Physics 3000: Physics of Device Materials
Fall 2016

Monday, Wednesday, Friday. Slot 9. 4:00 pm – 4:50 pm. Room EN-1054.

PR: Physics 1051

Course description on department web page:
http://www.mun.ca/physics/undergraduates/syllabus/p3000.php

Instructor: Prof. Mykhaylo Evstigneev. Rm C3025. Phone 864-2474. Email mevstigneev@mun.ca.

Office Hours: The instructor is available at most times outside of class except for Thursdays. Students are encouraged to contact the instructor to confirm availability for a meeting.

Course web page: See D2L

Text

Recommended supplementary texts:
Semiconductor Devices Physics and Technology by S.M. Sze.

Evaluation
Loncapa assignments 10%
Written assignments 5%
Mid-term exam 1 20%
Mid-term exam 2 20%
Final Exam 45%
No supplementary exam

Assignments (approximately 6)
Due approximately every two weeks, starting near the end of September. Assignments are to be turned in during class on the due date.

Mid-term tests: Early October and mid-November.

Missed work: Students who cannot complete assignments or mid-term tests need to consult the University Calendar, Section 6.7.5 Exemptions from Parts of the Evaluation, and speak to the instructor.

Use of Recording Devices in Classrooms: The lectures and displays (and all material) delivered or provided in this course, including any visual or audio recording thereof, are subject to copyright owned by Dr. M. Evstigneev. It is prohibited to record or copy by any means, in any format, openly or surreptitiously, in whole or in part, in the absence of express written permission from Dr. M. Evstigneev any of the lectures or materials provided or published in any form during or from the course.

Important general information from the University
Student Code of Conduct: http://www.mun.ca/student/conduct/
Final Examinations: http://www.mun.ca/regoff/calendar/sectionNo=REGS-0628
Academic Misconduct: http://www.mun.ca/regoff/calendar/sectionNo=REGS-0748
Accommodations for Students with Disabilities: http://www.mun.ca/blundon/accommodations/
Tentative Outline

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapters</th>
<th>Number of lectures</th>
</tr>
</thead>
</table>
| Crystal structure of solids:
 Semiconductor materials, types of solids.
 Space lattices, atomic bonding.
 Imperfections and impurities in solids, growth of semiconductor materials, device fabrication techniques. | 1.1-1.7 | 3 |
| Electrons in solids:
 Principles of quantum mechanics, energy quantization and probability concepts.
 Energy band theory.
 Density of states function, statistical mechanics, Fermi-Dirac distribution, Fermi energy, Maxwell-Boltzmann approximation. | 2.1-2.5 | 3 |
| Semiconductors in equilibrium:
 Charge carriers in Semiconductors.
 Dopant atoms and energy levels, carrier distribution in extrinsic semiconductors.
 Statistics of donors and acceptors.
 Carrier concentrations: effects of doping.
 Position of the Fermi level: effects of doping and temperature. | 3.1-3.6 | 5 |
| Carrier transport and excess carrier phenomena:
 Carrier drift.
 Carrier diffusion, graded impurity distribution.
 Carrier generation and recombination, Hall effect. | 4.1-4.5 | 3 |
| The pn junction and metal-semiconductor contact:
 Basic structure of a pn junction.
 pn junction under zero applied bias.
 pn junction under reverse applied bias.
 Metal-semiconductor contact: rectifying junction, forward bias.
 Metal semiconductor ohmic contacts. | 5.1-5.6 | 5 |
| Metal-oxide-semiconductor field effect transistor:
 The MOS field-effect transistor action.
 The two terminal MOS capacitor.
 Potential differences in a MOS capacitor.
 Capacitance-voltage characteristics.
 The basic MOSFET operation; MOSFET scaling, non-ideal effects. | 6.1-6.5, 7.1-7.2 | 6 |
| Other devices:
 The pn and Schottky barrier junctions.
 The bipolar transistor.
 Microelectromechanical systems.
 Optical absorption.
 Solar cells.
 Photodetectors.
 Light-emitting diodes.
 Laser diodes. | 9.1, 10.1, 11.5, 12.1-12.5 | 8 |