Memorial University of Newfoundland

Department of Mathematics and Statistics

PhD Qualifying Examination – Topology

Name:

Student Id:

There are 8 problems. The duration of the exam is 3 hours. Complete solutions to six problems constitutes a perfect paper.

- 1. (a) Define what it means for a topological space to be *connected*, and what it means to be *path-connected*.
 - (b) Show that if U is a connected open subset of \mathbb{R}^n with the standard topology then U is path-connected.
 - (c) Show that if X is a connected space and $f: X \to Y$ is continuous and surjective then Y is a connected space.
 - (d) Provide an example of a connected space that it is not path-connected. No proof is required.
- 2. Let $(X, \operatorname{dist}_X)$ and (Y, dist) be metric spaces, and let $f: X \to Y$ be a function. Shows that the following statements are equivalent.
 - (a) For every $a \in X$ and every $\epsilon > 0$ there is $\delta > 0$ such that for every $x \in X$, if $\operatorname{dist}_X(a, x) < \delta$ then $\operatorname{dist}(f(a), f(x)) < \epsilon$.
 - (b) For every open subset V of Y, the preimage $f^{-1}(V)$ is an open subset of X.
 - (c) For every closed subset C of Y, the preimage $f^{-1}(C)$ is a closed subset of X.
- 3. Let X be a topological space.
 - (a) For a topological space, define what it means to be *regular* and what it means to be *compact*.
 - (b) Show that if X is compact and Hausdorff then X is regular.
 - (c) Let \mathbb{R}_l be the set of real numbers with the topology having the intervals [a, b) as a basis. Is \mathbb{R}_l compact? Is \mathbb{R}_l regular? Justify your answers.
- 4. (a) Let $p: X \to Y$ be a surjective map where X is a topological space and Y is a set. Define the *quotient topology* on Y induced by p.
 - (b) Let I = [-1, 1] be closed interval as a subspace of \mathbb{R} . Identify the points -1 and 1 of I to a single point in order to form a quotient set Q. Endow Q with the quotient topology. Give a detailed proof that Q is homeomorphic to the subspace $S^1 = \{x \times y \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ of \mathbb{R}^2 with the standard topology.

- 5. Let X be a topological space.
 - (a) Define what it means for a topological space to be second countable.
 - (b) Let X be a compact Hausdorff space. Show that X is metrizable if and only if X is second countable.
 - (c) Prove that \mathbb{R}^2 with the dictionary order topology is metrizable but it is not second countable.
- 6. Let X be a topological space and let (Y, dist_Y) be a metric space.
 - (a) Define what it means for a sequence of functions $\{f_n \colon X \to Y | n \in \mathbb{Z}_+\}$ to converge uniformly to a function $f \colon X \to Y$.
 - (b) Let $\{f_n \colon X \to Y | n \in \mathbb{Z}_+\}$ be a sequence of continuous functions converging uniformly to $f \colon X \to Y$. Show that f is continuous.
 - (c) Let $f_n: [0,1] \to \mathbb{R}$ defined by $f_n(x) = x^n(1-x)^n$. Does the sequence $\{f_n | n \in \mathbb{Z}_+\}$ converges uniformly?
- 7. (a) Define what it means for a topological space to be *locally compact*.
 - (b) Let X be a locally compact, Hausdorff space. Define the *one-point compactification* \widehat{X} and define the topology on \widehat{X} in detail. No proof is required here.
 - (c) Give a detailed proof that the one-point compactification of \mathbb{R} is homeomorphic to the subspace $S^1 = \{x \times y \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ of \mathbb{R}^2 with the standard topology.
- 8. Let $\{X_{\alpha} | \alpha \in J\}$ be a family of topological spaces.
 - (a) Define $\prod_{\alpha \in J} X_{\alpha}$ as a set, and define the *product topology* on $\prod_{\alpha \in J} X_{\alpha}$.
 - (b) For $\beta \in J$, show that the projection $P_{\beta} \colon \prod_{\alpha \in J} X_{\alpha} \to X_{\beta}$ is continuous.
 - (c) Let Z be a topological space. Show that a function $f: Z \to \prod_{\alpha \in J} X_{\alpha}$ is continuous if and only if $P_{\alpha} \circ f$ is a continuous function for each $\alpha \in J$.