Physics Department

Course: Phys 3751 Final Exam

Date: Monday, April 9, 2007.

Time 9:00 - 11:00 AM

Instructor Anand Yethiraj.

ANSWER ALL QUESTIONS: Each question is worth 20 points. Show all steps in your reasoning and you will get partial credit.

(I) PARTICLE PHYSICS PHENOMENA AND FEYNMAN DIAGRAMS

- (A) A significant part of experimental particle physics involves obtaining information from charged particle tracks.
 - (i) If a particle with charge q and mass m) is undeflected in passing through uniform crossed electric and magnetic fields E and B (mutually perpendicular and both perpendicular to the direction of motion), what is the particle's velocity v in terms of q, E and B?
 - (ii) If we now turn off the electric field, and the particle moves in an arc of radius R, what is its charge-mass ratio in terms of R, E and B?
- (B) Sketch all the distinct lowest order Feynman diagrams representing Delbruck scattering: $\gamma + \gamma \rightarrow \gamma + \gamma$.

(C)

(i) Draw Feynman diagrams for the two processes:

$$\Sigma^- \to \Lambda + \pi^-$$
 and $\Sigma^- \to n + \pi^-$

(ii) Which decay do you think is more likely and why?

(II) SPIN AND THE STERN-GERLACH EXPERIMENTS

(A) The diagram below shows an SGz device (a Stern-Gerlach device whose inhomogeneous magnetic field points in the z direction) that splits a beam of N spin-1/2 particles. Into two beams one with $S_z = +\hbar/2$ and the other where $S_z = -\hbar/2$. What is the expected number of particles in each of these two states?

Diagram 1

(B) Diagram 2 below shows an extension of Diagram 1. Here the beam with $S_z=+\hbar/2$ is allowed to pass through to **a second SGz device**. This second device produces two beams with $S_z=+\hbar/2$ and $S_z=-\hbar/2$. What is the expected number of particles in each of these two states?

Diagram 2

(C) Diagram 3 shows a different extension of Diagram 1. Here the beam with $S_z=+\hbar/2$ is allowed to pass through to a second SGx device. This second device produces two beams with $S_x=+\hbar/2$ and $S_x=-\hbar/2$. What is the expected number of particles in each of these two states?

Diagram 3

- (D) A particle is in an arbitrary quantum state $|\psi\rangle = c_+ |+z\rangle + c_- |-z\rangle$. An S_z measurement is carried out on this state (for example, by a Stern-Gerlach SGz experiment)
 - (i) What is the **amplitude** of a measurement of S_z on this state yielding $S_z = +\hbar/2$?
 - (ii) What is the corresponding probability?
 - (iii) Use the normalization of probability to obtain an equation that relates the coefficients c_+ and c_- .

(III) SYMMETRIES AND SPECIAL RELATIVITY

- (A) Emmy Noether's theorem is a very important result in theoretical physics that relates continuous symmetries to conservation laws. Which conservation laws do each of the following symmetries correspond to:
 - (i) (Time) translation symmetry
 - (ii) (Space) translational symmetry
 - (iii) (Space) rotational symmetry
 - (iv) Gauge symmetry in Maxwell's equations
- (B) Particle A (mass m_A , at rest) decays into particle B (mass m_B) and particle C (mass m_C). Obtain a relation for the total energy of the outgoing particle B in terms of the various masses and the speed of light.

(IV) ABC THEORY

(A) Consider the general case of two-body decay $A \rightarrow B + C$, where all particles have mass. To lowest order, the amplitude for the decay of the A:

 $\mathcal{M} = g$, where g is the coupling constant in ABC theory (and a real number).

Apply the general equation for the differential decay rate (provided below) to this problem, and obtain a formula for the decay rate. You do not need to evaluate the value of the outgoing momentum that is obtained after integration in terms of the masses – simply call it ρ_0 .

Fermi Golden Rule for decays:

$$d\Gamma = |\mathcal{M}|^2 \frac{S}{2 \hbar m_1} \left(\frac{c d^3 \vec{p}_2}{(2\pi)^3 2 E_2} \right) \left(\frac{c d^3 \vec{p}_3}{(2\pi)^3 2 E_3} \right) \dots \left(\frac{c d^3 \vec{p}_n}{(2\pi)^3 2 E_n} \right) \times (2\pi)^4 \delta^4(p_1 - p_2 - p_3 - \dots p_n)$$

(B) Scattering in ABC theory.

- (i) Consider the following Feynman diagram (representing the scattering of 2 A particles) in ABC theory: $A + A \rightarrow B + B$.
- (ii) What is the identity of the unlabeled line (i.e. what particle is it)?
- (iii) Use the Feynman rules provided below to obtain the lowest order contribution to the amplitude \mathcal{M} for this diagram.

Feynman Rules for ABC Theory

- 1. Notation: Label the incoming and outgoing momenta with p indices and internal vertices with q indices and with arrows to keep track of signs in (4).
- 2. For each vertex write down a factor of -ig.
- 3. Propogator. For each internal line, write a factor

$$\frac{1}{q_j^2 - m_j^2 c^2}$$

- 4. Conservation of energy and momentum. For each vertex write down a delta function of the form $(2\pi)^4 \delta^4 (k_1 + k_2 + k_3)$
- 5. For each internal line write down a factor $\frac{1}{(2\pi)^4}d^4q_1$ and integrate over all internal momenta.
- 6. Cancel the delta function factor $(2\pi)^4 \delta^4(p_1 + p_2 ... p_n)$. What remains is $-i \mathcal{M}$.