Physics 4850

Final Examination

10 December 2005

Work any four questions from questions 1 through 6. All questions have equal value. You are allotted 120 minutes for this examination.

- 1. (a) Supose that a beam of particles of mass m is incident from the left on a potential $u \delta(x)$; find an expression for the reflection coefficient.
 - (b) If u < 0 determine the energies of the bound states of the system.
- 2. (a) Describe in detail the two-slit experiment for classical waves, for classical particles, and for micro-particles, i.e. those for which quantum effects are dominant, carefully delineating points of similarity and difference. In the two-slit experiment with microparticles, what is the effect on the observed pattern if it is attempted to observe which slit a particle travels through?
 - (b) Elastic neutron scattering from a crystal leads to a diffraction pattern. Inelastic scattering, from crystals where the nuclei have net spins and magnetic moments, gives a broad background without sharp features. Relate these facts to the principles governing the two-slit experiment.
- 3. Given the Hamiltonian

$$\widehat{H} = -\frac{\hbar^2}{2\mu} \nabla^2 - \frac{\kappa}{r}, \qquad \kappa \equiv \frac{Ze^2}{4\pi\varepsilon_0}$$

show that an eigenfunction $\psi(x)$ of \widehat{H} can be written as the product of a radial wavefunction G(r) and a spherical harmonic $Y_{lm}(\vartheta, \varphi)$. Find the differential equation for G(r). Transform it to the form of a confluent hypergeometric equation and write down a solution in terms of the Kummer function M(a; b; x). You may assume

$$\mathbf{\nabla}^2 = \frac{1}{r^2} \left\{ \mathbf{x} \cdot \mathbf{\nabla} \left(\mathbf{x} \cdot \mathbf{\nabla} + 1 \right) + \left(\mathbf{x} \times \mathbf{\nabla} \right)^2 \right\}$$

and the confluent hypergeometric equation

$$x\frac{d^2y}{dx^2} + (b-x)\frac{dy}{dx} - ay = 0$$

with its regular solution

$$M\left(a;\,b;\,x\right) = \sum_{k=0}^{\infty} \frac{(a)_k}{(b)_k} \frac{x^k}{k!} \,.$$

Find the energy levels for the bound states, and describe how they depend on Z. What is the dissociation energy of H from its ground state?

4. (a) Given an angular momentum vector $\hat{\mathbf{J}}$ the components of which satisfy the commutation relations $[\hat{J}_x, \hat{J}_y] = \iota \hbar \hat{J}_z$ etc., show that

$$\left[\widehat{\mathbf{J}}^2\,,\,\widehat{J}_z\right]=0\,.$$

(b) Defining the usual ladder operators $\hat{J}_{\pm} \equiv \hat{J}_x \pm \iota \hat{J}_y$, show that

$$\left[\widehat{J}_{z}\,,\,\widehat{J}_{\pm}
ight] =\pm\hbar\widehat{J}_{\pm}\,.$$

Hence show that if $|jm\rangle$ is a simultaneous eigenstate of $\hat{\mathbf{J}}^2$ and \hat{J}_z with $\hat{J}_z = m\hbar |jm\rangle$, then either $\hat{J}_+ |jm\rangle = C_m |j, m+1\rangle$ or $\hat{J}_+ |jm\rangle = 0$ where C_m is a constant of proportionality.

- (c) Show that $\hat{\mathbf{J}}^2 = \frac{1}{2}(J_+J_- + J_-J_+) + J_z^2$ and hence evaluate C_m in the expression $\hat{J}_+ |jm\rangle = C_m |j, m+1\rangle$.
- 5. (a) Show, using momentum representation, in which \hat{x} is a differential operator, that

$$[\widehat{x}_i, \widehat{p}_j] = \iota \hbar \delta_{ij}.$$

(b) Given that the orbital angular momentum operator $\hat{\mathbf{L}}$ for a single particle is

$$\hat{\mathbf{L}} = \boldsymbol{x} \times \boldsymbol{p}$$

and using the commutation relationship $[\hat{x}_i\,,\,\hat{p}_j\,]=\iota\hbar\delta_{ij}$ show that

$$\left[\,\widehat{L}_x\,,\,\widehat{L}_y\,\right] = \iota\hbar\,\widehat{L}_z\,,$$

i.e. show that $\hat{\mathbf{L}}$ is an angular momentum operator.

- (c) Explain briefly why the orbital angular momentum quantum numbers m and l can only assume integerial values.
- (d) Assuming that it is indeed the case that the orbital angular momentum quantum number l can only assume integerial values, explain why the 1920s interpretation of β decay,

$$n \to p + e^-$$
,

is impossible.

6. If \hat{A} and \hat{B} are Hermitian operators, show that

$$\sigma_A \, \sigma_B \ge \frac{1}{2} \sqrt{-\left\langle \left[\hat{A} \, , \, \hat{B} \right] \right\rangle^2}$$

where, as usual,

$$\sigma_A^2 \equiv \left\langle \left(\hat{A} - \left\langle \hat{A}^2 \right\rangle \right)^2 \right\rangle$$

What is this inequality called? Apply the inequality to the position \hat{x} and linear momentum \hat{p}_x in the same direction. Discuss the physical meaning of the resultant inequality: what, in terms of measurements, are σ_x and σ_{p_x} ? What does the inequality say about measurements of x and p_x ? If particles and light behaved classically, it would be easy to falsify the predictions of the inequality: what aspects of the physics of microscopic systems allow it to be true?

You may assume any or all of the following:

$$\nabla^2 = \frac{1}{r^2} \left\{ \boldsymbol{x} \cdot \nabla \left(\boldsymbol{x} \cdot \nabla + 1 \right) + \left(\boldsymbol{x} \times \nabla \right)^2 \right\}$$
 (1)

$$\nabla f(\mathbf{x}) = \frac{\partial f}{\partial r} \hat{\mathbf{1}}_r + \frac{1}{r} \frac{\partial f}{\partial \vartheta} \hat{\mathbf{1}}_{\vartheta} + \frac{1}{r \sin \vartheta} \frac{\partial f}{\partial \varphi} \hat{\mathbf{1}}_{\varphi}$$
 (2)

$$\nabla \cdot \boldsymbol{v} \left(\boldsymbol{x} \right) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 v_r \right) + \frac{1}{r \sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \, v_\vartheta \right) + \frac{1}{r \sin \vartheta} \frac{\partial v_\varphi}{\partial \varphi} \tag{3}$$

$$\nabla^2 f(\boldsymbol{x}) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial f}{\partial \vartheta} \right) + \frac{1}{r^2 \sin^2 \vartheta} \frac{\partial^2 f}{\partial \varphi^2}$$
(4)

$$\widehat{\mathbf{L}}^{2} Y_{lm} (\vartheta, \varphi) = l(l+1) \hbar^{2} Y_{lm} (\vartheta, \varphi)$$
(5)

$$\widehat{\mathbf{L}}^{2} Y_{lm} (\vartheta, \varphi) = l (l+1) \hbar^{2} Y_{lm} (\vartheta, \varphi)
\widehat{\mathbf{L}}_{z} Y_{lm} (\vartheta, \varphi) = m \hbar Y_{lm} (\vartheta, \varphi)$$
(5)
(6)