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Department of Physics

Final Examination, December 2004 Number of pages: 8
Course: PHYS 3750 Number of Students: 24
Date of Examination: December 10, 2004 Number of hours: 2
Time of Examination: 9:00 - 11:00

No Examination aids other than calculators and data provided with this examination
script are permitted.

—————————————————————–

ANSWER ALL QUESTIONS

1. Hydrogen atom

(a) What is the spin-orbit interaction? How does it lead to the observed fine-structure
splitting of the spectral lines of the hydrogen atom?

(b) The n = 3 with l = 2 level of the hydrogen atom comprises ten states whose
energies are equal (spin and ml degeneracy) if the spin-orbit coupling is ignored
and if no external magnetic field is applied. Draw a diagram that shows how the
degenerated states split when one takes into account the spin-orbit coupling. For
each level, indicate the corresponding j quantum number and the degeneracy of
the level.
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2. Probability Density

For a hydrogen atom in a state designated by the quantum number n and l, the
probability of finding the electron at any location with radial coordinate between r
and r + dr is given by

Pnl(r) dr = R∗
nl(r) Rnl(r) 4 π r2 dr .

Knowing that the radial part of the wavefunction for the hydrogen atom in the n = 2,
l = 1 state is given by

R21 = A
r√

6 π ao

e−r/2ao

where A is a constant and ao is the Bohr radius,

(a) find the value of A.

(b) Calculate the location at which the radial probability density Pnl is maximum.

(c) Explain why the expectation value 〈rnl〉 of the position

〈rnl〉 = n2 ao

{
1 +

1

2

[
1− l (l + 1)

n2

]}

does not necessarily correspond to the location at which the radial probability
density Pnl is maximum.
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3. Nuclear Potential

The nuclear potential that binds protons and neutrons in the nucleus of an atom is
often approximated by a square well. Imagine one proton confined in a one-dimensional
infinite square well of length R.

(a) Using the uncertainty principle, show how it is possible to estimate the energy of
the ground state.

(b) Using the Schrödinger’s equation or the interference of waves, show that the pos-
sible energy levels of the system are given by

En =
h̄2 π2 n2

2 mp R2

(c) Find the wavelength of the photon which is required to excite the proton from
n = 1 to n = 3.

(d) i. Do a sketch of the wavefunction and the probability density associated with
the first excited state (n = 2). Use your sketch to justify why, in Quantum
Mechanics, we cannot define the path followed by a particle.

U = OO U = OO

E

U(x) = 0

R0

Figure 1: Nuclear Potential
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4. Hydrogen Atom

Consider the state with n = 2 and l = 1 in which the total wavefunction corresponds
to the superposition of two wavefunctions with different ml values,

ψ21 = A [ψ210 + ψ21−1]

(a) Calculate the expectation value of Lz.

(b) Calculate the uncertainty on the value of Lz.

5. Hydrogen Atom

Calculate the expectation value of the potential energy when the electron’s wavefunc-
tion of an hydrogen atom is ψ = ψ21−1. Use the potential

U(r) = − 1

4πε0

e2

r



PHYS 3750 Final Examination, December 10, 2004 page 5 of 8

Formula Sheet

electron mass = me = 9.11× 10−31 kg = 0.511 MeV/c2

proton mass = mp = 1.673× 10−27 kg = 938.3 MeV/c2

neutron mass = mn = 1.675× 10−27 kg = 939.6 MeV/c2

Planck’s constant = h̄ = 1.06× 10−34 J s
Speed of light = c = 3× 108 m/s
electron charge = e = 1.602× 10−19 C

εo = 8.85× 10−12 C2/N ·m2

Bohr magneton = µB = 9.27× 10−24 J/Tesla
Conversion factor = 1 eV = 1.602× 10−19 J

Useful Integrals Trigonometry Formulas

∫∞
0 xne−axdx = n!

an+1 cos2 α = 1
2
(1 + cos 2α)

∫∞
0 x2ne−ax2

dx = 1·3·5...(2n−1)
2n+1an sin2 α = 1

2
(1− cos 2α)

∫∞
0 x2n+1e−ax2

dx = n!
2an+1 cos α = eiα+e−iα

2

∫
x sin2 ax dx = x2

4
− x sin 2ax

4a
− cos 2ax

8a2 sin α = eiα−e−iα

2i

∫
x cos2 ax dx = x2

4
+ x sin 2ax

4a
+ cos 2ax

8a2

∫
x2 sin2 ax dx = x3

6
−

(
x2

4a
− 1

8a3

)
sin 2ax− x cos 2ax

4a2

∫
x2 cos2 ax dx = x3

6
+

(
x2

4a
− 1

8a3

)
sin 2ax + x cos 2ax

4a2

Schrödinger’s equation in one dimension

− h̄2

2m

∂2Ψ(x)

∂x2
+ U(x) Ψ(x) = E Ψ(x)

with the total wavefunction given by

Ψn(x, t) = Ψn(x) Φn(t) = Ψn(x) e−iEnt/h̄

Uncertainty Principle

∆x ∆Px ≥ h̄

2
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One-Electron Atoms:

H Ψn,l,ml
(r, θ, φ) = En Ψn,l,ml

(r, θ, φ)

Ψn,l,ml
(r, θ, φ) = Rn,l(r) Yl,ml

(θ, φ)

These wavefunctions are orthogonal and normalized, hence

Figure 2: One-Electron Wavefunctions

∫ ∞

0

∫ 2π

0

∫ π

0
Ψ∗

nf ,lf ,mlf
(r, θ, φ) Ψni,li,mli

(r, θ, φ) r2 sin θ dθ dφ dr = δnf ,ni
δlf ,li δmlf ,mli
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These wavefunctions are orthogonal and normalized, hence

∫ ∞

0

∫ 2π

0

∫ π

0
Ψ∗

nf ,lf ,mlf
(r, θ, φ) Ψni,li,mli

(r, θ, φ) r2 sin θ dθ dφ dr = δnf ,ni
δlf ,li δmlf ,mli

En = − µ Z2 e4

(4 π εo)2 2 h̄2 n2
= −13.6 Z2

n2
eV n = 1, 2, 3, · · ·

ao =
4 π εo h̄2

µ e2
= 0.529 Å Bohr’r radius

L =
√

l(l + 1) h̄, l = 0, · · · , n− 1

Lz = ml h̄, ml = −l, − l + 1, · · · , l − 1, l

degeneracy = (2l + 1)

Magnetic Properties

Emag = −~µ · ~B

orbital ~µL = −gl µB
~L
h̄

magnetic moment

intrinsic ~µS = −gs µB
~S
h̄

magnetic moment

Total ~µ = ~µL + ~µS

magnetic moment

Total ~J = ~L + ~S
angular momentum

g-factors

orbital gl = 1

electron spin gs = 2

Spin-Orbit Coupling

∆E =
1

2m2 c2

1

r

dV (r)

dr
~S · ~L
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OPERATORS

Px = −ih̄
∂

∂x

E = ih̄
∂

∂t

∆x =
√
〈x2〉 − 〈x〉2

In spherical polar coordinates

Lx = ih̄

(
sin φ

∂

∂θ
+ cot θ cos φ

∂

∂φ

)

Ly = ih̄

(
− cos φ

∂

∂θ
+ cot θ sin φ

∂

∂φ

)

Lz = −ih̄
∂

∂φ

Using that L2 = L2
x + L2

y + L2
z,

L2 = −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]


