Prelab Questions

These questions need to be completed before entering the lab. Please show all workings.

Marker's Initials

Prelab 1

For a falling ball, which bounces, draw the expected shape of the vertical position vs. time graph.

Prelab 2

From the position vs. time graph of an object moving with constant acceleration, how could you find the instantaneous velocity?

STAPLE YOUR PRE-LAB TO THIS PAGE

Name and Student Number:		· · · · · · · · · · · · · · · · · · ·	
Date:			
Partner:			
CHECKPOINT:			
Have an instructor check your g	raphs and initial.		

QUESTION 1:

QUESTION 2:

$$t_1 = t_2 = t_2$$

QUESTION 3:

$$\begin{aligned} x(t_1) &= \\ v(t_1) &= \end{aligned}$$

Staple your graph to the opposite page

QUESTION 4: note: $t_1 \le t \le t_2$

 $v_{\max up} =$

 $v_{\max down} =$

QUESTION 5:

QUESTION 6:

TABLE 1: The fit results from *Position vs Time* graph

	value	uncertainty	units
Expected value of A (see instructions)		N/A	
Automatic Fit Parameter A			

QUESTION 7:

TABLE 2: The fit results from *velocity vs time* graph

	Value	Uncertainty	Units
Slope			

QUESTION 8:

TABLE 3: The fit results from *acceleration vs time* graph

	Mean	Standard Deviation	Samples	Standard Error
Acceleration				

QUESTION 9:

g =

TABLE 4:

	$g(m/s^2)$	$\delta g (m/s^2)$	Range (m/s^2)	agreement
1	9.81	0.01		
2				
3				
4				

QUESTION 10:

