Ph.D Comprehensive Exam (Differential Equation)
 (August, 2017)

1. Find the general solution for each of the following differential equations.
(a) $\left(5^{\prime}\right) \frac{d y}{d x}=\frac{1-x^{2}}{x y}$
(b) (5') $y^{(4)}-y^{\prime \prime}=0$
2. Let $p(D)=D^{2}+b D+5, D=\frac{d}{d t}$. In $p(D) y(t)=0$,
(a)(4') For what range of the values of b will the solutions to (1) exhibit oscillatory behavior?
(b) (6') For $b=4$, solve that $p(D) y(t)=4 e^{2 t} \sin t$
(c)(4') For $b=4$, solve that $p(D) y(t)=4 e^{2 t} \cos t$
(d) $\left(6^{\prime}\right)$ Given $b=2$, for what ω does $p(D) y(t)=\cos \omega t$ have the biggest amplitude?
3. For the DE system $x^{\prime}=A_{a} x$ with $A_{a}=\left[\begin{array}{ll}a & 1 \\ 1 & a\end{array}\right]$:
(a)($\left.6^{\prime}\right)$ Find the range of the values of a for which the critical point at $(0,0)$ will be:
(i) a source node;
(ii) a sink node;
(iii) a saddle.
(b)(8^{\prime}) Choose a particular value for $a=2,0,-2$ respectively, solve, and sketch the trajectories in the vicinity of the critical point, showing the direction of increasing t.
4. (8') For the equation $x\left(1-x^{2}\right) y^{\prime \prime}+x y^{\prime}+\frac{x-1}{(x+1)^{2}} y=0$, determine all singular points of the equation, and classify them as a regular or irregular. Show your work.
5. (a) (5') Find the Laplace transform of the function $f(t)=\left\{\begin{array}{ll}1, & t<3 \\ 0, & t>3\end{array}\right.$.
(b) (8^{\prime}) Solve the ODE $x^{\prime \prime}+2 x^{\prime}+2 x=f(t)$, where f is given in (a), subject to initial conditions $x(0)=0=x^{\prime}(0)$.
6. Consider the following heat problem:

$$
\begin{array}{rlrl}
u_{t} & =u_{x x}-b x, & & 0<x<1, \\
u(0, t) & =0, & & t>0 \tag{2}\\
u(1, t)=0, & t>0 \\
u(x, 0) & =u_{0} & & 0<x<1,
\end{array}
$$

where $b>0$ and $u_{0}>0$ are constants.
(a)(4') Derive the steady-state solution $u_{E}(x)=\frac{b}{6} x\left(x^{2}-1\right)$.
(b)(5') Using $u_{E}(x)$ transform $u(x, t)$ in Eq. (2) into the following problem for a function $v(x, t)$

$$
\begin{array}{rlrl}
v_{t} & =v_{x x}, \quad 0<x<1, \quad t>0 \\
v(0, t) & =0, & v(1, t)=0, \quad t>0 \\
v(x, 0) & =f(x) \quad 0<x<1,
\end{array}
$$

and state $f(x)$ in terms of u_{0}, b and x.
(c) $\left(10^{\prime}\right)$ Derive the solution

$$
v(x, t)=\sum_{n=1}^{\infty} v_{n}(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-n^{2} \pi^{2} t} \sin (n \pi x)
$$

and derive equations for A_{n} in terms of $f(x)$. You may use (without proof) the factor that

$$
\int_{0}^{1} x\left(x^{2}-1\right) \sin (n \pi x) d x=\frac{6(-1)^{n}}{\pi^{3} n^{3}}, \quad \int_{0}^{1} \sin (n \pi x) d x=\frac{1-(-1)^{n}}{\pi n}
$$

(d)(3') Prove that the solution $v(x, t)$ is unique.
7. The nonlinear PDE

$$
\begin{equation*}
v_{t t} v_{x}^{2}-2 v_{x t} v_{t} v_{x}+v_{t}^{2} v_{x x}=0 \tag{3}
\end{equation*}
$$

is a special case of the so-called Monge-Ampere equation. In this problem, you will reduce this system to an equivalent first order equation and then solve it.
(a)(5') Show that (3) is equivalent to:

$$
\begin{equation*}
\frac{v_{t t}}{v_{x}}-\frac{v_{t} v_{x t}}{v_{x}^{2}}=\frac{v_{t}}{v_{x}}\left(\frac{v_{x t}}{v_{x}}-\frac{v_{t} v_{x x}}{v_{x}^{2}}\right) \tag{4}
\end{equation*}
$$

Then show that (4) can be written as an equivalent first order PDE for the new function $u=v_{t} / v_{x}$. [Hint: we ordered the terms in (4) for a reason!]
(b)(8^{\prime}) For the given initial conditions

$$
v(x, 0)=1+2 e^{3 x}, \quad v_{t}(x, 0)=4 e^{3 x}
$$

on $-\infty<x<\infty$, find $u(x, t)$ for $t>0$ and then find $v(x, t)$ for $t>0$.

