Memorial University of Newfoundland Department of Mathematics \& Statistics

Analysis Qualifying Exam August 2015

Instructions:

Solve 6 of the 12 problems. Choose at least one and at most two problems from each one of the four parts A, B, C, D. All problems have equal credit. You have 3 hours.

A. Real Analysis

1. Show that a monotone function on an open interval is continuous if and only if its image is an interval.
2. Let E be a subset of \mathbb{R}. Recall the following definitions:

- The closure \bar{E} of E consists of all poits $x \in \mathbb{R}$ having the property that if I is an open interval containing x, then I contains a point of E.
$-x \in \mathbb{R}$ is an accumulation point of E if x is in the closure of $E \backslash\{x\}$.
Let E^{\prime} be the set of accumulation points of E.
(a) Show that E^{\prime} is a closed set.
(b) Show that $\bar{E}=E \cup E^{\prime}$.

3. Does the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{\sin \left(x^{n}\right)}{x^{n}} d x
$$

exist? If yes, find its value. Give a complete justification of your argument.

B. Complex Analysis

1. Evaluate the integral

$$
\int_{\mathbb{R}} \frac{d x}{(x+1)^{2} \sqrt{x}}
$$

2. (a) Suppose that f is an entire function satisfying $\sup _{z \in \mathbb{C}}|f(z) / z|<\infty$. Show that $z=0$ is a removable singularity of the function $g(z)=f(z) / z$
(b) Suppose f and g are entire functions satisfying the bound

$$
|f(z)| \leq C|g(z)| .
$$

Show that there is a constant c such that $f(z)=c g(z)$ for all $z \in \mathbb{C}$.
3. (a) Suppose f is analytic at ζ and satisfies $f(\zeta)=0$. Define what the order (also called degree or multiplicity) of the zero ζ is.
(b) Suppose f analytic at the point ζ and that ζ is a zero of order $m \geq 1$ of f. Show that

$$
\frac{1}{2 \pi \mathrm{i}} \int_{\mathcal{C}} \frac{f^{\prime}(z)}{f(z)} d z=m
$$

where \mathcal{C} is a (sufficiently small) contour containing ζ.

C. Lebesgue measure theory

1. Let $\ell(I)$ denote the length of any interval $I \subset \mathbb{R}$. Recall that the outer measure of a set $A \subset \mathbb{R}$ is defined by

$$
m^{*}(A)=\inf \left\{\sum_{k=1}^{\infty} \ell\left(I_{k}\right): A \subset \sum_{k=1}^{\infty} I_{k}\right\}
$$

Show that m^{*} is countably subadditive, i.e., if $\left\{E_{k}\right\}_{k=1}^{\infty}$ is any countable collection of sets, then

$$
m^{*}\left(\cup_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} m^{*}\left(E_{k}\right)
$$

2. Let $E \subset \mathbb{R}$ be a set.
(a) Define what if means for a function $f: E \rightarrow \mathbb{R}$ to be measurable.
(b) Let $f_{n}: E \rightarrow \mathbb{R}, n=1,2, \ldots$ be a sequence of measurable functions. Suppose that f_{n} converges to f pointwise almost everywhere on E. Show that f is measurable.
3. Let f be a real-valued function of two variables (x, y) that is defined on the square $Q=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}$ and is a measurable function of x for each fixed value y. For each $(x, y) \in Q$ let the partial derivative $\partial f / \partial y$ exist. Suppose there is a function g that is integrable over $[0,1]$ and such that

$$
\left|\frac{\partial f}{\partial y}(x, y)\right| \leq g(x) \quad \text { for all }(x, y) \in Q
$$

Prove that

$$
\frac{d}{d y}\left[\int_{0}^{1} f(x, y) d x\right]=\int_{0}^{1} \frac{\partial f}{\partial y}(x, y) d x \quad \text { for all } y \in[0,1]
$$

[Hint: Use the Lebesgue Dominated Convergence Theorem.]

D. Functional Analysis

1. Let A be a bounded linear operator on a Hilbert space \mathcal{H}.
(a) Define what $\sigma(A)$, the spectrum of A, is.
(b) Show that $(A-z)^{-1}=(A-\zeta)^{-1}+(z-\zeta)(A-z)^{-1}(A-\zeta)^{-1}$ for all z, ζ not in $\sigma(A)$.
(c) Show that $\rho(A)=\mathbb{C} \backslash \sigma(A)$ is an open set.
[Hint for (c): Fix $\zeta \in \rho(A)$ and construct $(A-z)^{-1}$ for z close to ζ.]
2. Let $(X,\|\cdot\|)$ be a normed linear space over the scalars \mathbb{C}.
(a) Let $x_{k} \in X, k=0,1,2, \ldots$ Define what it means for the series $\sum_{k \geq 0} x_{k}$ to converge and to converge absolutely.
(b) Prove that if X is a Banach space, then we have

$$
\left\{\sum_{k \geq 0} x_{k} \text { converges absolutely }\right\} \Longrightarrow\left\{\sum_{k \geq 0} x_{k} \text { converges }\right\}
$$

3. Let \mathcal{H} be a Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and let $\left\{e_{j}\right\}_{j \in I}$ be a family of orthonormal vectors, where I is an index set. Let $x \in \mathcal{H}$.
(a) Show that for any finite collection of distinct $j_{1}, \ldots, j_{n} \in I$

$$
\sum_{\ell=1}^{n}\left|\left\langle e_{j_{\ell}}, x\right\rangle\right|^{2} \leq\|x\|^{2}
$$

(b) Using the result (a), show that for any $n=1,2, \ldots$ the set

$$
S_{n}=\left\{e_{j}:\left|\left\langle e_{j}, x\right\rangle\right|^{2}>\|x\|^{2} n^{-1}\right\}
$$

contains at most $n-1$ elements.
(c) Using the result (b) show that the set $S=\left\{e_{j}:\left\langle e_{j}, x\right\rangle \neq 0\right\}$ is countable.

