Memorial University of Newfoundland Department of Mathematics and Statistics

Mathematics Placement Test

Online Sample Test

© MMIV Department of Mathematics and Statistics, Memorial University of Newfoundland

Mathematics Placement Test

Indicate the number of the correct answer on the answer sheet provided.

Questions	Answer Choices				
	1	2	3	4	5
Fractions: Preliminaries 1. Find the lowest common denominator of $\frac{1}{4}, \frac{1}{6}, \frac{1}{15}$	24	30	3	60	none of these
$2 \frac{3}{8}=$	$\frac{7}{18}$	$\frac{21}{56}$	$\frac{9}{16}$	$\frac{12}{24}$	none of these
3. $\frac{45}{81}=($ in lowest terms $)$	$\frac{5}{9}$	$\frac{15}{27}$	$\frac{9}{16}$	$\frac{1}{2}$	none of these
4. Change $5 \frac{1}{11}$ to an improper fraction	$\frac{6}{11}$	$\frac{56}{11}$	$\frac{56}{55}$	$\frac{5}{55}$	none of these
5. Find the prime factorization of $\mathbf{2 6 0}$	4×65	10×26	$2 \times 2 \times 5 \times 13$	2×130	none of these
Fractions: Addition, Subtraction For questions 6 to 15, reduce to lowest terms. 6. $\frac{4}{7}+\frac{2}{3}=$	$\frac{6}{10}$	$\frac{26}{21}$	$\frac{3}{5}$	$\frac{8}{21}$	none of these
7. $5-2 \frac{1}{3}=$	$3 \frac{1}{3}$	$\frac{2}{3}$	$2 \frac{2}{3}$	$3\left(-\frac{1}{3}\right)$	none of these
8. $1 \frac{2}{5}+5 \frac{1}{2}=$	$6 \frac{9}{10}$	$\frac{29}{10}$	$\frac{18}{7}$	$\frac{18}{10}$	none of these
9. $8 \frac{2}{3}-7 \frac{3}{5}=$	$1-\frac{1}{15}$	$1 \frac{1}{15}$	$-\frac{1}{15}$	$-\frac{2}{5}$	none of these
10. $3 \frac{1}{4}-2 \frac{2}{3}+4 \frac{1}{6}=$	$5\left(-\frac{1}{4}\right)$	$-5 \frac{1}{4}$	$5-\frac{3}{4}$	$4 \frac{3}{4}$	none of these
Fractions: Multiplication and Division.					
11. $\frac{2}{5} \times \frac{2}{5}=$	$\frac{4}{5}$	$\frac{4}{10}$	1	$\frac{4}{25}$	none of these
12. $\frac{2}{5} \div 3=$	$\frac{2}{15}$	$\frac{6}{5}$	$\frac{6}{15}$	$\frac{2}{5}$	none of these

