Prelab Questions

These questions need to be completed before entering the lab. Please show all workings.

Marker's Initials

Prelab 1

For a falling ball, which bounces, draw the expected shape of the vertical position vs. time graph.

Prelab 2

From the position vs. time graph of an object moving with constant acceleration, how could you find the instantaneous velocity?

Name and Student Number: \qquad
Date:
Partner:

CHECKPOINT:

Have an instructor check your graphs and initial.

QUESTION 1:

QUESTION 2:

$$
\begin{aligned}
& t_{1}= \\
& t_{2}=
\end{aligned}
$$

QUESTION 3:

$$
\begin{aligned}
& x\left(t_{1}\right)= \\
& v\left(t_{1}\right)=
\end{aligned}
$$

QUESTION 4: note: $t_{1} \leq t \leq t_{2}$
$v_{\text {max } u p}=$
$v_{\text {max down }}=$

QUESTION 5:

QUESTION 6:

TABLE 1: The fit results from Position vs Time graph

	value	uncertainty	units
Expected value of A (see instructions)		N/A	
Automatic Fit Parameter A			

QUESTION 7:

TABLE 2: The fit results from velocity vs time graph

	Value	Uncertainty	Units
Slope			

QUESTION 8:

TABLE 3: The fit results from acceleration vs time graph

	Mean	Standard Deviation	Samples	Standard Error
Acceleration				

QUESTION 9:

$$
g=
$$

TABLE 4:

	$g\left(m / s^{2}\right)$	$\delta g\left(m / s^{2}\right)$	Range $\left(m / s^{2}\right)$	agreement
1	9.81	0.01		
2				
3				
4				

QUESTION 10:

