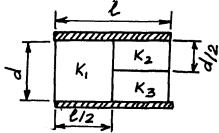
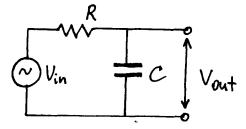
1. A parallel-plate capacitor is constructed by filling the space between two square plates with blocks of three dielectric materials, as in Figure 1. You may assume that l >> d. Find an expression for the capacitance of the device in terms of the plate area A and d, κ_1 , κ_2 and κ_3 .




Figure 1.

- 2. The switch in Figure 2 is connected to point a for a long time. After the switch is thrown to point b, what are
 - (a) the frequency of oscillation of the LC circuit,
 - (b) the maximum charge that appears on the capacitor,
 - (c) the maximum current in the inductor
 - (d) the total energy the circuit possesses at t = 3 s?

Figure 2.

- 3. Consider the filter circuit shown in Figure 3.
 - (a) Find the ratio of the output voltage to the input voltage
 - (b) What value does this ratio approach as the frequency decreases toward zero? What value does this ratio approach as the frequency increases without limit?
 - (c) At what frequency is the ratio equal to one half?

Figure 3.

- 4. Answer the following questions:
 - (a) If the frequency is doubled in a series RLC circuit, what happens to the resistance, the inductive reactance, and the capacitive reactance?
 - (b) If the resistance of the wires in an LC circuit were not zero, would the oscillations persist? Explain.
 - (c) Embodied in Kirchhoff's rules are two conservation laws. What are they?
 - (d) Two lightbulbs operate from 120 V. One has a power of 25 W and the other 100 W. Which bulb has higher resistance? Which bulb carries more current?
- 5. An electric current is given by the expression $I(t) = 100 \sin(120\pi t)$, where I is in amperes and t is in seconds. What is the total charge carried by the current from t = 0 to t = (1/240) s?

Formulae

$$Z = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}$$

$$\tan \varphi = \frac{\omega L - \frac{1}{\omega C}}{R}$$

$$U_{L} = \frac{1}{2} L I^{2}$$

$$U_{c} = \frac{1}{2} \frac{Q^{2}}{C}$$

$$C = \kappa \frac{\varepsilon_0 A}{d}$$

$$R = \int \frac{\ell}{A}$$

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

$$\vec{c} = \vec{p} \times \vec{E}$$

$$\vec{J} = \vec{\sigma} \vec{E}$$

$$S = So\left(1 + \alpha\left(T - T_{o}\right)\right)$$

$$Reg = R_{1} + R_{2} + \cdots$$

$$\frac{1}{Reg} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \cdots$$

$$L = \frac{N_{o}}{l} \frac{N^{2}A}{l}$$

$$M_{12} = \frac{N_{2} \mathcal{D}_{12}}{I_{1}}$$