Investigating the Binding Capabilities of Triazole-Calix[4]arene Functionalized Microcantilever Sensors Towards Heavy Metals in Aqueous Solution (MSc Thesis Seminar)

Mona Braim
Department of Physics and Physical Oceanography
Memorial University

DATE: Thursday, March 24, 2016
TIME: 1:00 PM
PLACE: C3024

ABSTRACT: The main objective of this work was to investigate the binding capabilities of the newly synthesized bimodal triazole-calix[4]arene functionalized microcantilevers towards selected heavy metals in aqueous solution. Gold-coated microcantilever sensors were first modified with a self-assembled monolayer of calix[4]arene. Selected target metal ions (e.g. Hg2+, Fe2+, Ni2+, Zn2+, and Pb2+) were then introduced into a cell containing the functionalized microcantilevers. The interactions between the calix[4]arene-functionalized microcantilevers and the target analytes resulted in the formation of a differential surface stress which, in turn, resulted in a mechanical deflection of the microcantilever. Results showed that microcantilever arrays modified with triazole-calix[4]arene were capable of detecting trace concentrations of Hg2+ ions as low as 10^{-11} M, which is sufficiently low for most applications. Results also showed that triazole-calix[4]arene functionalized microcantilevers were capable of detecting the presence of different heavy metal ions with high sensitivity and selectivity.

This is a MSc final presentation and graduate students from our department are especially encouraged to attend.

ALL ARE WELCOME!