Physics 1021
 Lab Introduction \& Graphing Workshop

Department of Physics and Physical

Oceanography

Introductory Comments

Lab Documentation:

- Workbook copy is required and available in MUN bookstore
- Instructions and Workbook also available:
- On Lab Computers
- Online @
www.mun.ca/physics/undergraduates/fylabs/index.php
Prelabs:
- Must be complete to enter the lab

- Print or copy from website.
- Present completed copy at door of lab

Laboratory Guidelines - Highlights

\rightarrow Pass labs to pass the course.
\rightarrow Cell phones off/silent. Keep it in your bag!
\rightarrow Keep workplace tidy. Place bags under bench. No food or drink.
\rightarrow Absence: Let your Instructor KNOW.

- Must contact by email within 48 hrs. (MUN 6.7.5c2) - ehayden@mun.ca
\rightarrow Labs are 1 Hour and 50 minutes long.
- You may not start lab more than 15 min late.
\rightarrow Handle equipment carefully, When done, tidy equipment.
\rightarrow You will work in pairs and share responsibilities but must write separate reports.

Physics 1021 - Winter 2020

Laboratory Schedule

\rightarrow Found on the MUN PHYSICS website @

\rightarrow https://www.mun.ca/physics/undergraduates/f ylabs/p1021/schedule.pdf
\rightarrow Have a copy somewhere!

- Know what is coming
up and what you are doing each week!
\rightarrow Note the colours!

Monday	Tuesday	Wednesday	Thursday	Friday
Jan/6 Lectures Begin Lab Introduction	Jan/7	Lab Introduction	Lab IntroductionJan/9	Lab IntroductionJan/10
Experiment 1 Intro. to SHM	Jan/14	Jan/15 Experiment 1 Intro. to SHM	$\begin{aligned} & \quad \text { Jan/16 } \\ & \text { Experiment 1 } \\ & \text { Intro. to SHM } \end{aligned}$	Jan/17 Experiment 1 Intro. to SHM
$\begin{gathered} \quad \text { Jan/20 } \\ \text { Experiment 2 } \\ \text { Standing Waves } \end{gathered}$	Jan/21	Jan/22 Experiment 2 Standing Waves	$\begin{aligned} & \text { Jan/23 } \\ & \text { Experiment 2 } \\ & \text { Standing Waves } \\ & \text { Ouiz 1 } \\ & \hline \end{aligned}$	Jan/24 Experiment 2 Standing Waves
Problem Set $1^{\text {Jan/27 }}$	Jan/28	Problem Set $1 \quad$Jan/29	Problem Set $1^{\text {Jan/30 }}$	$\begin{aligned} & \text { Jan/31 } \\ & \text { Problem Set } 1 \end{aligned}$
Feb/3 Experiment 3 Sound and Resonance	Feb/4	\qquad Experiment 3 Sound and Resonance	Feb/6 Experiment 3 Sound and Resonance Term Test 1	\qquad Experiment 3 Sound and Resonance
To BeFeb/10 Announced	Feb/11	To Be$\mathrm{Feb} / 12$ Announced	To Be$\mathrm{Feb} / 13$ Announced	To Be$\mathrm{Feb} / 14$ Announced
Break ${ }^{\text {Feb/17 }}$	Break ${ }^{\text {Feb/18 }}$	Break ${ }^{\text {Feb/19 }}$	Break ${ }^{\text {Feb/20 }}$	Break ${ }^{\mathrm{Feb} / 21}$
Feb/24 Experiment 4 Buoyancy	Feb/25	Feb/26 Experiment 4 Buoyancy	Feb/27 Experiment 4 Buoyancy	Feb/28 Experiment 4 Buoyancy
Mar/2 Experiment 5 Electric Field and Potential	Mar/3	\qquad Mar/4 Experiment 5 Electric Field and Potential	Experiment 5 Mar/5 and EP Quiz 2	Mar/6 Experiment 5 Electric Field and Potential
Problem Set $2^{\text {Mar/9 }}$	Mar/10	Problem Set 2	Problem Set 2	Problem Set 2
Mar/16 Experiment 6 Magnetic Fields	Mar/17	Mar/18 Experiment 6 Magnetic Fields	Mar/19 Experiment 6 Magnetic Fields Term Test?	\quad Mar/20 Experiment 6 Magnetic Fields
Lab Skills Test ${ }^{\text {Mar/23 }}$	Mar/24	Lab Skills Test	Lab Skills Test ${ }^{\text {Mar/26 }}$	Lab Skills Test
To Be Mar/30 Announced	Mar/31	To Be ${ }^{\text {Apr/1 }}$ Announced	To Be Apr/2 Announced	To Be Announced Lectures End
Apr/6	Apr/7	Exams Begin Apr/8	Apr/9	Apr/10

Uncertainty

From 1021 Lab manual... Same as 1020... Read through Preliminary Pages before next week...

