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ANSWER ALL QUESTIONS

1. Hydrogen atom

(a)
(b)

What is the spin-orbit interaction? How does it lead to the observed fine-structure
splitting of the spectral lines of the hydrogen atom?

When the spin-orbit interaction is taken into account, it is sometimes said that m;
and mg are no longer "good quantum numbers”. Explain why this terminology
is appropriate. What are the good quantum numbers for the one-electron atom
when the spin-orbit interaction is taken into account?

Consider the n = 2 state of the hydrogen atom, enumerate the possible values of
J.

For the n = 2 state of the hydrogen atom, in a first time, draw a diagram that
shows how degenerated states split when one takes into account the spin-orbit
coupling. In a second time, show how these levels are further splitted when a
small external magnetic field is applied. In each case, clearly identify the different

levels using the appropriate quantum numbers and also indicate the degeneracy
of the different states.
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2. The Rigid Rotator

A particle of mass p is fixed at one end of a rigid rod of negligible mass and length R.
The other end of the rod, located at the origin, is attached to a bearing so that the
particle can only rotate in the z — y plane. This two dimensional “rigid rotor” is
illustrated in Fig. 1.

(a)

v

Figure 1: A rigid rotator moving in the x — y plane

Write a classical expression for the total energy of the system. Write your ex-
pression in terms of the angular momentum L of the particle and the moment of
inertia, I = puR?. (Hint: Set the potential energy U(r) equal to zero and neglect
the rod since it has a negligible mass.)

Since the motion of the particle is limited to the x — y plane, the angular momen-
tum is pointing in the z-direction, we must have

L=1L,.

By introducing the appropriate operators into the previous energy equation, show
how we can easily obtain the time-independent Schrodinger’s equation

h PU()

27 dg?

= E ¥(¢)

where I = p R? is the moment of inertia, and W(¢) is the wave function written
in terms of the angular coordinate ¢.

Show that a particular solution to the time-independent Schrodinger’s equation
for the rigid rotator is
W(g) =

and find the relation between m and the total energy E.
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(d) Apply the boundary condition in order to obtain the allowed values of the quan-
tum number m.

(e) Normalize the wave function W(¢) = A ¢™?.
(f) Calculate the expectation value of the angular momentum L,.

(g) What is the uncertainty on the value of the angular momentum L7

3. Probability Density

For a hydrogen atom in a state designated by the quantum number n and [, the
probability of finding the electron at any location with radial coordinate between r
and r + dr is given by

Pu(r) dr=R}(r) Ry(r) 4« r? dr .

nl

Knowing that the radial part of the wavefunction for the hydrogen atom in the n = 2,
[ =1 state is given by
Rgl = A T €7T/2ao

where A is a constant and a, is the Bohr radius,
(a) find the value of A.

(b) calculate the location at which the radial probability density P, is maximum.

(c) calculate the expectation value (r) for that state and show that it is equal to

(rm) =n’ ao{1+;[1_l<l+1)”

n2

(d) Explain why the expectation value (r) is not equal to the location at which the
radial probability density P,; is maximum.

4. Two-dimensional rectangular box

A particle is confined in a two-dimensional rectangular box such that

U(z,y) = 0 0<z<a 0<y<b
= ™ elsewhere

(a) Using the time-independent Schrédinger’s equation in two dimension

—h2 ( 82 02

2m \ 0x? * oy?

) U(z,y) +Ul(x,y) ¥(z,y) = £ ¥(z,y)

Show that the general wavefunction
U(z,y) = A sin(k, ) sin(k, v)

is a solution of the Schrodinger’s equation for a particle in a two-dimensional box.
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(b) Using the boundary conditions, find the possible values for k, and k,. Introduce,
two quantum numbers (n,,n,) to distinguish the different solutions.

(c) Write the energy of the different levels as a function of the quantum numbers n,
and n,,.

(d) Make a diagram showing the first 10 energy levels for b = a. For each level,
indicate the energy relative to the ground state energy, the quantum numbers
associated to that state, and the degeneracy of that state.

e ain, for b = a, what would be the wavelength of the photon that is emitted for
Again, for b hat 1d be th length of the photon that i itted f
a transition between the fifth excited state and the ground state?

(f) Using the uncertainty principle, show how it is possible to estimate the energy of
the ground state.
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Formula Sheet

= m. = 9.11x103 kg = 0.511 MeV/c?
proton mass = m, = 1.673x107*" kg = 938.3 MeV/c?
neutron mass = m, = 1.675x107%" kg = 939.6 MeV/C2
Planck’s constant = 1.06 x 10734 J s
Speed of light = 3 x 10® m/s
electron charge = 1.602 x 107 C
€0 8.85 x 107'2 C?/N - m?
Bohr magneton pp = 9.27 x 1072 J/Tesla
Conversion factor = 1eV = 1.602x 1071 ]
Useful Integrals Trigonometry Formulas
J5 e dr = cos? a = 1 (1 + cos2a)
oo g2nem e dg = %ﬁfl) sin® a = 1 (1 — cos 2a)
Joo a?rtlemartqy = ot cosa = e
[xsin?ax dx = % — zsinfer _ cosdar sina = eia_zj_m
f$ COS2 ar dr = xIZ + wsiZaQaJ: + c085a22ax
[2?sinax do = £ — <g — %) sin 2az — T30t
[ 2% cos? ax dv = %3 + (% — %) sin 2ax + %
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Schrodinger’s equation

_fi@zlll(x)
2m  Ox?

with the total wavefunction given by

Vo(z,t) = Wy (2) Du(t) = Volz) 0"

+U(z) ¥(z) = E ¥(x)

One-Electron Atoms:
H ‘Ijn,l,ml <T7 97 (b) = En \Ijn,l,ml (Tv 97 ¢)
an,l,ml (T’ 6)7 ¢) = Rn,l(r) E/l,mz (97 ¢)

These wavefunctions are orthogonal and normalized, hence

(e’ 27 T
/0 /0 /0 WSty (730,0) W1y, (7,0, 6) 17 506 dO dop dr = 8y, 0,81, 1,0m, ;mi,

w Z? et 13.6 Z2

E, = — =— V =1, 2, 3,

(4 7 €,)? 2 h* n? nt - "

47 e, B2 .

a, = %20.52914 Borh’r radius

e
L = JI(l+1)h, =0, -+, n—1
L., = mh, m=-—l, —1+1, -+, 1—1,1

Magnetic Properties

Emag - _/I -B
orbital L, = —q liB %
magnetic moment
. _— g
mtrinsic s = —Gs B %
magnetic moment
Total fi=fir + jis

magnetic moment
Total J=L+S
angular momentum

g-factors
orbital g=1

electron spin gs = 2
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OPERATORS
. 0
Px = —’Lhaix
L0
E = Z}"—La
(Az) = /(2?) — (z)*

In spherical polar coordinates

L, = ih(sin¢a+cot9 cosqba>

00 0¢

00 0o

0

L, = —ih —

d9
Using that L* = L2 + L} + L2,

1 0 0 1 0?
2 42 :
Lo=—h l <31n9 >+ sin? 6 0¢?

sinf 00 00

|
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