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Department of Physics

Final Examination, December 2003 Number of pages: 7
Course: PHYS 3750 Number of Students: 11
Date of Examination: December 16, 2003 Number of hours: 2
Time of Examination: 9:00 - 11:00

No Examination aids other than calculators and data provided with this examination
script are permitted.

—————————————————————–

ANSWER ALL QUESTIONS

1. Hydrogen atom

(a) What is the spin-orbit interaction? How does it lead to the observed fine-structure
splitting of the spectral lines of the hydrogen atom?

(b) When the spin-orbit interaction is taken into account, it is sometimes said that ml

and ms are no longer ”good quantum numbers”. Explain why this terminology
is appropriate. What are the good quantum numbers for the one-electron atom
when the spin-orbit interaction is taken into account?

(c) Consider the n = 2 state of the hydrogen atom, enumerate the possible values of
j.

(d) For the n = 2 state of the hydrogen atom, in a first time, draw a diagram that
shows how degenerated states split when one takes into account the spin-orbit
coupling. In a second time, show how these levels are further splitted when a
small external magnetic field is applied. In each case, clearly identify the different
levels using the appropriate quantum numbers and also indicate the degeneracy
of the different states.
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2. The Rigid Rotator

A particle of mass µ is fixed at one end of a rigid rod of negligible mass and length R.
The other end of the rod, located at the origin, is attached to a bearing so that the
particle can only rotate in the x − y plane. This two dimensional “rigid rotor” is
illustrated in Fig. 1.
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Figure 1: A rigid rotator moving in the x− y plane

(a) Write a classical expression for the total energy of the system. Write your ex-
pression in terms of the angular momentum L of the particle and the moment of
inertia, I = µR2. (Hint: Set the potential energy U(r) equal to zero and neglect
the rod since it has a negligible mass.)

(b) Since the motion of the particle is limited to the x− y plane, the angular momen-
tum is pointing in the z-direction, we must have

L = Lz .

By introducing the appropriate operators into the previous energy equation, show
how we can easily obtain the time-independent Schrödinger’s equation

− h̄

2 I

d2Ψ(φ)

dφ2
= E Ψ(φ)

where I = µ R2 is the moment of inertia, and Ψ(φ) is the wave function written
in terms of the angular coordinate φ.

(c) Show that a particular solution to the time-independent Schrödinger’s equation
for the rigid rotator is

Ψ(φ) = eimφ

and find the relation between m and the total energy E.
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(d) Apply the boundary condition in order to obtain the allowed values of the quan-
tum number m.

(e) Normalize the wave function Ψ(φ) = A eimφ.

(f) Calculate the expectation value of the angular momentum Lz.

(g) What is the uncertainty on the value of the angular momentum Lz?

3. Probability Density

For a hydrogen atom in a state designated by the quantum number n and l, the
probability of finding the electron at any location with radial coordinate between r
and r + dr is given by

Pnl(r) dr = R∗
nl(r) Rnl(r) 4 π r2 dr .

Knowing that the radial part of the wavefunction for the hydrogen atom in the n = 2,
l = 1 state is given by

R21 = A r e−r/2ao

where A is a constant and ao is the Bohr radius,

(a) find the value of A.

(b) calculate the location at which the radial probability density Pnl is maximum.

(c) calculate the expectation value 〈r〉 for that state and show that it is equal to

〈rnl〉 = n2 ao

{
1 +

1

2

[
1− l (l + 1)

n2

]}

(d) Explain why the expectation value 〈r〉 is not equal to the location at which the
radial probability density Pnl is maximum.

4. Two-dimensional rectangular box

A particle is confined in a two-dimensional rectangular box such that

U(x, y) = 0 0 ≤ x ≤ a, 0 ≤ y ≤ b
= ∞ elsewhere

(a) Using the time-independent Schrödinger’s equation in two dimension

−h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
Ψ(x, y) + U(x, y) Ψ(x, y) = E Ψ(x, y)

Show that the general wavefunction

Ψ(x, y) = A sin(kx x) sin(ky y)

is a solution of the Schrödinger’s equation for a particle in a two-dimensional box.
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(b) Using the boundary conditions, find the possible values for kx and ky. Introduce,
two quantum numbers (nx, ny) to distinguish the different solutions.