Physics 1021 Making Measurements in Physics
Below you can see a visual representation of the concepts of accuracy and precisfion and how they
are related to experimental uncertainties. The buirs eye represents the true or accepted value of a

Precise not accurate	Accurate not precise	procise and accurate
$\begin{aligned} & \text { systematic - high } \\ & \text { random - low } \end{aligned}$	systematic - low random - high	$\begin{aligned} & \text { systematic - low } \\ & \text { random - low } \end{aligned}$

3. Three ways to Represent Random Uncertainties

represents measured quantity then $\delta x x($ deita x) represents its absolute uncertainty: if always has the same units as
Relative uncenainty, \bar{x}, is a number which allows one to judge the relative size of the uncertainty by measured value measured quantity x. \mathbf{T} s obtained by diviling absolute
.
Example: If you measured a mass of an object to be 3.4 kg with a precision of 0.3 kg then: $=3.4 \mathrm{~kg} ; \delta x=0.3 \mathrm{~kg} \frac{\delta x}{x}=0.09$; or 9%,

4. Writing down your measurements

There is a specific way to write down your final result together with the associated absolute
uncerairinty wrich we will use in the lab. Suppose we have

$$
x=(3.4127 \pm 0.0003) \mathrm{kg}
$$

or if you use scientific notation

$$
x=(3412.7 \pm 0.3) \times 10^{-3} \mathrm{~kg}
$$

Making Measurements in Physics

g Measurements in Physics

in the physics laboratory you will be performing measurements cimental hicertainties to them. Mareover. you will need to
correcty. how to analyze y your data or inierpert tour rapans a acepted values or to each ourer. Firally, you are required to
in possible shortcomings of the experimental procedure and/o ces of uncertainty. The following pages contain the information
dom variations between individual measurements of the same
 never be eliminated i.e. are never equal to zero however the
noro prociso the measurement is. It is your responsibility to fies during the lab.
instrument, which has been manufactured to perform iple instruments like rulers, tripie beam balances or orivy detion期 as your uncertainty.
the deviation of a measurement from an accepted (or true)

your measurements in a systematic way i.e makes all of your
ecific device larger or smaller. Examples include: sistently slowing things down)
eed of sound or iength of objects) while using an instrument with a scaie however should be

Resources: Physics Help Center!

\checkmark Room C-3071
\checkmark Fall and Winter Semesters
\checkmark Monday to Friday, 10:00 am to 4:00 pm
\checkmark The Help Centre is staffed during working hours by Faculty and Laboratory Staff.

To begin, Login to Computers...

 Username: maclab\#\#(see number on top of your screen)

Password: raptors

Fill out attendance:

- Everyone enter attendance data

Graphing Workshop

Graphing Workshop

$>$ In experiments, we collect sets of data.
$>$ To most effectively use the data:

- We plot a graph of the data
- Then draw meaning from that graph.
$>$ We determine the meaning by comparing known physics equations to the equations that describe the graph.

General Approach to Graphing Data

1. What data have we collected and what do we want to find?
2. What equation relates these?
i. Write the physics equation containing those variables.
3. Plot the data.
4. Compare the physics equation to the equation for the graph.
5. Use the comparison to draw your conclusions.

Graphing Workshop: Example 1

- In a OLD experiment of Physics 1020, we examined mass vs volume of aluminium cylinders.
- Let's say we have 4 objects dimensions and masses.
- And we want to find Density, ρ.

Cylinder	Volume $\left(\mathrm{cm}^{3}\right)$	Mass (g)
1	8.314	22.50
2	34.110	91.95
3	22.700	61.30
4	13.300	36.10

Graphing Workshop: Example 1

- What data have we collected?
- Volume and Mass.
- what do we want to find?
- Density, ρ.
- What equation relates these?

$$
\rho=m / V
$$

- How do we plot the data? Volume on x or y ? Mass on y or x ? Does it matter?

Volume $\left(\mathrm{cm}^{3}\right)$	Mass (g)
8.314	22.50
34.110	91.95
22.700	61.30
13.300	36.10

Graphing Workshop: Example 1 $\rho=m / V$, density = mass/volume

This is a Linear Relationship, and thus can we rewrote as:

$$
\underbrace{m=\rho+0}_{y=\{s \text { sope }\} x+b}
$$

What happens if V on y-axis?

Graphing Workshop: Example 1

 This is also a Linear Relationship:$$
\begin{aligned}
& y=\{\text { slope }\} x+b \\
& V=(1 / \rho) m+0
\end{aligned}
$$

What happens to the uncertainty?

Graphing Workshop: Example 2

- Have velocity and time of a falling object.
- We want to find acceleration and initial velocity.
$>$ What do we do?
$>$ Where do we start?

Velocity (m/s)	Time (s)
0.699	0.00
1.202	0.0523
1.574	0.0883
1.866	0.1180
2.091	0.1430
2.336	0.1660
2.512	0.1860
2.718	0.2050

Remember the General Approach...

1. What data have we collected and what do we want to find?
2. What equation relates these?
i. Write the physics equation containing those variables.
3. Plot the data.
4. Compare the physics equation to the equation for the graph.
5. Use the comparison to draw your conclusions.

Graphing Workshop: Example 2

1. What data was collected?
a. Velocity and Time
2. What data are we trying to find?
a. Acceleration and Initial Velocity
3. What equation relate these??
a. Kinematics Equations

$$
\begin{gathered}
\boldsymbol{v}_{\boldsymbol{x}}=\boldsymbol{v}_{\boldsymbol{x} \mathrm{O}}+\boldsymbol{a}_{\boldsymbol{x}} \boldsymbol{t} \\
v_{x}^{2}=v_{x 0}^{2}+2 a_{x}\left(x-x_{0}\right) \\
x=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2}
\end{gathered}
$$

Velocity (m/s)	Time (s)
0.699	0.00
1.202	0.0523
1.574	0.0883
1.866	0.1180
2.091	0.1430
2.336	0.1660
2.512	0.1860
2.718	0.2050

Graphing Workshop: Example 2

1. What data was collected?
a. Velocity and Time
2. What data are we trying to find?
a. Acceleration and Initial Velocity
3. What equation relate these??
a. Kinematics Equations

$$
v_{x}=v_{x 0}+a_{x} t
$$

Velocity (m/s)	Time (s)
0.699	0.00
1.202	0.0523
1.574	0.0883
1.866	0.1180
2.091	0.1430
2.336	0.1660
2.512	0.1860
2.718	0.2050

Graphing Workshop: Example 2

1. What data was collected?
a. Velocity and Time
2. What data are we trying to find?
a. Acceleration and Initial Velocity
3. What equation relate t er ?
a. Kinematics Ec ua ons
$\square \Gamma_{a}=v_{x 0}+a_{x} t$

Velocity (m/s)	Time (s)
0.699	0.00
1.202	0.0523
1.2	0.0883
1.866	0.1180
2.091	0.1430
2.336	0.1660
2.512	0.1860
2.718	0.2050

Graphing Workshop: Example 2

- Physics Equation:
- Linear Relationship:

- Thus from graph:
- Acceleration $=9.82 \pm 0.06 \mathrm{~m} / \mathrm{s}^{2}$
- Initial Velocity $=0.698 \pm 0.008 \mathrm{~m} / \mathrm{s}$

Graphing Workshop: Example 3

- And Now for Something Completely Different...
- Given:
- Energy (J)
- Speed (m / s)
- Want to find:
- mass of the object (kilograms)
- How do we proceed?

Energy (J)	Speed $(\mathrm{m} / \mathrm{s})$
4.56	1.91
8.29	2.58
11.36	3.02
14.32	3.38
16.32	3.61
19.36	3.94
21.38	4.14
24.13	4.39

General Approach For Example 3

- What data have we collected and what do we want to find?
- We Have Energy and Velocity
- And we want to find mass.
- What equation relates these?
- $E=1 / 2 \mathrm{mv}^{2}$
- Plot the data.

Graphing Workshop: Example 3

- And Now for Something Completely Different...
- Given:

- How do we proceed?

Energy (J)	Speed $(\mathrm{m} / \mathrm{s})$
4.56	2.58
8.29	3.02
11.36	3.38
14.32	3.61
16.32	3.94
19.36	4.14
21.38	4.39
24.13	

Graphing Workshop: Example 3

- Relationship:
- Physics Equation:

- Thus from graph:
- $1 / 2$ Mass $=1.26 \pm 0.03 \mathrm{~kg}$
- Mass $=2.52 \pm 0.06 \mathrm{~kg}$

Your turn... Assignment!

- You have collected position and time data for an object starting from rest.
- Use kinematics to determine the acceleration $\left(\mathrm{m} / \mathrm{s}^{\mathbf{2}}\right.$) and the initial position (m).
- Create a plot in Graphical Analysis, and
- write the reasoning and the answers directly on the printout.

$$
v_{x}^{2}=v_{x 0}^{2}+2 a_{x}\left(x-x_{0}\right)
$$

$$
v_{x}=v_{x 0}+a_{x} t
$$

$$
x=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2}
$$

Position (m)	Time (s)
16.24	0.81
14.01	1.10
12.14	1.27
10.17	1.39
8.42	1.55
6.30	1.67
4.92	1.76
2.72	1.89

Before You Go....

Sign the sign-out sheet

Logout of computers