13. $2 \frac{1}{3} \times 3 \frac{1}{2} \times 1 \frac{2}{5}=$	$6 \frac{2}{30}$	$\frac{21}{10}$	$11 \frac{13}{30}$	$6 \frac{1}{15}$	none of these
14. $4 \frac{3}{5} \div 5 \frac{3}{5}=$	$\frac{28}{23}$	$\frac{23}{28}$	$\frac{4}{5}$	$\frac{5}{4}$	none of these
$15 \frac{\frac{4}{9} \times \frac{3}{8}}{\frac{1}{2}-\frac{1}{3}}=$	1	$\frac{1}{36}$	36	$\frac{1}{3}$	none of these
Decimals: 16. $\mathbf{0 . 3}+\mathbf{0 . 7}+\mathbf{0 . 6}=$	1.6	0.16	0.016	0.316	none of these
17. $0.001 \times 7.23=$	0.723	0.00723	72.3	0.0723	none of these
18. $\mathbf{4 . 3 \times 2 \times 0 . 0 0 3 =}$	0.00258	0.0258	2.58	0.258	none of these
19. $\mathbf{0 . 0 0 0 2 7} \div \mathbf{9}=$	0.0003	$33333 \frac{1}{3}$	0.00003	$3333 \frac{1}{3}$	none of these
20. $\mathbf{1 . 8} \div \mathbf{0 . 0 6}=$	$0.033 \frac{1}{3}$	30	0.3	$0.0033 \frac{1}{3}$	none of these
Percents:					
21. $\mathbf{0 . 0 3 \%}=$	0.03	0.0003	3	0.003	none of these
22. $\mathbf{0 . 2 3}=$	230\%	2.3\%	23\%	0.23\%	none of these
23. $\mathbf{1 1 . 3} \%$ of $\mathbf{2 0 0}=$	5.65	22.6	2260	56.5	none of these
24. 3.2 is what percent of $\mathbf{8 0}$?	4\%	25\%	0.04\%	0.25\%	none of these
25. $\mathbf{4 2}$ is $\mathbf{7 0 \%}$ of what number?	6	2.92	29.2	60	none of these
Order of Operation: 26. $\mathbf{1 5 - 6 \times 2 =}$	18	3	12	9	none of these
27. $\mathbf{5}+\mathbf{1 5 \div 3}=$	$\frac{20}{3}$	10	17	25	none of these
28. $\mathbf{4 \times 3 + 1 5} \div \mathbf{5}=$	15	11	21	5	none of these
29. $\mathbf{2 4} \div \mathbf{2} \times \mathbf{3}-\mathbf{6} \div \mathbf{3 + 9}=$	39	43	$9 \frac{5}{6}$	19	none of these
30. $3(8 \times 3 \div 2-4)=$	-36	13	24	26	none of these

Laws of Signs: $\text { 31. }(-\mathbf{3})-(-\mathbf{2})+(-\mathbf{2})=$	3	1	-1	-3	none of these
32. $8+(-2)(-2)-4=$	16	0	-2	8	none of these
33. $8(-2)-(-3)(6)=$	2	34	32	-2	none of these
34. $-(-3)+0(-5)-(-3) 5-5=$	-13	7	13	8	none of these
35. $0 \div 4(-2)-(-9)(-2)+(-3)^{2}=$	-9	-17	9	19	none of these
Equations: 36. If $\mathbf{2 7} \boldsymbol{v}=\mathbf{9}$, then $\boldsymbol{v}=$	3	-3	$-\frac{1}{3}$	$\frac{1}{3}$	none of these
37. If $\mathbf{2} \boldsymbol{K}+\mathbf{3}=\boldsymbol{K}+\mathbf{1}$, then $\boldsymbol{K}=$	1	3	$\frac{1}{2}$	-2	none of these
38. If $4(y+2)-2 y=2(2-3 y)$, then $y=$	2	$\frac{1}{2}$	$-\frac{1}{2}$	-2	none of these
39. If $\frac{4 x-3}{4}=\frac{x}{6}-7$, then $x=$	$\frac{15}{2}$	-1	1	$-\frac{15}{2}$	none of these
40. If $\frac{2}{K}-3=\frac{3}{4}$, then $K=$	$-\frac{8}{15}$	$\frac{8}{15}$	$-\frac{15}{8}$	$\frac{15}{8}$	none of these
Laws of Exponents: 41. $\left(x^{4}\right)\left(x^{3}\right)=$	$x^{4 / 3}$	x^{7}	x^{12}	x	none of these
42. When $m \neq 0,5 m^{0}=$	5	0	5 m	1	none of these
43. $\left(k^{5}\right)^{3}$	k^{15}	$k^{3 / 5}$	k^{8}	$k^{5 / 3}$	none of these
44. $\left(2 x^{2} y^{3}\right)^{3}=$	$2 x^{5} y^{6}$	$8 x^{6} y^{9}$	$2 x^{6} y^{9}$	$8 x^{5} y^{6}$	none of these
45. $p^{12} \div p^{3}=$	p^{15}	p^{4}	$p^{1 / 4}$	p^{9}	none of these
Negative Exponents: 46. $3 x^{-3}=$	$\left(\frac{3}{x}\right)^{3}$	$\frac{3}{x^{3}}$	$\frac{1}{3 x^{3}}$	$-3 x^{3}$	none of these