(c) Write the energy of the different levels as a function of the quantum numbers nx

and ny.

(d) Make a diagram showing the first 10 energy levels for b = a. For each level,
indicate the energy relative to the ground state energy, the quantum numbers
associated to that state, and the degeneracy of that state.

(e) Again, for b = a, what would be the wavelength of the photon that is emitted for
a transition between the fifth excited state and the ground state?

(f) Using the uncertainty principle, show how it is possible to estimate the energy of
the ground state.
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Formula Sheet

electron mass = me = 9.11× 10−31 kg = 0.511 MeV/c2

proton mass = mp = 1.673× 10−27 kg = 938.3 MeV/c2

neutron mass = mn = 1.675× 10−27 kg = 939.6 MeV/c2

Planck’s constant = h̄ = 1.06× 10−34 J s
Speed of light = c = 3× 108 m/s
electron charge = e = 1.602× 10−19 C

εo = 8.85× 10−12 C2/N ·m2

Bohr magneton = µB = 9.27× 10−24 J/Tesla
Conversion factor = 1 eV = 1.602× 10−19 J

Useful Integrals Trigonometry Formulas

∫∞
0 xne−axdx = n!

an+1 cos2 α = 1
2
(1 + cos 2α)

∫∞
0 x2ne−ax2

dx = 1·3·5...(2n−1)
2n+1an sin2 α = 1

2
(1− cos 2α)

∫∞
0 x2n+1e−ax2

dx = n!
2an+1 cos α = eiα+e−iα

2

∫
x sin2 ax dx = x2

4
− x sin 2ax

4a
− cos 2ax

8a2 sin α = eiα−e−iα

2i

∫
x cos2 ax dx = x2

4
+ x sin 2ax

4a
+ cos 2ax

8a2

∫
x2 sin2 ax dx = x3

6
−

(
x2

4a
− 1

8a3

)
sin 2ax− x cos 2ax

4a2

∫
x2 cos2 ax dx = x3

6
+

(
x2

4a
− 1

8a3

)
sin 2ax + x cos 2ax

4a2
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Schrödinger’s equation

− h̄2

2m

∂2Ψ(x)

∂x2
+ U(x) Ψ(x) = E Ψ(x)

with the total wavefunction given by

Ψn(x, t) = Ψn(x) Φn(t) = Ψn(x) e−iEnt/h̄

One-Electron Atoms:

H Ψn,l,ml
(r, θ, φ) = En Ψn,l,ml

(r, θ, φ)

Ψn,l,ml
(r, θ, φ) = Rn,l(r) Yl,ml

(θ, φ)

These wavefunctions are orthogonal and normalized, hence
∫ ∞

0

∫ 2π

0

∫ π

0
Ψ∗

nf ,lf ,mlf
(r, θ, φ) Ψni,li,mli

(r, θ, φ) r2 sin θ dθ dφ dr = δnf ,ni
δlf ,liδmlf ,mli

En = − µ Z2 e4

(4 π εo)2 2 h̄2 n2
= −13.6 Z2

n2
eV n = 1, 2, 3, · · ·

ao =
4 π εo h̄2

µ e2
= 0.529 Å Borh’r radius

L =
√

l(l + 1) h̄, l = 0, · · · , n− 1

Lz = ml h̄, ml = −l, − l + 1, · · · , l − 1, l

Magnetic Properties

Emag = −~µ · ~B

orbital ~µL = −gl µB
~L
h̄

magnetic moment

intrinsic ~µS = −gs µB
~S
h̄

magnetic moment

Total ~µ = ~µL + ~µS

magnetic moment

Total ~J = ~L + ~S
angular momentum

g-factors

orbital gl = 1

electron spin gs = 2
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OPERATORS

Px = −ih̄
∂

∂x

E = ih̄
∂

∂t

〈∆x〉 =
√
〈x2〉 − 〈x〉2

In spherical polar coordinates

Lx = ih̄

(
sin φ

∂

∂θ
+ cot θ cos φ

∂

∂φ

)

Ly = ih̄

(
− cos φ

∂

∂θ
+ cot θ sin φ

∂

∂φ

)

Lz = −ih̄
∂

∂φ

Using that L2 = L2
x + L2

y + L2
z,

L2 = −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]


