Kiska, and Kasatochi from 1990-2008. Abbreviations are in Appendix 1.

Year Buldir Kiska Kasatochi

LEAU CRAU WHAU  LEAU CRAU LEAU CRAU

1990 27 June 25June 24 June - - - -

1991 30June 29June 27 June - - - -

1992 29 June 26June 18June - - - -

1993 26June 27June 22June - - - -

1994 24 June 25June 19June - - - -

1995 29June 29June 25June - - - -

1996 25June 26lJune 22June - - 25June 30June
1997 27June 28June 24June - - 28 June 01 July
1998 30June O05July 23June - - 03 July 03 July
1999 - - - - - 30 June 29 June
2000 25June 29June 17 June - - 28 June 29 June

2001 261June 29June 22June 28June 28 June 30June
2002 25June 25June 24June 5lJuly 2 July 27 June 27 June
2003 27June O02July 25June 2July - 25 June 29 June
2004 28June O05July 21June 27June 4July 30 June 28 June

2005 25June 25June 18 June - - 29 June 29 June

2006 30June 09July 27June 1lJuly 7 July 03 July 03 July
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2007 27June 23June 17 June 28June 28June 30lJune O01July

2008 24 June 26June 21June 28June 29June 30lJune 02July
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Appendix 4. Taxonomic list of prey taxa, and values used in calculating biomass.

Average estimated

Phylum Class Order Suborder Family Genus species Taxa mass (g)

Cnidaria Scyphozoa Jellyfish

Nemata Nematode

Arthropoda Insecta Insect 0.001
Unid.

Arthropoda crustacean 0.015

Arthropoda Ostracoda Ostracoda 0.1

Arthropoda Maxillopoda Calanoida Calanidae Calanoid spp. 0.002

Arthropoda Maxillopoda Calanoida Calanidae Neocalanus Neocalanus spp. 0.005
Paraeuchaeta

Arthropoda Maxillopoda Calanoida Euchaetidae Paraeuchaeta  birostrata birostrata 0.002
Paraeuchaeta

Arthropoda Maxillopoda Calanoida Euchaetidae Paraeuchaeta elongata elongata 0.0044

Pseud- Pseudhaloptilus
Arthropoda Maxillopoda Calanoida Augaptilidae haloptilus pacificus pacificus 0.002
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Average estimated

Phylum Class Order Suborder Family Genus species Taxa mass (g)

Arthropoda Maxillopoda Unid. copepod 0.0075
Calanus

Arthropoda Maxillopoda Calanoida Calanidae Calanus marshallae marshallae 0.00126
Calanus

Arthropoda Maxillopoda Calanoida Calanidae Calanus pacificus pacificus 0.0004
Neocalanus

Arthropoda Maxillopoda Calanoida Calanidae Neocalanus cristatus cristatus 0.0139
Neocalanus

plumchrus/  plumchrus/

Arthropoda Maxillopoda Calanoida Calanidae Neocalanus flemingeri flemingeri 0.00276

Arthropoda Malacostraca Amphipoda Unid. amphipod  0.0022
Erichthonius

Arthropoda Malacostraca Amphipoda Gammaridea Ischyroceridae Erichthonius spp. 0.0022

Arthropoda Malacostraca Amphipoda Gammaridea Eusiridae Eusiridae 0.05

Arthropoda Malacostraca Amphipoda Gammaridea Gammaridae Gammaridae 0.05
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Average estimated

Phylum Class Order Suborder Family Genus species Taxa mass (g)
Halirages

Arthropoda Malacostraca Amphipoda Gammaridea Calliopiidae Halirages bungei bungei 0.05

Arthropoda Malacostraca Amphipoda Gammaridea Hyalidae Hyalidae
Ischyrocerus

Arthropoda Malacostraca Amphipoda Gammaridea Ischyroceridae Ischyrocerus spp. 0.0022

Arthropoda Malacostraca Amphipoda Gammaridea Lysianassidae Lysianassidae 0.004
Pontogeneia

Arthropoda Malacostraca Amphipoda Gammaridea Eusiridae Pontogeneia spp. 0.05

Arthropoda Malacostraca Amphipoda Gammaridea Stenothoidae Stenothoidae 0.1

Arthropoda Malacostraca Amphipoda Gammaridea Talitridae Talitridae 0.0022

Arthropoda Malacostraca Amphipoda Hyperiidea Hyperiidae Hyperia Hyperia spp. 0.002
Hyperoche

Arthropoda Malacostraca Amphipoda Hyperiidea Hyperiidae Hyperoche medusarum  medusarum 0.00385
Primno

Arthropoda Malacostraca Amphipoda Hyperiidea Phrosinidae Primno macropa macropa 0.003
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Average estimated

Phylum Class Order Family Genus species Taxa mass (g)
Themisto

Arthropoda Malacostraca Amphipoda Hyperiidae Themisto pacifica pacifica (<4mm)  0.00368
Themisto spp.

