Force and Acceleration
The objective of today’s lab is to investigate Newton’s second law which states:

\[\vec{a} \propto \frac{\sum \vec{F}}{m} \]

The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.
Equipment List

You have been provided with:

- Track
- Cart
- Block
- Pulley
- String
- Card
- Motion sensor
- Mass set
- Metre stick
Setup: equipment assembly

Setup your experiment:

• Place the track with the unblocked end protruding slightly past the edge of the bench.
• Place the cart on the track.
• Attach the pulley to the free end of the track and run the string from the cart over the pulley.
• Place the black block in the cart.
• Tape the plastic card to the end of the cart making sure it isn’t low enough to touch the track.
• Put the 50 g mass, one of the 20 g masses and the 10 g mass in the cart (lying sideways). Hang the other 20 g mass from the end of the string.
• Plug the motion detector into DIG/SONIC 1 on the LabPro and place it at the end of the track.
Check your setup:

- **Is the track level?**
 - Check the levelling by pushing the cart gently left and right to test if it rolls downhill one way or the other. Adjust the levelling screw as needed.

- **Is the string level?**
 - Use a metre stick to make sure the string is exactly parallel to the track. The level of the pulley wheel can be adjusted by first loosening the screw at the side.

- **Is the string too long?**
 - When the cart at the end of the track closest to the pulley, the hanging mass **should not** be touching the floor. Shorten the string if necessary.
Data collection

- Click on the icon to open Logger Pro

- Click collect and release the system. Be sure to catch the cart before it hits the pulley.

- You should see two graphs on the screen:
 1. position vs time
 2. velocity vs time

- Activate the velocity vs time graph by clicking on it.
- Find the slope of the **linear portion** of the velocity vs time graph i.e. the acceleration of the system (use Analyze/LinearFit function in LoggerPro)
- Enter the acceleration in the first line of Table 1.
Data collection

- Activate the velocity vs time graph by clicking on it.
- Highlight the **linear portion** of the velocity vs time graph as shown below. The acceleration of the system is the slope of this part of the graph. Use Analyze/LinearFit function in LoggerPro to obtain this.
- Enter the acceleration in the first line of **Table 1**.
Data collection

In the first row of Table 1 also:

- record the value (in kilograms) of the falling mass,
- calculate and record the weight of the falling mass ($W = mg$ with m in kg and $g = 9.81 \text{ m/s}^2$).

Have an instructor check the first data set for a reasonable value of a.

- Exchange the masses so that you have 30.0 g as the falling mass, and 70.0 g on the cart. (The total mass of the system stays constant!)

- Run the experiment again. Record the data in your laboratory workbook.

- Do five more runs with 40.0 g, 50.0 g, 60.0 g, 70.0 g and 80.0 g as the falling mass, with the total mass constant.

- Record your data in your laboratory workbook Table 1.
Analysis

We will analyze our data using Graphical Analysis software. Open it by clicking on the icon below.

In Graphical Analysis plot the **weight** of the hanging mass versus the **acceleration** of the system.
QUESTION 1: As the falling weight increases, what happens to the acceleration?

In Graphical Analysis click Analyze then Linear fit.
Double click the pop-up box and turn on Show Uncertainties.
Enter the slope and its uncertainty in Table 2.
Analysis

QUESTION 2 : What are the units of the slope? Do a unit analysis to break this down to a simpler unit.

Use a lab balance to weigh the cart, the card, the string and all the masses.

Place the cart upside down on the balance so it doesn’t roll off.

Enter the mass and its uncertainty in **Table 3**.
QUESTION 3: Compare this value to the value of your slope. What physical quantity do you think the slope corresponds to?

QUESTION 4: What are the units of the y-intercept?

Title your graph and label your axes.

Print your graph and staple it to your report.
Analysis: Theory

- Click here to follow the process of drawing the free body diagrams and writing the Newton’s second law equations for each mass.

- The information in this file will help you answer Question 7.
Analysis

QUESTION 5: By comparing the equation

\[W = (m_a + m_b)\alpha + f \]

with the equation of a straight line

\[y = mx + b \]

what physical quantities do the slope and intercept of your graph represent?

QUESTION 6: Is this answer consistent with your answers to questions 3 and 4?

QUESTION 7: Compare the value of frictional force you just found with the value of the smallest falling weight. Is it smaller, bigger, roughly the same? Is this expected? HINT: What would happen if these two values were interchanged?
Summary and Conclusion

QUESTION 8: Identify two sources of uncertainty in this experiment. Are these random or systematic?

QUESTION 9: Newton’s second law states that the acceleration of an object will increase if the net force on it is increased. Did you observe this to be true? Explain.

- Disassemble lab setup. (You will lose marks otherwise!)
- Close all applications and log out.
- Submit your laboratory workbook with your graph attached.