Lobster Research Planning Video Conference

NSERC / FFAW Project: Sustainable Fisheries

Lobsters in Western Newfoundland: Reproductive Relative to Economic Value

13 & 14 May 2009
Participants/Organizations – Investigators
Participants/Organizations – Advisory
Background
Proposed Research
 • Conservation measures
 • Closed areas
 • V-notching
 • Slot Fishery
 • Do these measures matter?
 • Reproductive / Economic Value
 • Measuring fecundity
 • Measuring growth
Location and Methods
Your advice
Collaborative Research — an Overview

Researchers at Sir Wilfred Grenfell College and Memorial University along with multiple community partners have received funding for a Community-University Research for Recovery Alliance focusing on Newfoundland’s west coast marine ecosystems and fishing communities. Our activities will include:

- Broadening use and public engagement with the Bonne Bay Marine Station
- Linking research and local knowledge to develop key recovery strategies for the region
- Enhancing the capacity of fish harvesters and fishing communities within the region to engage in recovery strategies
- Integrating existing knowledge and developing new knowledge about fish, fisheries and fishing communities
- Transferring knowledge to the region and between generations through innovative community-based educational programs and initiatives
Participants/Organizations – Investigators

• Jens Currie – Department of Biology, MUN
• Barbara Neis – Department of Sociology, MUN
• David Schneider – Ocean Sciences Centre, MUN
• Paul Snelgrove – Ocean Sciences Centre MUN
• Jason Spingle (FFAW)
• Monte Way (FFAW)
• Kathy Whiffen – Department of Biology, MUN
• Kate Wilke – Ocean Science Centre, MUN

• And of course....
Participants/Organizations - Advisory

NSERC Advisory Committee
- Lew Incze (University of Southern Maine)
- Bob Steneck (University of Maine)
- Rick Wahle (Bigelow Lab, Boothbay Harbor, Maine)

Industry
- Harvey Jarvis (FFAW)

Department of Fisheries and Oceans, St. John’s, NL
- Roanne Collins (Science Branch)
- Helen Griffiths (Oceans Branch)
- Jennifer Janes (Oceans Branch)

Informal
- Jerry Ennis (DFO Science, retired)
- Bob Hooper (MUN)
NSERC / FFAW Project: Sustainable Fisheries
• Lobsters in Western Newfoundland:
• Reproductive Relative to Economic Value

Background
• $550 million/year in landed value, export market
• Value of regular income to rural communities
Conservation measures

• Closed areas

• V-notching

• Slot Fishery
Proposed Research

• Conservation measures
• Do these measures matter?

• Reproductive / Economic Value

• Measuring fecundity
• Measuring growth
Do these measures matter?

- Reproductive / Economic Value

What is a lobster worth to the person who catches it?
Do these measures matter?
• Reproductive / Economic Value

What is a lobster worth to its population?
Do these measures matter?
• Reproductive / Economic Value

Fecundity by itself a misleading measure in long lived species as it discounts future egg production if the measure is fecundity at age rather than lifetime fecundity

Walters and Martell 2004
Fisheries Ecology and Management
Princeton University Press
Location and Methods

Figure 1: Newfoundland and Labrador Lobster Fishing Areas.
Methods

• Measuring fecundity

\[\text{Eggs} = e^{(0.0292 \times \text{length}) + 6.9721} \]

Lobster egg production and larval drift potential in the Tickles MPA

D.W. Ings, P.V. R. Snelgrove, D.C. Schneider
Report to DFO Oceans, 2005
Methods
• Measuring growth

To obtain the lower triangular growth transition matrix P in (9.30), a stochastic LVB growth model (cf. section 4.7.3) is used, although in principle any stochastic growth model could be used. The goal is to find the proportion, $P_{m,l}$, of fish in length class l at the start of a time period that survive and are in length class m at the start of the next time period. If l_l and l_u are the two ends of length class l and l^* is the midpoint $(l_l + l_u)/2$, then the expected length change or growth increment, Δ_l, over one time period for an individual at mid-length, l^*, from the LVB model is

$$\Delta_l = \left(L_\infty - l^* \right) \left(1 - e^{-\kappa} \right).$$

Hence, the expected length, $E(x)$, of a fish of mid-length l^* one time unit later is

$$E(x) = l^* + \Delta_l.$$

Quinn and Deriso 1999
Quantitative Fish Dynamics
Oxford University Press
Evaluation of conservation measures

- Closed areas

- V-notching

- Slot Fishery

\[\frac{v_x}{v_0} \] With and without a closed area at several spatial scales

\[\frac{v_x}{v_0} \] With and without v-notching, depending on % notched

\[\frac{v_x}{v_0} \] As it depends on the upper limit of the slot
And now, your advice and your queries