Arthropoda Malacostraca Amphipoda Hyperiidae Themisto (<4mm) 0.00385

Arthropoda Malacostraca Tanaidacea Tanaidacea 0.05
Thysanoessa

Arthropoda Malacostraca Euphausiacea Euphausiidae Thysanoessa inermis inermis (<7mm)  0.02
Thysanoessa
inermis

Arthropoda Malacostraca Euphausiacea Euphausiidae Thysanoessa inermis (>12mm) 0.075
Thysanoessa

Arthropoda Malacostraca Euphausiacea Euphausiidae Thysanoessa raschii raschii (<7mm) 0.0305
Thysanoessa

Arthropoda Malacostraca Euphausiacea Euphausiidae Thysanoessa raschii raschii (>12mm)  0.0978

Arthropoda Malacostraca Euphausiacea Euphausiidae Euphausiid 0.006
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Average estimated

Phylum Class Order Suborder Family Genus species Taxa mass (g)
furcilia
Euphausiid spp.

Arthropoda Malacostraca Euphausiacea Euphausiidae (<7mm) 0.006
Euphausiid spp.

Arthropoda Malacostraca Euphausiacea Euphausiidae (Ig, > 7mm) 0.084
Thysanoessa

Arthropoda Malacostraca Euphausiacea Euphausiidae Thysanoessa spp. (>12mm) 0.07895
Hippolytidae

Arthropoda Malacostraca Decapoda Pleocyemata Hippolytidae juvenile 0.037
Larval shrimp

Arthropoda Malacostraca Decapoda Pleocyemata (<7mm) 0.012
Pandalid shrimp

Arthropoda Malacostraca Decapoda Pleocyemata Pandalidae (>12mm) 0.04865
Pandalid shrimp

Arthropoda Malacostraca Decapoda Pleocyemata Pandalidae larvae 0.012
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Average estimated

Phylum Class Order Suborder Family Genus species Taxa mass (g)

Arthropoda Malacostraca Decapoda Pleocyemata Shrimp zoea 0.01

Arthropoda Malacostraca Decapoda Pleocyemata Unid. shrimp 0.05
Paguridae

Arthropoda Malacostraca Decapoda Pleocyemata Paguridae glaucothoe 0.005
Paguridae

Arthropoda Malacostraca Decapoda Pleocyemata Paguridae megalopa 0.015

Arthropoda Malacostraca Decapoda Pleocyemata Paguridae Paguridae zoea 0.00162
Atelecyclidae

Arthropoda Malacostraca Decapoda Pleocyemata Atelecyclidae megalopa 0.015

Arthropoda Malacostraca Decapoda Pleocyemata Crab zoea 0.01
Limacina

Mollusca Gastropoda Thecosomata Limacinidae Limacina helicina helicinia 0.002

Mollusca Gastropoda Thecosomata Limacinidae Limacina Limacina spp. 0.0035

Mollusca Gastropoda Thecosomata Pterepod spp. 0.001

Mollusca Gastropoda Unid. snail 0.005
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Average estimated

Phylum Class Order Suborder Family Genus species Taxa mass (g)

Mollusca Cephalopoda Teuthida Oegopsina Gonatidae Gonatidae 0.06

Mollusca Cephalopoda Teuthida Unid. squid 0.06

Chordata Actinopterygii Unid. Fish

Chordata Actinopterygii Unid. fish larvae  0.485
Hexagrammos

Chordata Actinopterygii Scorpaeniformes  Hexagrammoidei Hexagrammidae Hexagrammos spp. (1+ yr) 11
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Appendix 5. Summary of food load composition of Crested Auklet chick meals.

Table A5-1. Summary of food load composition of Crested Auklets at Buldir, Island 1994-2006. Data are presented as annual values

of percent biomass.

Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

n 37 46 78 82 103 88 29 45 54 23 33 39 36
Copepoda 37.13% 26.83% 75.28% 24.75% 28.32% 83.81% 82.74% 49.33% 71.94% 4.37% 86.72% 81.76% 76.92%
Calanoid spp. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.53% 0.00% 0.00% 0.00% 0.00% 0.00%
Calanus marshallae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00%
Neocalanus Total 37.13% 26.83% 75.28% 24.75% 28.32% 83.81% 82.74% 48.80% 71.94% 4.37% 86.72% 81.69% 76.92%
Neocalanus spp. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.58% 0.00% 0.00% 3.67% 0.00% 0.00% 0.00%
Neocalanus cristatus 37.10% 26.79% 73.45% 21.71% 28.01% 83.13% 79.97% 48.74% 70.21% 0.70% 86.66% 81.13% 74.58%
Neocalanus

plumchrus/flemingeri 0.03% 0.04% 1.83% 3.04% 0.31% 0.68% 0.19% 0.06% 1.73% 0.00% 0.05% 0.56% 2.34%
Amphipoda 0.93% 0.80% 0.58% 0.79% 0.14% 1.57% 0.00% 3.03% 5.32% 12.87% 0.17% 1.25% 0.05%

Hyperoche medusarum 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%
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Year

Primno macropa
Themisto pacifica
(<4mm)

Themisto spp. (<4mm)

Euphausiacea
Thysanoessa inermis
(<7mm)

Thysanoessa inermis
(>12mm)

Euphausiid furcilia
Euphausiid spp. (<7mm)
Thysanoessa spp.