47. $\frac{m^{3} n^{-2}}{m^{2} n^{-1}}=$	$\frac{m}{n}$	$m n$	$\frac{n}{m}$	$\frac{m^{5}}{n^{3}}$	none of these
48. $4 b^{-3}(a b)^{4}=$	$256 a^{4} b$	$\frac{a^{4}}{4 b}$	$4 a^{4} b$	$-4 a^{4} b^{7}$	none of these
49. $2(x+y)^{-3}=$	$2\left(x^{-3}+y^{-3}\right.$	$\frac{2}{x^{3}+y^{3}}$	$\frac{1}{2(x+y)^{3}}$	$\frac{2}{(x+y)^{3}}$	none of these
$50\left(\frac{x^{-3} y^{3}}{x^{3} y^{-2}}\right)^{-3}=$	$\frac{x^{18}}{y^{15}}$	$\frac{y^{15}}{x^{18}}$	$\frac{x^{6}}{y^{5}}$	$x^{18} y^{15}$	none of these
Formula Rearrangement: 51. If $P V=n R T$, then $R=$	$P V-n T$	$\frac{P V-n}{T}$	$\frac{P V}{n T}$	$\frac{n T}{P V}$	none of these
52. If $P=2 x+2 y$, then $\boldsymbol{x}=$	$\frac{P}{2}-2 y$	$\frac{P-2 y}{2}$	$\frac{P+2 y}{2}$	$\frac{P}{2}+2 y$	none of these
53. If $A=\frac{1}{2} h(B+b)$, then $h=$	$\frac{2 A}{h}-B$	$\frac{2 A-B}{h}$	$\frac{2 A}{h}+B$	$\frac{2 A+B}{h}$	none of these
54. If $Q L+\pi R r=2 A$, then $Q=$	$\frac{2 A}{L}-\pi R r$	$\frac{2 \pi A R r}{L}$	$\frac{2 A-\pi R r}{L}$	$\frac{2 A-L}{\pi R r}$	none of these
55. If $P+3=4(L+2 P)$, then $P=$	$\frac{3-4 L}{7}$	$3-\frac{4 L}{7}$	$\frac{4 L-3}{7}$	$\frac{3}{7}-4 L$	none of these
Algebraic Fractions I: 56. $\left(\frac{p q}{z}\right)\left(\frac{3 z}{x p}\right)=$	$\frac{p q+3 z}{z+x p}$	$\frac{3 p^{2} q}{z^{2} x}$	$\frac{3 q}{x}$	$\frac{27 q}{x}$	none of these
57. $\frac{5(a+4)}{3} \div \frac{10(a+4)}{6 a^{2}}$	$\frac{1}{a^{2}}$	a^{2}	$\frac{5(a+4)^{2}}{18 a^{2}}$	$\frac{a^{2}}{a+4}$	none of these
58. $\frac{2 x}{5 y}-\frac{3}{7 z}=$	$\frac{2 x z-3 y}{y z}$	$\frac{2 x-3}{5 y-7 z}$	$14 x z-15 y$	$\frac{14 x z-15 y}{35 y z}$	none of these
59. $\frac{1}{a}+\frac{3}{a b}=$	$\frac{b+3}{a b}$	$\frac{4}{a+a b}$	$\frac{a b+3 a}{a b}$	$\frac{b+3 a}{a b}$	none of these
60. $\left(x+\frac{1}{y}\right) \div\left(1+\frac{x}{y}\right)=$	1	$\frac{x y+1}{y+x}$	$\frac{(y+x)^{2}}{y^{2}}$	$x+y$	none of these

