Name:		
i vanic.		

DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND

Final Exam Winter 2007 Physics 3410

April 18, 2007 Time: 2 hours

INSTRUCTIONS:

- 1. Attempt ALL questions (1-5) in Part 1. Attempt 1 out of the 2 questions (6,7) in Part 2. Marks assigned to each question are indicated in the margin.
- 2. Write you answers in the space provided and use the backs of sheets as needed. An extra blank page is provided at the end for Part 2 if needed.
- 3. Use ink. Do not erase or use whiteout. Indicate deletion by a line drawn neatly through unwanted material.
- 4. If what anything is not clear, ask. Don't panic.

POTENTIALLY USEFUL EQUATIONS:

$$\wp(s) = \frac{e^{-E(s)/kT}}{Z}$$
 Boltzmann Distribution (Canonical Distribution)

$$\wp(s) = \frac{e^{-[E(s) - \mu N(s)]/kT}}{Z}$$
 Grand Canonical Distribution

$$Z = \sum_{s} e^{-\beta E(s)}$$
 Partition function

$$Z = \sum_{s} e^{-\beta[E(s) - \mu N(s)]}$$
 Grand Partition Function

$$Z_1 = \sum_{s} e^{-E(s)/kT}$$
 Single particle partition function

$$\overline{E} = -\frac{1}{Z} \frac{\partial Z}{\partial \beta}$$

$$l_{\rm Q} = \frac{h}{\sqrt{2\pi mkT}}$$

power per unit area = σT^4

$$\sum_{n=0}^{\infty} x^n = (1-x)^{-1} \quad \text{for } x < 1. \quad \text{Infinite geometric series}$$

$$(1+x)^{-1} \approx 1-x \quad \text{for } |x| << 1$$

$$\ln(1+x) \approx x - \frac{x^2}{2} \qquad \text{for } |x| << 1$$

$$N_A = 6.02 \times 10^{23}$$

$$N! \approx N^N e^{-N} \sqrt{2\pi N}$$

$$N_A = 6.02 \times 10$$

 $k = 1.381 \times 10^{-23} \text{ J/K} = 8.617 \times 10^{-5} \text{ eV/K}$

$$\ln N! \approx N \ln N - N$$

$$h = 6.626 \times 10^{-34} \,\text{J} \cdot \text{s} = 4.136 \times 10^{-15} \,\text{eV} \cdot \text{s}$$

$$\cosh(x) = \frac{1}{2} \left(e^x + e^{-x} \right)$$

$$\beta = (kT)^{-1}$$

$$e^x = 1 + x + \frac{x^2}{2} + \cdots$$

$$\sinh(x) = \frac{1}{2} \left(e^x - e^{-x} \right)$$

$$\int e^{-x} dx = -e^{-x}$$

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$

1	$2 \mid 3$	4	5	6	/	Total

PART 1: Do questions 1, 2, 3, 4 and 5

[10] 1. If an Einstein solid consisting of N distinguishable oscillators has q quanta of energy, the number of microstates accessible to that solid is

$$\Omega(N,q) \approx \left(\frac{eq}{N}\right)^N$$

- (a) What is the multiplicity of a joint system consisting of two such Einstein systems, A and B, each consisting of N oscillators and together sharing $q_{\text{total}} = q_A + q_B$ quanta of energy?
- (b) The multiplicity of the joint system is a maximum, Ω_{\max} , for $q_A = q_B = \frac{q_{\text{total}}}{2}$. Show that if x is defined by $x = q_A \frac{q_{\text{total}}}{2}$, then the multiplicity can be approximated as $\Omega(x) \approx \Omega_{\max} e^{-N(2x/q_{\text{total}})^2}$.

(**Hint:** it may help to take the natural logarithm of $\Omega(x)$ and then make use of $\lim_{x\to 0} \ln(1+x) \approx x$.)

- [10] 2. The graphs show the phonon density of states for a "real" crystal and the Debye approximation to the density of states. The Debye model gives the correct behaviour of the heat capacity at both low and high temperature.
 - (a) There is a maximum energy above which the "real" density of states goes to zero. Which physical property of the "real" crystal lattice is connected to this cutoff energy. Briefly explain.
 - (b) What similarity between the real and model densities of states accounts for the agreement of the heat capacities at high temperature? Briefly explain your answer.
 - (c) What similarity between the real and model densities of states accounts for the agreement of the heat capacities at low temperature? Briefly explain your answer.

[10] 3. For an Ising model of a ferromagnet, the internal energy in a domain is

$$U = -\varepsilon \sum_{\substack{\text{nearest} \\ \text{neighbours}}}^{\varepsilon} s_i s_j$$

where $s_i=\pm 1$ denotes whether dipoles are parallel or antiparallel to the z axis. The energy for dipole i depends on the average orientation, \bar{s} , of its nearest neighbours so that $E_{s_i=1}=-\varepsilon n\bar{s}$ and $E_{s_i=-1}=+\varepsilon n\bar{s}$ where n is the number of nearest neighbours.

- (a) Find the partition function, Z_i , for dipole i and show that the average orientation for dipole i can is $\overline{s}_i = \tanh(\beta \varepsilon n \overline{s})$.
- (b) The equation for the average dipole orientation can be solved using a mean field approximation. Explain briefly what this approximation is.
- (c) The graphs show graphical solutions to the mean field equation for \overline{s} at two temperatures. Briefly comment on the significance of $T = \frac{\varepsilon n}{k}$ and explain what these solutions indicate regarding the magnetization of the material for $T > \frac{\varepsilon n}{k}$ and for $T < \frac{\varepsilon n}{k}$.