(>12mm)

Decapoda

1994

0.04%

0.88%

0.00%

61.79%

0.00%

0.00%

0.00%

0.00%

61.79%

0.16%

1995

0.00%

0.80%

0.00%

71.73%

0.00%

0.00%

0.00%

71.73%

0.00%

0.58%

1996

0.00%

0.57%

0.00%

23.75%

0.00%

0.00%

0.00%

23.75%

0.00%

0.36%

1997

0.00%

0.79%

0.00%

74.38%

0.00%

0.00%

0.00%

74.38%

0.00%

0.06%

1998

0.00%

0.14%

0.00%

71.52%

0.00%

0.00%

0.00%

71.52%

0.00%

0.01%

1999

0.01%

1.56%

0.00%

13.81%

0.00%

0.00%

0.01%

13.80%

0.00%

0.81%

2000

0.00%

0.00%

0.00%

16.56%

3.47%

8.95%

0.00%

4.14%

0.00%

0.69%

2001

0.00%

2.83%

0.20%

42.58%

0.00%

0.00%

0.00%

6.13%

36.45%

5.06%

2002

0.00%

4.89%

0.42%

20.28%

0.00%

0.00%

0.00%

8.94%

11.34%

2.46%

2003

0.00%

0.00%

12.87%

82.43%

0.00%

0.00%

0.00%

3.76%

78.67%

0.33%

2004

0.00%

0.17%

0.00%

13.00%

0.00%

6.64%

0.00%

2.41%

3.95%

0.11%

2005

0.00%

0.01%

1.24%

16.30%

0.00%

0.00%

0.00%

3.29%

13.00%

0.69%
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2006

0.00%

0.03%

0.02%

23.03%

0.00%

0.00%

0.00%

23.03%

0.00%

0.00%



Year

Hippolytidae juvenile
Pandalid shrimp
(>12mm)

Pandalid shrimp larvae
Shrimp zoea

Paguridae megalopa
Atelecyclidae megalopa

Crab zoea

Unid. squid

1994

0.00%

0.00%

0.00%

0.15%

0.00%

0.00%

0.00%

0.00%

1995

0.00%

0.00%

0.00%

0.52%

0.00%

0.00%

0.06%

0.06%

1996

0.00%

0.00%

0.00%

0.30%

0.00%

0.06%

0.00%

0.03%

1997

0.00%

0.00%

0.00%

0.02%

0.00%

0.04%

0.00%

0.03%

1998

0.00%

0.00%

0.00%

0.01%

0.00%

0.00%

0.00%

0.00%

1999

0.74%

0.00%

0.00%

0.00%

0.01%

0.00%

0.05%

0.00%

2000

0.00%

0.00%

0.69%

0.00%

0.00%

0.00%

0.00%

0.00%

2001

0.00%

0.11%

4.96%

0.00%

0.00%

0.00%

0.00%

0.00%

2002

0.00%

2.44%

0.00%

0.00%

0.00%

0.02%

0.00%

0.00%

2003

0.00%

0.00%

0.33%

0.00%

0.00%

0.00%

0.00%

0.00%

2004

0.00%

0.11%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

2005

0.00%

0.69%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

2006

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%
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Table A5-2 - Summary of food load composition of Crested Auklets at Kiska, Island 2001-2006. Data are presented as annual values

of percent biomass.

Year 2001 2003 2006

n 7 3 24
Copepoda 0.00% 0.00% 87.39%
Neocalanus Total 0.00% 0.00% 87.39%
Neocalanus cristatus 0.00% 0.00% 87.21%
Neocalanus plumchrus/flemingeri 0.00% 0.00% 0.18%
Amphipoda 0.00% 0.00% 0.06%
Hyperoche medusarum 0.00% 0.00% 0.04%
Themisto pacifica (<4mm) 0.00% 0.00% 0.02%
Euphausiacea 100.00% 100.00% 12.10%
Euphausiid spp. (<7mm) 99.63% 0.00% 0.00%
Euphausiid spp. (lg, > 7mm) 0.37% 100.00% 12.10%
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Year 2001 2003 2006

Decapoda 0.00% 0.00% 0.38%
Larval shrimp (<7mm) 0.00% 0.00% 0.38%
Unid. squid 0.00% 0.00% 0.07%
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Table A5-3 - Summary of food load composition of Crested Auklets at Kasatochi, Island 1996-2006. Data are presented as annual

values of percent biomass.

Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

n 36 39 35 36 34 31 39 30 34 35 34
Ostracoda 0.00% 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Copepoda 36.58% 90.35% 73.02% 67.04% 39.76% 90.63% 66.07% 66.11% 74.01% 88.48% 82.58%
Unid. copepod 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Calanus marshallae 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.21% 0.00% 0.00% 0.00% 0.00%
Neocalanus Total 36.54% 90.35% 73.02% 67.04% 39.73% 90.63% 65.86% 66.11% 74.01% 88.48% 82.58%
Neocalanus cristatus 33.49% 73.14% 67.57% 62.21% 37.72% 90.29% 62.39% 65.81% 74.01% 86.55% 81.65%
Neocalanus

plumchrus/flemingeri 3.05% 17.21% 5.44% 4.83% 2.02% 0.34% 3.47% 0.29% 0.00% 1.93% 0.93%
Amphipoda 0.14% 0.33% 2.83% 1.27% 0.09% 0.10% 1.02% 0.03% 20.50% 0.18% 0.13%
Gammaridae 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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Year

Themisto pacifica (<4mm)
Pterepod spp.

Shrimp zoea

Themisto spp. (<4mm)

Euphausiacea
Euphausiid furcilia
Euphausiid spp. (<7mm)

Thysanoessa spp. (>12mm)

Decapoda

Hippolytidae juvenile
Larval shrimp (<7mm)
Pandalid shrimp (>12mm)
Primno macropa

Paguridae glaucothoe

1996

0.14%

0.00%

0.00%

0.00%

63.04%

0.00%

0.00%

63.04%

0.24%

0.00%

0.17%

0.00%

0.00%

0.00%

1997

0.27%

0.01%

0.00%

0.00%

6.75%

0.00%

6.75%

0.00%

2.26%

0.00%

1.86%

0.00%

0.03%

0.00%

1998

2.10%

0.00%

0.74%

0.00%

23.37%

0.00%

0.00%

23.37%

0.18%

0.00%

0.00%

0.00%

0.00%

0.00%

1999

1.27%

0.00%

0.00%

0.00%

30.63%

0.05%

0.00%

30.58%

1.07%

0.74%

0.00%

0.00%

0.00%

0.09%

2000

0.09%

0.00%

0.00%

0.00%

60.07%

0.00%

16.89%

43.18%

0.08%

0.00%

0.08%

0.00%

0.00%

0.00%

2001

0.02%

0.00%

0.00%

0.08%

8.34%

0.00%

6.98%

1.36%

0.92%

0.00%

0.65%

0.26%

0.00%

0.00%

2002

0.19%

0.00%

0.00%

0.83%

32.22%

0.00%

27.30%

4.92%

0.70%

0.00%

0.14%

0.56%

0.00%

0.00%

2003

0.00%

0.00%

0.00%

0.03%

32.03%

0.00%

11.81%

20.22%

1.82%

0.00%

0.68%

1.07%

0.00%

0.00%

2004

0.00%

0.00%

0.00%

20.50%

5.49%

0.00%

5.49%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

2005

0.00%

0.00%

0.00%

0.18%

10.97%

0.00%

8.07%

2.90%

0.37%

0.00%

0.30%

0.00%

0.00%

0.01%

2006

0.06%

0.03%

0.00%

0.05%

16.46%

0.00%

11.26%

5.20%

0.75%

0.00%

0.61%

0.00%

0.00%

0.00%
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Year
Paguridae megalopa
Atelecyclidae megalopa

Crab zoea

Unid. squid

Unid. Fish

1996

0.00%

0.04%

0.03%

0.00%

0.00%

1997

0.00%

0.29%

0.09%

0.11%

0.00%

1998

0.05%

0.11%

0.02%

0.06%

0.53%

1999

0.00%

0.00%

0.24%

0.00%

0.00%

2000

0.00%

0.00%

0.00%

0.00%

0.00%

2001

0.00%

0.01%

0.00%

0.00%

0.00%

2002

0.00%

0.00%

0.00%

0.00%

0.00%

2003

0.05%

0.03%

0.00%

0.00%

0.00%

2004

0.00%

0.00%

0.00%

0.00%

0.00%

2005

0.00%

0.07%

0.00%

0.00%

0.00%

2006

0.00%

0.14%

0.00%

0.07%

0.00%
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Appendix 6. Summary of food load composition of Least Auklet chick meals.
Table A6-1 - Summary of food load composition of Least Auklets at Buldir Island, 1994-2006. Data are presented as annual values of

percent biomass.

Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

n 4 8 15 31 25 32 12 32 31 21 30 24 29
Copepoda 84.54% 94.58% 96.06% 93.87% 94.37% 95.59% 98.20% 96.82% 97.45% 99.06% 92.52% 96.43% 75.83%
Paraeuchaeta

birostrata 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Calanus marshallae 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Neocalanus Total 84.54% 94.58% 96.06% 93.87% 94.33% 95.58% 97.85% 96.82% 97.45% 99.06% 92.52% 96.43% 75.83%
Neocalanus spp. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.16% 0.00% 0.00% 84.75%  0.00% 0.00% 0.00%

Neocalanus cristatus 13.95% 1.85% 10.02% 15.56% 25.77% 42.44% 80.95% 20.27% 1.70% 14.31% 3.06% 71.51% 17.87%
Neocalanus

plumchrus/flemingeri 70.59% 92.73% 86.04% 78.31% 68.55% 53.15% 13.74% 76.55% 95.75% 0.00% 89.47% 2491% 57.96%

Amphipoda 1.48% 1.17% 0.81% 0.88% 0.47% 0.36% 0.02% 2.68% 1.42% 0.42% 0.00% 0.01% 0.06%
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Year

Erichithonius spp.
Hyperoche medusarum
Primno macropa
Themisto pacifica

(<4mm)

Euphausiacea
Thysanoessa raschii
(>12mm)
Thysanoessa spp.
(>12mm)
Euphausiid furcilla
Euphausiid spp. (sm,

<7mm)

Decapoda

1994

0.00%

0.00%

0.39%

1.09%

0.00%

0.00%

0.00%

0.00%

0.00%

4.93%

1995

0.00%

0.74%

0.00%

0.43%

0.18%

0.00%

0.00%

0.00%

0.18%

2.65%

1996

0.00%

0.07%

0.00%

0.75%

2.36%

0.00%

0.00%

0.00%

2.36%

0.62%

1997

0.00%

0.00%

0.37%

0.51%

1.46%

0.00%

0.00%

0.00%

1.46%

2.35%

1998

0.40%

0.00%

0.00%

0.07%

3.96%

0.00%

0.00%

2.54%

1.42%

0.66%

1999

0.00%

0.00%

0.14%

0.22%

0.61%

0.00%

0.00%

0.46%

0.15%

3.16%

2000

0.00%

0.00%

0.00%

0.02%

1.66%

0.00%

0.00%

0.00%

1.66%

0.08%

2001

0.00%

0.00%

0.00%

2.68%

0.37%

0.00%

0.00%

0.00%

0.37%

0.13%

2002

0.00%

0.02%

0.02%

1.38%

0.76%

0.00%

0.00%

0.00%

0.76%

0.38%

2003

0.00%

0.00%

0.01%

0.41%

0.47%

0.00%

0.14%

0.00%

0.33%

0.05%

2004

0.00%

0.00%

0.00%

0.00%

5.10%

0.00%

0.00%

0.00%

5.10%

0.00%

2005

0.00%

0.00%

0.00%

0.01%

1.13%

1.05%

0.00%

0.00%

0.09%

2.31%

2006

0.00%

0.00%

0.00%

0.06%

23.00%

0.00%

0.65%

0.00%

22.35%

1.11%

219



Year

Pandalid shrimp
(>12mm)

Pandalid shrimp larvae
Larval shrimp (<7mm)
Hippolytidae juvenile
Shrimp zoea
Paguridae megalopa
Crab zoea
Atelecyclidae/crab

megalopa

Gastropoda
Limacina spp.
Unid. snail

Pterepod spp.

1994

0.00%

0.00%

0.00%

0.00%

4.93%

0.00%

0.00%

0.00%

1.07%

0.00%

1.07%

0.00%

1995

0.00%

0.00%

0.00%

0.00%

2.65%

0.00%

0.00%

0.00%

1.42%

0.00%

0.00%

1.42%

1996

0.00%

0.00%

0.00%

0.00%

0.45%

0.00%

0.00%

0.17%

0.15%

0.00%

0.00%

0.15%

1997

0.00%

0.00%

0.00%

0.00%

1.18%

0.00%

0.20%

0.96%

1.44%

0.00%

0.00%

1.44%

1998

0.00%

0.00%

0.00%

0.00%

0.56%

0.00%

0.00%

0.10%

0.55%

0.55%

0.00%

0.00%

1999

0.00%

0.00%

0.00%

2.66%

0.35%

0.10%

0.01%

0.04%

0.10%

0.00%

0.00%

0.10%

2000

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.08%

0.04%

0.00%

0.00%

0.04%

2001

0.00%

0.13%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

2002

0.00%

0.38%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

2003

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.02%

0.03%

0.00%

0.00%

0.00%

0.00%

2004

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

2005

0.35%

0.00%

1.91%

0.00%

0.00%

0.00%

0.00%

0.05%

0.13%

0.00%

0.00%

0.13%

2006

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

1.11%

0.00%

0.00%

0.00%

0.00%
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Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Other 7.98% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00% 0.00% 0.00% 2.37% 0.00% 0.00%
Gonatidae 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Unid. fish larvae 7.98% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.37% 0.00% 0.00%
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Table A6-2 - Summary of food load composition of Least Auklets at Kiska Island, 2001-2006. Data are presented as annual values of

percent biomass.

