Physics 3820. Mathematical Physics II
Final Examination

December 14, 2005

E. Demirov
Duration of the examination: 120 minutes. Attempt one question of Part A, one question of Part B and one question of Part C and the question in part D.

Part A (30%)

Problem (1) Evaluate the integral by using the residue theorem:
\[
\int_{0}^{2\pi} \frac{\cos \theta}{5 + 4 \cos \theta} \, d\theta
\]

Problem (2) Evaluate the integral by using the residue theorem:
\[
\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + 25)(x^2 + 16)} \, dx
\]

Part B (30%)

Problem (1) Find a solution of the equation:
\[
(1 - x^2) \frac{d^2 y}{dx^2} + y = 0
\]
as a series in powers of \(x \). Find the recurrence relation and write the first five terms of the series.

Problem (2)
Find the two solutions of the Bessel equation:
\[
6x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - (x - 1)y = 0
\]
as a Frobenius series in power of \(x \). Find the recurrence relations for the two independent solutions and write the first three terms of the series for each independent solution.

Part C (30%)

Problem (1) Find the Fourier transform of the function
\[
f(t) = \frac{t}{t^2 + a^2}
\]

Problem (2) An electron in an atom may be modeled classically as a damped harmonic oscillator:
\[
\frac{d^2 x}{dt^2} + 2\alpha \frac{dx}{dt} + \omega_0^2 x = f(t)
\]
The electron is driven by an incoming EM wave with electric field

\[E(t) = \begin{cases} \quad E_0 e^{-\alpha t} \sin(\Omega t) & \text{if } t \geq 0 \\ 0 & \text{if } t < 0 \end{cases} \]

(a) What is the appropriate \(f(t) \) for this problem

(b) Solve for the transform \(x(\omega) \) of the electron’s position.

Hint: Use the relation:

\[\sin \beta = \frac{e^{i\beta} - e^{-i\beta}}{2i} \]

Part D (10%)

Problem (1)

(a) Find the Fourier transform \(X(\omega) \) of the solution of the equation:

\[\frac{d^2x}{dt^2} + \omega_0^2 x = f(t) \]

(b) Write the inverse Fourier transform of \(X(\omega) \) and therefore write an integral expression about the solution \(x(t) \).

(c) Write down the form of the Green’s function \(G(t - t') \) solution:

\[x(t) = \int_{-\infty}^{\infty} f(t')G(t - t')dt' \]

Find the expression for the Green’s function in integral form, but without evaluating the integral of the complex integrand.
FORMULAE

(1) The Taylor series. Suppose \(f(z) \) is analytic in a region \(R : |z - a| \leq \rho \). Then the series:

\[
f(z) = f(a) + (z - a)f'(a) + \frac{(z - a)^2}{2} f''(a) + \ldots + \frac{(z - a)^n}{n!} \frac{d^n f}{dz^n} \bigg|_{z=a} + \ldots
\]

is uniformly convergent within the circle \(|z - a| \leq \rho \), where \(\rho \) is the radius of convergence.

(2) The Laurent series. Suppose \(f(z) \) is analytic in an angular region \(R : \rho_1 < |z - a| < \rho_2 \). Then

\[
f(z) = \sum_{n=-\infty}^{\infty} c_n (z - a)^n, \quad \text{where} \quad c_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - a)^{n+1}} d\xi \quad -\infty < n < \infty
\]

(3) The order of a pole \(z = a \) is the lowest integer \(p \) for which the limit \(\lim_{z \to a} (z - a)^p f(z) \) exists.

(4) The Residue Theorem: If a function \(f \) is analytic in a simply connected domain \(D \) except for finite number of isolated singularities and if curve \(C \) is within \(D \), then:

\[
\oint_C f dz = 2\pi i \sum_{n=1}^{N} \text{Res} f(z_n)
\]

where \(z_n \) are singularities of \(f \) within \(C \).

(5) Finding Residues:
(i) \(\text{Res}(f(a)) \) is equal to the coefficient \(c_{-1} \) of the Laurent series at \(z = a \).
(ii) For a simple pole:

\[
\text{Res} f(a) = \lim_{z \to a} (z - a)f(z)
\]

(iii) For a pole of order \(m \):

\[
\text{Res} f(a) = \lim_{z \to a} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z - a)^m f(z)]
\]

(iv) For a function of the form \(f(z) = g(z)/h(z) \), where \(h(z) \) has a simple zero at \(z = a \) and \(g(z) \) is analytic at \(a \):

\[
\text{Res} f(a) = \lim_{z \to a} \frac{g(z)}{h'(z)}
\]
(6) **Jordan's Lemma:** If $f(z)$ converges uniformly to zero wherever $z \to \infty$, then
\[
\lim_{R \to \infty} \int_{C_R} f(z) e^{ikz} dz = 0
\]
where
(i) C_R is the upper half of the circle $|z| = R$ when k is positive and
(ii) C_R is the lower half of the circle $|z| = R$ when k is negative.