Figure 1

Figure 4

Figure 2

Figure 3

Figure 5

	1	2	3	4	5
Mensuration:					
From the diagrams above: 61. The volume of Figure $\mathbf{1}$ is:	36	100	72	18	none of these
62. The area of the square in Figure $\mathbf{2}$ is:	25	100	75	50	none of these
63. The shaded area of Figure $\mathbf{3}$ is:	16π	12π	8π	16	none of these
64. The perimeter of Figure $\mathbf{4}$ is:	$28+\frac{3 \pi}{2}$	$15+\frac{3 \pi}{2}$	$28+2 \pi$	28	none of these
65. The shaded area of Figure $\mathbf{5}$ is:	$48-\frac{9 \pi}{2}$	48	$24+\frac{9 \pi}{2}$	$48+\frac{9 \pi}{2}$	none of these
	1	2	3	4	5
Quadratic Equations: 66. If $\boldsymbol{x}^{2}+\mathbf{5} \boldsymbol{x}=\mathbf{0}$, then $\boldsymbol{x}=$	5	-5	0 or -5	0 or 5	none of these

67. If $(x-7)(x+4)=0$, then $x=$	7 or -4	7 or 4	-7 or -4	-7 or 4	none of these
68. If $\boldsymbol{x}^{\mathbf{2}}-\mathbf{2 5}=\mathbf{0}$, then, $\boldsymbol{x}=$	-5	± 5	5	$\pm 5 i$	none of these
69. If $\mathbf{3} \boldsymbol{x}^{2}+\boldsymbol{x}=\mathbf{2}$, then $\boldsymbol{x}=$	$\frac{2}{3}$ or -1	$\frac{1}{3}$ or -2	$-\frac{1}{3}$ or 2	$-\frac{1}{3}$ or -1	none of these
70. If $\boldsymbol{x}^{2}-\mathbf{6 x + 4}=\mathbf{0}$, then $\boldsymbol{x}=$	$\frac{3 \pm \sqrt{5}}{2}$	$3 \pm \sqrt{5}$	4, -1	$\frac{6 \pm \sqrt{5}}{2}$	none of these