Year 2001 2002 2003 2004 2006

n 59 17 31 23 30
Insect 0.00% 0.01% 0.00% 0.00% 0.00%
Copepoda 97.30% 97.86% 95.91% 80.65% 98.29%
Calanus marshallae 0.03% 0.00% 0.00% 0.00% 0.00%
Neocalanus Total 97.27% 97.86% 95.91% 80.65% 98.29%
Neocalanus spp. 0.00% 95.98% 0.00% 0.00% 0.00%
Neocalanus cristatus 8.09% 1.88% 0.00% 3.47% 3.19%
Neocalanus

plumchrus/flemingeri 89.18%  0.00% 95.91% 77.18% 95.10%
Amphipoda 0.26% 0.05% 0.15% 0.32% 0.02%
Hyperoche medusarum 0.00% 0.00% 0.00% 0.13% 0.01%
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Year 2001 2002 2003 2004 2006

Primno macropa 0.01% 0.01% 0.00% 0.00% 0.01%
Themisto pacifica (<4mm) 0.59% 0.00% 0.09% 1.03% 0.02%
Themisto spp. (<4mm) 0.45% 0.21% 0.51% 0.10% 0.05%
Euphausiacea 1.06% 0.05% 2.02% 9.06% 0.67%
Euphausiid spp. (lg, > 7mm) 0.87% 0.00% 1.80% 0.00% 0.00%
Euphausiid spp. (sm, <7mm) 0.19% 0.05% 0.21% 9.06% 0.67%
Decapoda 0.14% 1.67% 1.36% 0.07% 0.92%
Larval shrimp (<7mm) 0.12% 0.00% 0.00% 0.07% 0.85%
Pandalid shrimp (>12mm) 0.00% 1.65% 0.00% 0.00% 0.00%
Paguridae zoea 0.01% 0.00% 0.00% 0.00% 0.00%
Atelecyclidae/crab megalopa 0.00% 0.00% 0.00% 0.00% 0.04%
Crab zoea 0.00% 0.03% 1.36% 0.00% 0.03%
Gastropoda 0.45% 0.19% 0.11% 0.51% 0.03%
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Year 2001 2002 2003 2004 2006

Limacina helicinia 0.00% 0.19% 0.00% 0.00% 0.00%
Pterepod spp. 0.45% 0.00% 0.11% 0.51% 0.03%
Unid. fish larvae 0.00% 0.00% 0.00% 8.45% 0.00%
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Table A6-1 - Summary of food load composition of Least Auklets at Kasatochi Island, 1996-2006. Data are presented as annual

values of percent biomass.

Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

n 19 51 36 33 33 33 37 24 33 29 28
Unid. crustacean 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Copepoda 62.53% 57.09% 84.00% 56.46% 81.85% 90.12% 92.55% 84.39% 88.53% 88.63% 77.02%
Calanus marshallae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.34% 0.09% 0.00% 0.00% 0.00%
Neocalanus Total 62.53% 57.09% 84.00% 56.46% 81.85% 90.12% 92.21% 84.30% 88.53% 88.63% 77.02%
Neocalanus cristatus 4.23% 5.42% 11.96% 18.92% 9.33% 0.27% 2.58% 1.86% 1.55% 42.96% 22.88%
Neocalanus

plumchrus/flemingeri 58.31% 51.67% 72.04% 37.54% 72.52% 89.84% 89.63% 82.44% 86.97% 45.67% 54.14%
Amphipoda 0.51% 10.91% 1.22% 1.74% 4.74% 0.00% 1.13% 0.85% 0.23% 0.48% 0.00%
Erichithonius spp. 0.00% 0.00% 0.48% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Eusiridae 0.00% 0.00% 0.00% 0.00% 2.92% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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Year

Gammaridae

Halirages bungei
Ischyrocerus spp.
Pontogeneia spp.
Stenothoidae

Talitridae

Hyperoche medusarum
Primno macropa
Themisto pacifica (<4mm)

Themisto spp. (<4mm)

Tanaidacea

Euphausiacea

Euphausiid furcilla

Euphausiid spp. (sm, <7mm)

1996

0.00%

0.00%

0.00%

0.00%

0.00%

0.02%

0.46%

0.00%

0.04%

0.00%

0.00%

31.30%

0.00%

0.00%

1997

10.11%

0.00%

0.00%

0.00%

0.36%

0.00%

0.00%

0.30%

0.13%

0.00%

0.00%

11.07%

0.00%

0.00%

1998

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.75%

0.00%

0.00%

5.53%

5.10%

0.00%

1999

0.00%

1.42%

0.00%

0.07%

0.00%

0.00%

0.00%

0.03%

0.20%

0.00%

0.00%

1.70%

0.64%

0.00%

2000

0.00%

0.00%

0.26%

0.00%

0.00%

0.00%

0.00%

0.00%

1.56%

0.00%

0.71%

4.09%

0.00%

3.95%

2001

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

4.73%

0.00%

4.73%

2002

0.00%

0.00%

0.44%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.70%

0.00%

3.12%

0.00%

2.43%

2003

0.00%

0.00%

0.19%

0.00%

0.00%

0.00%

0.00%

0.01%

0.00%

0.65%

0.00%

10.36%

0.00%

10.36%

2004

0.00%

0.00%

0.16%

0.00%

0.00%

0.00%

0.00%

0.01%

0.00%

0.06%

0.00%

3.84%

0.00%

3.84%

2005

0.00%

0.00%

0.06%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.42%

0.00%

1.26%

0.00%

1.26%

2006

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

8.82%

0.00%

8.82%
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Year

Thysanoessa spp. (>12mm)

Decapoda

Hippolytidae juvenile

Larval shrimp (<7mm)
Pandalid shrimp (>12mm)
Shrimp zoea

Paguridae glaucothoe
Paguridae zoea
Atelecyclidae/crab megalopa

Crab zoea

Gastropoda
Limacina spp.