- [10] 4. The rotational energy levels for a heteronuclear diatomic molecule are given by $E(j) = j(j+1)\varepsilon$ where $j = 0,1,2,3\cdots$. The degeneracy of each level is $g_j = 2j+1$.
 - (a) Write an expression for the rotational partition function for this molecule.
 - (b) At high temperature, the sum in the rotational partition function can be approximated by an integral. Use this approach to approximate the rotational partition function for $T >> \varepsilon/k$. Hint: In doing the integral, it may be helpful to substitute $x = j(j+1)\varepsilon/kT$.
 - (c) For CO, $\varepsilon/k = 2.8\,\mathrm{K}$. Calculate the probabilities, $\wp(j)$, for CO to be in each of its 3 lowest rotational **energy levels** (i.e. j=0, j=1, and j=2) at $T=300\,\mathrm{K}$.

Name:	

- [10] 5. In a magnetic field B, electrons with spin up have magnetic energy $\varepsilon_B = -\mu_B B$ and electrons with spin down have magnetic energy $\varepsilon_B = +\mu_B B$.
 - (a) A gas of N free electrons at T = 0 K in an applied field of magnitude B behaves like a Pauli paramagnet as shown in the diagram. What is the difference in energy between the highest filled states for spin up and spin down?
 - (b) Calculate the number of unpaired electrons in the gas of free electron at T=0 K in an applied field B where $\mu_B B \ll \varepsilon_F$ and ε_F is the Fermi energy. Assume that the density of states is

$$g(\varepsilon) = \frac{3N}{2\varepsilon_F^{3/2}} \sqrt{\varepsilon} \ .$$

(c) What is the net magnetization of this gas of electrons in field B at T = 0 K.

Name:	

PART 2: Do one (1) out of the two questions (6 or 7) in Part 2. (an extra blank page is available at the end if needed)

[15] 6. (a) The allowed wavelengths for photon modes in a $L \times L \times L$ box are

$$\lambda = \frac{2L}{\sqrt{n_x^2 + n_y^2 + n_z^2}}$$

where n_x , n_y , and n_z are positive integers. Find an expression for the photon density of states $g_{\rm em}(\varepsilon)$ where $g_{\rm em}(\varepsilon) d\varepsilon$ is the number of photon modes having energies between ε and $\varepsilon + d\varepsilon$. Assume that the energy of a photon is $\varepsilon = \frac{hc}{\lambda}$ and that there are two possible polarizations for each photon mode.

- (b) The total electromagnetic energy at a particular frequency f is nhf where n is a positive integer. At temperature $T=(k\beta)^{-1}$, the partition function for **that** mode is thus a geometric series, $Z=1+e^{-\beta\varepsilon}+e^{-2\beta\varepsilon}+e^{-3\beta\varepsilon}+\cdots$ where $\varepsilon=hf$. Calculate the mean energy at frequency $f=\frac{\varepsilon}{h}$ in a cavity at this temperature.
- (c) Show that the total energy of electromagnetic radiation in equilibrium with the walls of a cavity at temperature $T = (k\beta)^{-1}$ is

$$U = \int_{0}^{\infty} \frac{8\pi V}{h^{3}c^{3}} \frac{\varepsilon^{3}}{e^{\beta \varepsilon} - 1} d\varepsilon.$$

Name:		
raine.	 	

[15] 7. (a) For spinless (spin=0) bosons of mass m in a box of dimensions $L \times L \times L$, the energies of the allowed translational states are

$$\varepsilon = \frac{h^2}{8mL^2} \left(n_x^2 + n_y^2 + n_z^2 \right) = \frac{h^2 n^2}{8mL^2} .$$

Find an expression for the boson density of states $g(\varepsilon)$ where $g(\varepsilon)d\varepsilon$ is the number of single-particle translational states with energy between ε and $\varepsilon+d\varepsilon$.

(b) In a gas of N identical bosons, the average occupation of the single-particle state with energy ε is $\overline{n}_{\rm BE} = \frac{1}{e^{(\varepsilon-\mu)/kT}-1}$. Take the ground state energy to be $\varepsilon_0 \approx 0$, so that $N = N_0 + N_{\rm excited}$ where N_0 is the number of particles in the ground state and the number of particles in excited states is

$$N_{\rm excited} = \int\limits_0^\infty g\!\left(\varepsilon\right) \! \frac{1}{e^{(\varepsilon-\mu)/kT} - 1} d\varepsilon \; . \label{eq:Nexcited}$$

Briefly explain why this expression for N_{excited} does not count particles in the ground state.

(c) Because $\mu < \varepsilon_0$, we can assume $\mu \approx 0$ at low T. Using this assumption, calculate the temperature T_C at which the occupation of the ground state first becomes "macroscopic" on cooling. You may find the following integral helpful:

$$\int_{0}^{\infty} \frac{\sqrt{x}}{e^x - 1} dx = \sqrt{\pi} \times 1.306.$$

(d) **Briefly** explain why there is no corresponding transition in a degenerate fermion gas.

Name:		
manne.		

Extra page for part 2: