Physics 2151 Stellar Astronomy and Astrophysics Final Examination Fall 2005 - 2006

1

Time: 2 hours

Nam	ne: MUN No
Section A: Answer the questions in section A by circling the letter corresponding to the correct answer.(30 points)	
1)	The Andromeda "nebula" is: a) not visible from Newfoundland b) a globular cluster c) a super nova remnant d) a galaxy in the local group
2)	A white dwarf is approximately the size of: a) a grapefruit b) St. John's c) Earth d) The solar system
3)	At the end of its active life the sun will end up as a: a) neutron star b) white dwarf c) black hole d) quasar
4)	The Chandrasekhar Limit is: a) 0.4 Mo b) 1.4 Mo c) 2.4 Mo d) 3.0 Mo
5)	Stars are forming right now: a) in globular clusters b) in open clusters c) in association with black holes d) only in very distant galaxies
6)	When you compare a star that has an apparent magnitude of -1 with one that has an apparent mag. of 6: a) the - 1 mag star will appear dimmer than the 6 mag star b) the - 1 mag star will appear brighter than the 6 mag star c) both stars will appear to have the same brightness d) both will be easy to see with the unaided eye
7)	The distance modulus for star A is much greater than that for Star B. Star A is: a) nearer to Earth than Star B b) further away from Earth than Star B c) the same distance from Earth as Star B d) the distance modulus is not related to distance but is used to measure mass

8) The age of the universe is thought to be:

- a) 13.6 million years
- b) 13.6 billion years
- c) infinite
- d) not possible to estimate

9) The Hubble Constant is approximately:

- a) 1.4 km/s/MPc
- b) 72 km/s/MPc
- c) 100 Mo
- d) 300 Mo

10) A black body at a temperature T₁ radiates energy at all wavelengths. If the temperature of the black body is raised to a higher temperature T₂, then:

- a) at each wavelength, more energy is radiated at T₂ than at T₁
- b) λ_{max} , the wavelength at which the most energy is radiated, is shorter at T_2 than at T_1
- c) λ_{max} , the wavelength at which the most energy is radiated, is shorter at T_1 than at T_2
- d) both choices a) and b) are correct

11) The distances to globular clusters can be measured using:

- a) the Hubble law
- b) Stellar parallax
- c) The period luminosity relationship of Cepheids
- d) Eclipsing binaries

12) Interstellar reddening:

- a) is the apparent change in colour of a star because of dust between the star and the observer
- b) is the red shift of a star
- c) is the colour change a star experiences as it becomes a red giant
- d) is caused by diffraction in the optics of the telescope

13) Compared with stars of spectral type O, the sun:

- a) is less massive and evolves more slowly
- b) is less massive and evolves more quickly
- c) is more massive and evolves more slowly
- d)is more massive and evolves more quickly

14) The primary energy source for most main sequence stars is:

- a) gravitational attraction
- b) conversion of H to He
- c) conversion of He to C
- d) conversion of C to heaver elements

15) Quasars have the following properties:

- a) they are strong radio emitters
- b) they have greatly red shifted spectral lines
- c) they are relatively close to the local group
- d) both a) and b) are correct.

16) The intensity of light reaching the Earth is called the:

- a) solar luminosity
- b) solar constant
- c) solar-Boltzman constant
- d) solar flux

17) Hydrostatic equilibrium is the equilibrium between: a) hydrogen and carbon b) water, hydrogen and carbon

c) gravity and outward pressure

d) water and electric (static) charge

18) A Neutron star is approximately the size of:

- a) a grapefruit
- b) St. John's
- c) Earth
- d) The solar system

19) The core temperature of a star in the Hydrogen burning stage is:

- a) 5 000 K
- b) 15 000 K
- c) 500 000 K
- d) 15 000 000 K

20) A planetary nebula:

- a) produces an absorption spectrum
- b) produces an emission spectrum
- c) is contracting to form a planet
- d) is contracting to form a star

21) The mass-luminosity relationship for main sequence stars states that:

- a) high mass is related to low luminosity
- b) high mass is related to high luminosity
- c) luminosity is constant for all masses
- d) luminosity is independent of mass

22) Individual stars form from collapsing gas clouds. A high mass cloud will:

- a) take more time to collapse than a low mass clouds
- b) take less time to collapse than a low mass clouds
- c) take the same time to collapse as a low mass clouds
- d) collapse time is not related to mass

23) Hydrogen burning for a sun-like star lasts approximately:

- a) one million years
- b) 10 million years
- c) one billion years
- d) ten billion years

In the most massive stars the heaviest element that will be produced in the core will be:

- a) helium
- b) oxygen
- c) silicon
- d) iron

25) Each time a form of nuclear fuel is exhausted in the core of a star, the star:

- a) returns to the main sequence
- b) returns to the red giant stage
- c) returns to the white dwarf stage
- d) explodes as a supernova

26) If the sun were suddenly replaced by a one solar mass black hole, the gravitational force on the Earth would:

- a) double
- b) become so strong that the Earth would be sucked into the black hole
- c) decrease because black holes cause gravity at large distances to disappear
- d) remain the same

27) The event horizon:

- a) is believed to be a singularity
- b) marks the inner boundary of a planetary nebula
- c) has a radius equal to the Schwarzchild radius
- d) is a crystalline layer

28) All Novae are thought to involve a:

- a) neutron star
- b) black hole
- c) supergiant
- d) white dwarf

29) Ignoring the effect of gravity, the reciprocal of the Hubble constant (1/H_o) is:

- a) the velocity of near-by galaxies
- b) the largest possible mass of a white dwarf
- c) the distance to the local group
- d) the age of the universe

30) Stars within a cluster differ from each other primarily in:

- a) distance
- b) age
- c) mass
- d) chemical composition

Section B: Answer <u>any five</u> of the following by writing short notes or listing points. In some cases a drawing will help illustrate your answer. (Total value 20 points). Use the answer book supplied.

- 1. What Evidence do we have for the Big Bang?
- 2. Discuss how this equation is used: z = ----

 $z = - - - - - \lambda_{rest}$ λ_{rest}

- 3. How do we determine stellar mass?
- 4. What is the critical density of the universe and how will it affect the ultimate fate of the universe?
- 5. Outline the Hubble classification of galaxies.
- 6. How do we detect black holes?
- 7. The view that many texts show of a large gravitational source (eg a star or black hole) is actually a two dimensional space-time drawing. Why are such drawings used and how can they be used to show the path of a beam of light as it passes near a star?

Section C: Write an essay on *one* of the following topics (10 points). Use the answer book supplied

- 1. Discuss our attempts to measure the size of the universe. You should discuss such topics as stellar parallax, variable stars, main sequence fitting, the Tully-Fisher relationship and the Hubble Law.
- 2. Outline the history of a very large star from its origin as a protostar to its final stage as a black hole. You should include a short discussion of the proportion of its life history spent in the various stages of its evolution and use an HR diagram to illustrate your answer.