Pterepod spp.

1996

31.30%

3.68%

0.00%

2.38%

0.00%

0.00%

0.00%

0.00%

1.13%

0.17%

1.88%

0.00%

1.88%

1997

11.07%

18.89%

0.00%

17.03%

0.00%

0.00%

0.00%

0.00%

1.42%

0.44%

2.04%

0.00%

2.04%

1998

0.43%

5.56%

0.00%

0.00%

0.00%

5.10%

0.15%

0.00%

0.16%

0.15%

3.68%

3.68%

0.00%

1999

1.06%

38.51%

38.22%

0.00%

0.00%

0.00%

0.16%

0.00%

0.09%

0.04%

1.59%

1.59%

0.00%

2000

0.14%

5.10%

0.00%

4.76%

0.00%

0.00%

0.02%

0.00%

0.32%

0.00%

3.51%

3.51%

0.00%

2001

0.00%

4.49%

0.00%

2.44%

1.92%

0.00%

0.00%

0.00%

0.12%

0.00%

0.67%

0.00%

0.67%

2002

0.68%

2.86%

0.00%

2.31%

0.42%

0.00%

0.00%

0.01%

0.13%

0.00%

0.33%

0.00%

0.33%

2003

0.00%

4.41%

0.00%

2.02%

1.93%

0.00%

0.30%

0.02%

0.15%

0.00%

0.00%

0.00%

0.00%

2004

0.00%

5.10%

0.00%

4.60%

0.00%

0.00%

0.00%

0.00%

0.50%

0.00%

2.30%

0.00%

2.30%

2005

0.00%

8.74%

0.00%

8.70%

0.00%

0.00%

0.00%

0.00%

0.03%

0.00%

0.89%

0.00%

0.89%

2006

0.00%

13.09%

0.00%

12.95%

0.00%

0.00%

0.00%

0.01%

0.14%

0.00%

1.07%

0.00%

1.07%
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Appendix 7. Summary of food load composition of Whiskered Auklet chick meals.

Table A7-1 - Summary of food load composition of Whiskered Auklets at Buldir Island, 1993-2006. Data are presented as annual

values of percent biomass.

Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
n 23 16 48 71 36 26 38 33 28 32 31 37 31 36
Unid. crustacean 7.40% 0.00% 0.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Copepoda 19.14% 43.88% 76.67% 93.29% 93.39% 96.95% 93.54% 96.70% 99.68% 85.39% 39.55% 98.32% 96.19% 91.42%
Calanoid spp. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.82% 0.00% 0.00% 0.00% 0.00% 0.00%
Paraeuchaeta
birostrata 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.18% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Paraeuchaeta elongata  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.12% 0.00% 0.00% 0.00% 0.00%
Pseudhaloptilus
pacificus 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Calanus marshallae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.46% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Calanus pacificus 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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Year
Neocalanus Total
Neocalanus spp.
Neocalanus cristatus
Neocalanus

plumchrus/flemingeri

Amphipoda

Hyalidae

Lysianassidae
Hyperoche medusarum
Primno macropa
Themisto pacifica
(<4mm)

Themisto spp. (<4mm)

Euphausiacea

1993

19.14%

0.00%

11.48%

7.66%

0.09%

0.00%

0.00%

0.00%

0.01%

0.00%

0.08%

60.22%

1994

43.88%

0.00%

36.80%

7.08%

4.37%

0.00%

0.00%

0.00%

3.82%

0.55%

0.00%

48.80%

1995

76.61%

0.00%

36.09%

40.53%

1.28%

0.00%

0.00%

1.11%

0.00%

0.17%

0.00%

20.07%

1996

93.29%

0.00%

36.19%

57.10%

0.26%

0.00%

0.00%

0.26%

0.00%

0.00%

0.00%

5.99%

1997

93.39%

0.00%

15.50%

77.88%

0.25%

0.00%

0.00%

0.00%

0.24%

0.01%

0.00%

0.23%

1998

96.95%

0.00%

75.57%

21.38%

0.09%

0.00%

0.00%

0.00%

0.09%

0.00%

0.00%

1.81%

1999

93.11%

0.00%

92.49%

0.61%

0.33%

0.00%

0.00%

0.00%

0.33%

0.00%

0.00%

1.37%

2000

96.24%

5.08%

70.04%

21.12%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

1.57%

2001

96.73%

49.31%

47.42%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.30%

2002

85.27%

0.00%

71.96%

13.32%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

13.52%

2003

39.55%

0.00%

8.36%

31.19%

0.91%

0.90%

0.01%

0.00%

0.00%

0.00%

0.00%

52.03%

2004

98.32%

0.00%

19.01%

79.32%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

1.61%

2005

96.19%

0.00%

17.71%

78.49%

0.01%

0.00%

0.00%

0.00%

0.00%

0.00%

0.01%

3.14%
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2006

91.42%

0.00%

58.35%

33.07%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

8.45%



Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
Euphausiid furcilia 0.00% 0.00% 0.00% 0.00% 0.00% 0.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Euphausiid spp. (g, >
7mm) 0.00% 0.00% 20.07%  5.99% 0.23% 1.46% 1.37% 1.57% 0.30% 11.73% 4.23% 0.51% 3.03% 8.45%
Thysanoessa spp.

(>12mm) 60.22% 48.80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.79% 47.80% 1.09% 0.11% 0.00%

Decapoda 0.00% 2.79% 1.50% 0.34% 5.53% 0.59% 2.89% 1.70% 0.02% 0.69% 7.52% 0.07% 0.66% 0.12%
Hippolytidae juvenile 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.98% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Larval shrimp (<7mm) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.59% 0.12%
Pandalid shrimp

(>12mm) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.58% 7.49% 0.00% 0.00% 0.00%
Pandalid shrimp larvae  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.10% 0.03% 0.00% 0.00% 0.00%
Shrimp zoea 0.00% 2.79% 1.50% 0.14% 4.43% 0.59% 1.92% 1.70% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Atelecyclidae megalopa 0.00% 0.00% 0.00% 0.16% 0.71% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.04% 0.00%

Crab zoea 0.00% 0.00% 0.00% 0.04% 0.39% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.03% 0.00%
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Year
Gastropoda
Limacina helicinia
Limacina spp.
Pterepod spp.

Unid. snail

Unid. squid

Hexagrammos spp. (1+

yr)

1993

0.02%

0.02%

0.00%

0.00%

0.00%

0.00%

13.13%

1994

0.00%

0.00%

0.00%

0.00%

0.00%

0.16%

0.00%

1995

0.21%

0.00%

0.00%

0.21%

0.00%

0.00%

0.00%

1996

0.11%

0.00%

0.00%

0.11%

0.00%

0.00%

0.00%

1997

0.61%

0.00%

0.00%

0.61%

0.00%

0.00%

0.00%

1998

0.55%

0.00%

0.55%

0.00%

0.00%

0.00%

0.00%

1999

1.87%

0.00%

0.00%

1.87%

0.00%

0.00%

0.00%

2000

0.03%

0.00%

0.00%

0.03%

0.00%

0.00%

0.00%

2001

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

2002

0.40%

0.00%

0.00%

0.00%

0.40%

0.00%

0.00%

2003

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

2004

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

2005

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

2006

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%
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Appendix 8. Catalogue numbers of Least Auklet specimens examined at the American
Museum of Natural History (AMNH), Academy of Natural Sciences, Philadelphia (ANSP),
Cowan Vertebrate Museum (CVM), Delaware Museum of Natural History (DMNH),
Denver Museum of Nature and Science (DMNS), Moscow State University Zoological

Museum (MSUZM), and University of Michigan Museum of Zoology (UMMZ).

AMNH: 30040, 30043, 653500, 748234, 748235, 748241, 749236, 749240, 753496,
753497, 753498, 753499, 753501, 753503, 753504; ANSP-55379, 148119, 148121; CVM-
13290; DMNH-55060; DMNS-11636; MSUZM-42421, 42724, 64650, 70035, 70777,

79193, 81118, 85668, 98295, 98296, 98297, 119171; UMMZ-150027.
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Appendix 9. Means, standard deviations, and sample sizes from stable-isotope analysis

of Least and Crested Auklets at Buldir, Kiska, and Gareloi Islands, Aleutian Islands,

Alaska, from 2007-2010. There were no significant differences within species among

islands, or among years, so data were pooled. Data are from breast (pre-breeding), P1

(chick rearing), and P10 (post-breeding) feathers.

Species Age class Season n 8%c+s.D. &NzS.D.
Crested Auklet Adult Pre-breeding 10 -18.78+1.74 14.73+2.27
Chick rearing 10 -18.70+0.97 13.70+1.78
Post-breeding 10 -18.54+1.24 16.71+0.90
Least Auklet Adult Pre-breeding 50 -18.65+1.63 12.84+1.63
Chick rearing 50 -19.02+1.71 12.30%1.37
Post-breeding 50 -17.54+1.03 14.37+1.04
Least Auklet Subadult Pre-breeding 39 -19.95+1.88 11.10+1.44
Least Auklet Chick Chick rearing 8 -20.67+0.35 8.88+0.23
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