Algebraic Fractions II:					
76. Reduce to lowest terms: $\frac{4 a-4 b}{4 a+4 b}$	0	-1	$\frac{a-b}{a+b}$	4	none of these
77. Reduce to lowest terms: $\frac{16 x^{2}-9}{(4 x-3)^{2}}=$	1	$\frac{4 x+3}{4 x-3}$	0	-1	none of these
78. Simplify: $\frac{4}{k} \div\left(\frac{1}{k}-\frac{1}{k^{2}}\right)=$	$\frac{k^{3}}{4(k-1)}$	$\frac{4(k-1)}{k^{3}}$	-4	$\frac{4 k}{k-1}$	none of these
79. Find the lowest common denominator of the following fractions: $\frac{1}{x^{2}-3 x+2}, \frac{1}{4 x^{2}-8 x}$	$4 x(x-1)(x-2)$	$x-2$	$4 x(x-1)(x-2$	(-1)(x-2)	none of these
80. If $\frac{1}{A}+\frac{1}{B}=\frac{1}{C}$, then $B=$	$\frac{A C}{A-C}$	$C-A$	$\frac{C-A}{A C}$	$C+A$	none of these
Radicals and Fractional Exponents:					
81. $5 \sqrt{x}=$	$5 \frac{x}{2}$	$5 x^{2}$	$5 x^{\frac{1}{2}}$	$\frac{5}{x^{2}}$	none of these
82. $5(x-y)^{-\frac{1}{2}}=$	$\frac{1}{5 \sqrt{x-y}}$	$\frac{5}{\sqrt{x-y}}$	$5\left(x^{1 / 2}-y^{1}\right.$	$5 \sqrt{\frac{x}{y}}$	none of these
83. $\left(2 x^{3 / 4}\right)\left(5 x^{-2 / 3}\right)=$	$\sqrt[12]{10 x}$	$\frac{10}{\sqrt[12]{x}}$	$\frac{\sqrt[4]{2 x^{3}}}{\sqrt[3]{5 x^{2}}}$	$10 x^{1 / 12}$	none of these
84. $\sqrt[3]{5} \cdot \sqrt[3]{6}=$	$\sqrt[3]{30}$	30^{3}	$\sqrt[6]{30}$	$11^{1 / 3}$	none of these
85. $\sqrt{36 x^{8} y^{6}}=$	6xy	$6 x^{4} y^{3}$	$18 x^{4} y^{3}$	$36 x^{4} y^{3}$	none of these
Logarithms:					
86. $\log _{8} 8^{3}=$	64	512	3	0	none of these
87. $\log (\mathbf{x y})=$	$\log x \cdot \log y$	$\log x+\log y$	$\mathrm{x} \log x$	$y \log (x)$	none of these
88. $\mathbf{L o g} 10-\log 5$	$\log \left(10^{5}\right)$	$\log 15$	$\log 2$	$\log 50$	none of these
89. If $\log _{\varepsilon} y=a z$, then $y=$	$(a z)^{e}$	$\boldsymbol{e}^{a z}$	\boldsymbol{e}^{a+z}	$\frac{a z}{\log _{e}}$	none of these
90. If $F=\log \frac{x}{y}$, then $\log y=$	$F+\log x$	$F \cdot \log x$	$\log x-F$	$\frac{F}{x}$	none of these

Figure 1

	1	2	3	4	5
Trigonometry : 91. Referring to Figure 1, $\boldsymbol{\operatorname { t a n }} \mathbf{1 6 0}^{\circ}=$	$-\cot 20^{\circ}$	$-\tan 20^{\circ}$	$\boldsymbol{\operatorname { t a n }} 20^{\circ}$	$\boldsymbol{\operatorname { t a n }} 70^{\circ}$	none of these
92. Referring to Figure 1, $\boldsymbol{\operatorname { s i n }}\left(-\mathbf{1 2 0}^{\circ}\right)=$	$\sin 120^{\circ}$	$-\sin 60^{\circ}$	$\sin 60^{\circ}$	$\cos 240^{\circ}$	none of these
93. $\frac{\pi}{2}$ radians $=$	90°	$360{ }^{\circ}$	180°	$3.14{ }^{\circ}$	none of these
94. $\mathbf{1 5 0}^{\circ}=$ (in radians)	$\frac{5 \pi}{6}$	$\frac{3 \pi}{4}$	$\frac{2 \pi}{3}$	π	none of these
95. If $\sin x=-1$, then $x=$	$\frac{3 \pi}{2}$	π	0	$\cos (-1)$	none of these
Word Problems: 96. The algebraic expression for: "a number and 9 times its square" is:	$(x+9 x)^{2}$	$x+9 x^{2}$	$9 \boldsymbol{x}^{2}$	$x+(9 x)^{2}$	none of these
97. Seven times a number minus 4 is 24 . Find the number.	28	$3 \frac{3}{7}$	$\frac{20}{7}$	4	none of these
98. Four times one third of a number plus $\mathbf{4}$ is equal to 8 . Find the number.	6	3	10	$\frac{8}{3}$	none of these
99. A collection of nickels (5 ¢) and quarters (25 ¢) is worth $\$ 5.00$. How many nickels and quarters are there in the collection if there ten more nickels than quarters	25,15	26,16	28,18	30,20	none of these
100. A man is now $\mathbf{8}$ times as old as his son. In eight years the man will be 4 times as old as his son. Find the present age of the man and his son.	48,6	32,4	40,5	54,9	none of these