(7) **Fourier Series:** Periodical function $f(x)$ with a period L, may be expressed as
(a) Real Fourier series:
\[
f(x) = \sum_{n=0}^{n=\infty} a_n \sin \left(\frac{2n\pi x}{L} \right) + b_n \cos \left(\frac{2n\pi x}{L} \right)
\]
where
\[
a_n = \frac{2}{L} \int_0^L f(x) \sin \left(\frac{2n\pi x}{L} \right) dx
\]
\[
b_n = \frac{2}{L} \int_0^L f(x) \cos \left(\frac{2n\pi x}{L} \right) dx
\]
\[
b_0 = \frac{1}{L} \int_0^L f(x) dx
\]
(b)
\[
f(z) = \sum_{n=0}^{n=\infty} c_n e^{i\left(\frac{2n\pi x}{L} \right)}
\]
where
\[
c_n = \frac{2}{L} \int_0^L f(x) e^{-i\left(\frac{2n\pi x}{L} \right)} dx \quad \text{and} \quad c_0 = \frac{1}{L} \int_0^L f(x) dx
\]

(8) **Fourier transform.**
We defined in class two forms of Fourier transform, which are equivalent. The both forms may be used in solving physical problems:
(a) The Fourier transform of the function $f(t)$ is
\[
F(\omega) = \mathcal{F}(f(t)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt
\]
The inverse Fourier transform of $F(\omega)$ is:
\[
f(t) = \mathcal{F}^{-1}(F(\omega)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega
\]
(b) When solving physical problems related to waves propagation, often the Fourier transform is defined as:
\[
F(\omega) = \mathcal{F}(f(t)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{i\omega t} dt
\]
The inverse Fourier transform of $F(\omega)$ in this case is:

$$f(t) = \mathcal{F}^{-1} \{ F(\omega) \} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\omega) e^{-i\omega t} d\omega$$

(8) Properties of Fourier transform:

(i) Linearity:

$$\mathcal{F} \{ f(t) + g(t) \} = \mathcal{F} \{ f(t) \} + \mathcal{F} \{ g(t) \}$$

$$\mathcal{F} \{ af(t) \} = a \mathcal{F} \{ f(t) \}$$

(ii) Complex Conjugate

$$F^*(\omega) = \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt \right]^* = F(-\omega)$$

(iii) Differentiation

(a) If the Fourier transform is defined as in (7a) then:

$$\mathcal{F} \left(\frac{df(t)}{dt} \right) = i\omega \mathcal{F} \{ f(t) \} = i\omega F(\omega)$$

and

$$\mathcal{F} \left(\frac{d^n f(t)}{dt^n} \right) = (i\omega)^n \mathcal{F} \{ f(t) \} = (i\omega)^n F(\omega)$$

(b) If the Fourier transform is defined as in (7b) then:

$$\mathcal{F} \left(\frac{df(t)}{dt} \right) = -i\omega \mathcal{F} \{ f(t) \} = -i\omega F(\omega)$$

and

$$\mathcal{F} \left(\frac{d^n f(t)}{dt^n} \right) = (-i\omega)^n \mathcal{F} \{ f(t) \} = (-i\omega)^n F(\omega)$$

(iv) Attenuation and shifting

$$\mathcal{F} \{ e^{at} f(t) \} = F(\omega + ia)$$

$$\mathcal{F} \{ f(t - a) \} = e^{-ia\omega} F(\omega)$$

(v) Parseval’s Theorem: If $F(\omega) = \mathcal{F} \{ f(t) \}$ and $G(\omega) = \mathcal{F} \{ g(t) \}$ then

$$\int_{-\infty}^{\infty} f(x)g(x)dx = \int_{-\infty}^{\infty} F(\omega)G^*(\omega)d\omega$$

and therefore:

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega$$
(vi) Convolution: If $F(\omega) = \mathcal{F}(f(t))$ and $G(\omega) = \mathcal{F}(g(t))$ then the inverse Fourier transform:

$$\mathcal{F}^{-1}(F(\omega)G(\omega)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(u)g(x-u)du$$